
8 BIT REGISTER-BASED ALU ON FPGA

By

JALEN ONG SUET YENG

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme

in Partial Fulfillment of the Requirements

for the Degree

Bachelor ofEngineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi Petronas

Bandar Seri Iskandar

31750Tronoh

Perak Darul Ridzuan

© Copyright 2007

by

Jalen Ong, 2007

n

Approved:

CERTIFICATION OF APPROVAL

8 BIT REGISTER-BASED ALU ON FPGA

by

Jalen Ong Suet Yeng

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor ofEngineering (Hons)

(Electrical & Electronics Engineering)

Dr. Yap Vooi Voon

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2007

in

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

Jalen Ong Suet Yeng

IV

ABSTRACT

The objective of the project is to implement the ALU of an 8 bit register-based CPU

on FPGA. The success of this project will be an asset to the education of computer

architectures. Exposure to FPGA design will also become invaluable as the demand

for embedded system increases. The scope of study involves gaining understanding of

the architecture of the CPU and mastering HDL for FPGA design. The methodologies

outlined include functional and timing analysis of the ALU, construction of test jigs

for hardware interface with UP2 development board, hardware tests and

troubleshooting, programming TTL components in Verilog, construction of interface

with TTL CPU, interfacing with TTL CPU and implementing the control card on

FPGA. A functional ALU was implemented on FPGA. Static tests have shown that

the ALU unit is functioning.

ACKNOWLEDGMENTS

I would like to take this opportunity to express my deepest gratitude for my

supervisor, Dr.Yap Vooi Voon for his wisdom and guidance throughout the project.

He was not only an academic advisor but also someone who dares me to dream. He is

is always there to encourage and put things in perspective in the face of adversity.

Under his tutelage, I have learnt much, not only technically but also in shaping the

direction of my future. I would also like to thank Mr. Patrick Sebastian, who is

unofficially the next-door supervisor and who has been extremely helpful. His

generosity ranges from unreserved technical advice to the infinite loaning of his

personal stationery. Not forgetting, Mr. Lo, the third member of the trio who never

hesitates to kick me back on track when I show any sign of straying. I want to thank

Aidil Jazmi for patiently answering my streams of questions that haunted him even

after he left UTP. I also want to thank Kak Hawa and all other technicians who put up

with my incessant and annoying questions on everything under the sun and who kept

loaning me everything from the lab even though they never seem to come back.

Thanks also to my friends whom I rely upon for survival in UTP. I am greatly

indebted.

VI

TABLE OF CONTENTS

ABSTRACT V

ACKNOWLEDGMENTS VI

CHAPTER 1 INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 2

1.3 Objective and Scope of Study 2

CHAPTER 2 LITERATURE REVIEW 3

2.1 Microprocessor 3

2.2 Arithmetic Logic Unit 3

CHAPTER 3 METHODOLOGY 5

CHAPTER 4 RESULTS AND DISCUSSION 8

4.1 Arithmetic and Logic Operations (ALO) 8

4.2 MSW 15

4.3 General Registers 17

4.4 Special Registers 18

4.5 MDR 18

4.5.1 Bidirectional Buffer in Verilog 20

4.6 Integrated ALU 20

4.7 Timing Analysis 22

4.8 Test rig 23

4.9 MDR on test rig 24

4.10 ALU on test rig 25

4.11 Integrated ALU on test rig 25

4.11.1 Troubleshooting 27

4.12 Interface with TTL CPU 32

4.13 TTL components in verilog 34

4.14 Control card in verilog 34

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 35

5.1 Conclusion 35

5.2 Recommendations 36

REFERENCES 37

vn

APPENDIX A-SCHEMATICS 38

APPENDIX B - VERILOG CODES 45

APPENDIX C - PICTURES 60

vni

LIST OF TABLES

Table 1: Truth table of selector 9

Table 2: Test values and theoretical results for ALU standalone 10

Table 3: Truth table ofALU standalone 11

Table 4: Selection of input to MDR 19

Table 5: Test results 30

IX

LIST OF FIGURES

Figure 1: Block diagram of CPU 5

Figure 2: Schematic of selector 8

Figure 3: Output waveform of selector for ALUOP(Ol) 9

Figure 4: Output waveform of selector for ALUOP(OO) 9

Figure 5: Schematic ofALU chips standalone 10

Figure 6: Simulation waveform for addition of test values 11

Figure 7: Simulation waveform for AND operation of test values 11

Figure 8: Simulation waveform for OR operation of test values 12

Figure 9: Simulation waveform for minus operation of test values 12

Figure 10: Buffers in the ALU 12

Figure 11: Simulation waveform ofALU buffers 13

Figure 12: ALO schematic as a whole 13

Figure 13: Simulation waveform for AND operation of test values of whole ALO.. 14

Figure 14: Simulation waveform for minus operation of test values ofwhole ALO. 14

Figure 15: Simulation waveform for addition operation of test values of whole ALO
15

Figure 16: Simulation waveform for AND operation shifted one bit to the right of test
values ofwhole ALO 15

Figure 17: MSW schematic 16

Figure 18: Simulation waveform of MSW 17

Figure 19: Simulation waveform of general registers 17

Figure 20: Schematic of special registers 18

Figure 21: Simulation waveform of special registers 18

Figure 22: Schematic ofMDR 19

Figure 23: Simulation waveform ofMDR 20

Figure 24: Output waveform of integrated ALU 22

Figure 25: Timing analyzer summary 22

Figure 26: Timing analyzer messages 23

Figure 27: Test rigs 24

Figure 28: UP2 board 24

Figure 29: Waveform of unknown logic levels 27

Figure 30: Waveform of logic contention 28

x

Figure 31: Lbus values ofMDR in integratedALU 29

Figure 32: Left backplane 32

Figure 33: Right backplane 33

Figure 34: Schematic of general register 39

Figure 35: Schematic of integratedALU 40

Figure 36: Microcode 40

Figure 37: Field decode 41

Figure 38: Field decode 2 42

Figure 39: Faults and interrupts 43

Figure 40: A working MDR module on test rig 60

Figure 41: AND operation of ALUmodule 61

Figure 42: Minus operation ofALU module 61

Figure 43: AND operation of integrated ALU with both carry and overflow lighted 62

Figure 44: Add operation of integratedALU with sign lighted 62

Figure 45 : Minus operation of integratedALU with zero flag lighted 63

Figure 46: Results in L, R and Z busses 63

Figure 47: Wire wrap connectionsof interface 64

Figure 48: Top view of interface 64

Figure 49: Final interface 65

Figure 50: Top view of final interface 65

XI

LIST OF ABBREVIATIONS

ALO Arithmetic and Logic Operations

ALU Arithmetic Logic Unit

ASIC Application-Specific Integrated Circuit

CPU Central Processing Unit

FPGA Field Programmable Gate-Array

TTL Transistor-Transistor Logic

xn

CHAPTER 1

INTRODUCTION

Computers have become a requisite. As a result of the boundless capabilities of

modern computers, they are thought to be very convoluted and intellectual devices.

The thought of building a computer is inconceivable. Essentially, the microprocessor

or central processing unit (CPU) of a computer is made out of simple commands to

move data around, perform simple math (add, subtract, multiply, and divide), bring

data into the CPU from the outside world, and send data out of the CPU to the outside

world. The power of the computer only surfaces with its ability to execute these

simple instructions expeditiously. As its complexity increases many folds in a matter

of months, it becomes a technology that is inexplicable. It is the aim of the project to

go down to basics by starting from scratch and building a minicomputer and

understanding the architecture of it. An 8 bit register-based CPU on TTL chips has

already been implemented. The challenge is to implement the arithmetic logic unit

(ALU) into a single chip in Field Programmable Gate Array (FPGA).

1.1 Background of Study

The goal is to implement the arithmetic logic unit (ALU) of an 8 bit register based

CPU on FPGA. By 8 bits, it means the CPU can process information 8 bits at a time.

For example it can subtract or add two 8 bit numbers at one instruction cycle. An

FPGA is a semiconductor device containing programmable logic components and

programmable interconnects. The programmable logic components can be

programmed to duplicate the functionality of basic logic gates such as AND, OR,

XOR, NOT or more complex combinational functions such as decoders.

A hierarchy of programmable interconnects allows the logic blocks of an FPGA to be

interconnected as needed by the system designer, somewhat like a one-chip

programmable breadboard. FPGAs are generally slower than their application-

specific integrated circuit (ASIC) counterparts, can't handle as complex a design, and

1

draw more power. However, there are several advantages such as a shorter time to

market, ability to re-program in the field to fix bugs, and lower non-recurring

engineering costs. This propels the aspiration to develop the ALU of the CPU on

FPGA (a single chip) as the initial step.

1.2 Problem Statement

The main aim of the project is to implement the ALU in FPGA. It is envisaged that

this would open up opportunities for further research in computer architecture. In

addition, it also eases the teaching of computer architecture related courses as they

present the most basic computer architecture. The first step that has been taken is to

construct the whole CPU in TTL chips. That has already been achieved. It would then

serve as a testbed for the chip that is to be implemented in FPGA. The next step now

is to implement the ALU in FPGA.

1.3 Objective and Scope of Study

The objective of the project is to implement the ALU of an 8 bit register based CPU

on FPGA. The CPU that we are targeting to implement our ALU on runs at 3MHz

and is similar in capabilities and performance as the 8086. The ALU works on both 8

bits and 16 bits operations. To accomplish these objectives, one has to gain a

thorough understanding on the architecture of the ALU to enable one to simulate and

test run each part of the ALU separately. The conception enables one to know the

expected results of a successful simulation. Next, one is required to master the

hardware description language (HDL) to implement the ALU on FPGA.

CHAPTER 2

LITERATURE REVIEW

2.1 Microprocessor

A microprocessor or CPU executes a collection of machine instructions that tell the

processor what to do. A microprocessor does a few basic thingsfl]:

1. Utilizing its ALU (Arithmetic/Logic Unit), a microprocessor can perform

mathematical operations like addition, subtraction, multiplication and

division.

2. A microprocessor can move data from one memory location to another and a

microprocessor can make decisions and jump to a new set of instructions

based on those decisions.

There may be very sophisticated things that a microprocessor does, but those are its

three basic activities. A microprocessor comprises of registers as temporary storage

area, buses to transfer data and select memory areas and control lines to control all the

blocks inside the microprocessor so that the instruction are executed correctly.

2.2 Arithmetic Logic Unit

The ALU of the computer's CPU is part of the execution unit[l]. Generally it

performs a wide variety of mathematical and logical operations in two's complement.

It gets data from processor registers to be processed before storing them into ALU

output registers. The control unit controls the ALU by instructing the ALU on which

operations to perform. Most ALUs can perform the following operations[l]:

• Aritmetic operations (addition, subtraction, sometimes multiplication etc.)

• Bitwise logic operations (AND, NOT, OR, XOR)

• Bit-shifting operations

More complex arithmetic operations are usually performed in software like division

and floating point operation[l]. The inputs to the ALU are the data to be operated on

(called operands) and a code from the control unit indicating which operation to

perform. Its output is the result of the computation. The ALU also takes or generates

as inputs or outputs a set of condition codes from or to a status register. These codes

are used to indicate cases such as carry-in or carry-out, overflow, divide-by-zero, etc.

CHAPTER 3

METHODOLOGY

The target minicomputer that the ALU is to be implemented upon runs on 3 MHz,

supports user and supervisor modes, address translation via hardware page table, 6

external interrupts and up to 8MB of memory. The data bus is 8 bits wide and internal

CPU data paths are 16 bits. The ALU can operate on both 8 and 16 bits operations.

The block diagram of the CPU is shown in Figure 1. The portion enclosed in dotted

lines is the ALU ofthe CPU.

Control IR

*T
Data Bus (8-bits U. . . MMUm •

-

i

1

i i

*
Devices ROM

RAM

(4Meg x 8)

t t
i i

Address Bus (22-blts)

A
Fault

Logic

Low 11

Low 4

High 11 I
Page Table

(16-bit entries)

Figure 1: Block diagram of CPU

PTB

High 5

DP

SP

SSP

PC

^±i TPC

MAR

I il

f Schematic entryA/erilog

1
i '

1 r Simulation

\ 1
''

/ Constructing test jig

1/
1 '

I
•

Testing

\
1'

p* Troubleshooting

'
''

N- Constructing interface

\
i '

\ Interfacing with TTL CPU

\
i '

v
Replacing schematic entry with Verilog HDL

>

Firstly, the Quartus 2 software is installed and familiarization with the basic

development environment begins. Schematic entry is being chosen over HDL

programming as a start. Schematic entry was tried with simple circuits and gradually

moving to the actual schematic that has to be built. The ALU subpart of the circuit

was drawn first. Next, functional analysis is performed on it and errors are

troubleshooted until the schematic is found to be working as expected.

The same is performed on the MSW, general registers, special registers, and MDR.

Full functional analysis has also been performed and preliminary results show that it

is functioning as expected. Preliminary timing analysis has also been carried out and

no error was recorded. Next, the bidirectional buffer that cannot be drawn with

schematic entry was programmed using verilog. It was then integrated into the

schematics for hardware tests. Next, test rigs were built to interface with the UP2

board for hardware tests. Hardware tests have been carried out and have been verified

to be working. Next, the interface with the TTL CPU is constructed. Interfacing is

then performed. Then each TTL chip was replaced in verilog to gain familiarity with

the language. The control card was also coded.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Arithmetic and Logic Operations (ALO)

The whole schematic that performs the arithmetic and logic operations was drawn and

functional analysis was performed on it as a whole hopeful that the results could be

satisfactory during the preliminary simulation. Preliminary results have shown that

the waveform simulated for the Z bus is far from the theoretical value that was

calculated for the test values that are fired at the inputs. As the source(s) of error is

difficult to trace with so many connections, subsection of the ALO are being

troubleshooted separately as standalones. The selector was taken out for

troubleshooting first and it was found to work as expected. The selector is shown in

Figure 2.

„< L",;.!."'.",i.i

'MULilR.'BKm'''1"''34"'

2C3

2C2

2C1

2C0

2GN P-
1C3

1C2

1G1

1C0

1GN t>

rsstss'iMULnptece*

2C3

2C2

2C1

2C0

2GN R-

1C3

1C2

1C1

1CO

1GN P-

Figure 2: Schematic of selector

Efi~TJra—3 *yJ9PIS.-jJ.L..i

IR[0..7) _

The expected results from the selector are shown in Table 1.

Table 1: Truth table of selector

ALUOP1

A

ALUOPO

B

SO S1 S2 operation

0 0 IR IR

0 1 0 1 1 AB

1 0 0 1 0 A minus B

1 1 1 1 0 A plus B

Two waveform results of the selector are shown in Figure 3 and Figure 4. The lines
that are bold indicate a HIGH logic level.

Master Tine Ban] 3.975nt '['[FtWanj ew*™ rinto«atP "53.07 ns Start:! Endj

Name
V.
3.

3ps lOpns 2apm - 3aQnt 4apm 5Qpm sapm TOpn*.
3.975 ns

J

s> H ALUOP | 01. ' I !

m IR

SO

S1

E2

BM 000(11111)

Figure 3: Output waveform of selector for ALUOP(01)

aifflEHHBESi

MstlM Tftne Bnj 3.375 m •<[-|p°n«r 35,73m lrKet¥at| 31.7Gm Sl«t[Erai!

Nan
Vf
1

)pi 10pns , rnpru 3apni 4apnt 50pns EO.Om 70pr» J
3375 na

J

m S ALUOP ! i . . oo : [

a ib

so

SI

S2

Ba ooomoio

1 1 \ \ j] ;

1 i i i ! i !

Figure 4: Output waveform of selector for ALUOP(OO)

ALUOP (00) will give IR operation. This means that SO, SI, and S2 will take the

values from IR1, IR2, and IR3. Values of IR0, and IR4 - IR7 will not play any role in

this portion of the circuit. Thus referring to Figure 4, the results shown is as expected.

All possible input combinations have been simulated to work as the truth table shown

in Table 1.

Next, the 74382 and 74381 ALU parts are created as standalone to be performed

functional analysis. The coverage of the standalone is shown in Figure 5.

i——•••• - -• • 'aj;s=g:..;:^!;:":;

"~ "

\-
^ ' r : '- '- '-- !• : - : : i ' c = * f nr - 7- •^ T " F n i i i % i i

..*_...W-_

i | ii
J5SS0

ji
s

33B5 5S3:; !

«

a ui s ?B ^3? 31/ 3 3 = 9 3 •

*

HG SS3?E i ii

*

—

jra I

Figure 5: Schematic of ALU chips standalone

Several logic and arithmetic operations were simulated with the ALU chips

standalone. Addition, AND and OR operation worked as expected. Test values for A

and B and their expected theoretical outputs are shown in Table 2. The truth table for

the resulting arithmetic and logic operation based on the inputs are shown in Table 3.

The last bit of the minus operation was found to be faulty. After examining the

datasheets again, it was discovered that the carry in input has to be force high for

active high operation. The simulated waveform results for the mentioned logic and

arithmetic operations are shown in Figure 6, 7, 8 and 9.

Table 2 Test values and theoretical results for ALU standalone

1 1 111 operation

0 0

0 0

11100000011001

010000011 10000

A

B

0 1 00100010001001 add

0 0 01000000010000 and

0 0 11100001111001 or

0 0 10011110101001 minus

10

Table 3: Truth table of ALU standalone

SO S1 S2 Operation

0 0 0 clear

1 0 0 B minus A

0 1 0 A minus B

1 1 0 A plus B

1 0 1 OR

0 1 1 AND

Mailet Time Bar; | 5.9™ -|>|PjlteK| 47Bm Intarvafcj 41.6 ra Start | Enr±|

Name

IfB mpm 20pra 30p™ 40-pm 5QQra 60 0 m Tapra
5.3ra

J

& C-2A | I '

m

&

m

m.

m

Cany

0 L

a fi

S-3A

S-38

SO

SI

S2

V-1A

m X

BCK

BIT--

1 1

0011100000011001 I i
1 000100bODl1lDdDD | i !

; i ; i 1

! 111!

! ! 1
! !

: ; i
01001UUUlUSUlUUl '•

.

Figure 6: Simulation waveform for addition of test values

W^es jTSaluvwf | K3* iiraWBOMepon-biruawnwavetoims 1
jsammuiauum

|>|potiterMasts Trne Bar | 53 nt 42.65™ Interval! 3a65nt Stan | End;
,

Name

]ps lOpn. 2Q.pra sap™ 40pns SOpns 60.pra Tftprn
5E re

r1

m

m
&

&

•»

C24

Cany

IE L

m n

S-34

S-3B

SO

SI

S2

V-1A

BIN

BM

B«

! : i I ;
omnooooooifooi j \

• OKHoooOOUIMGo ! 1

! : 1 i
! ! i 1 i

i ! ; i : | !

III! i !

! I : i i 1

' i • 1 |

! i i F ! !

Figure 7: Simulation waveform for AND operation of test values

11

MaitaThisflan f 5.8 m jjjp<**a.p 4ao?nt tncervatf m27nt Start.! "Enttr

Name

)pj 10pm1 Zftpns 30pm 4D.prtt Sapnt BCLpnt Tlpra

--

5 8ns

J

1

1

1

i

1

|

&

•&

a-

C-2A I

Cany

a l

m n

S-3A

S-3B

SO

SI

S2

V-1A

BH

BH

BIK

1 '

i 0011100800011 CM , |
60011)8800111 WOO

; i ; ;

i ' | | i

| cfli11(M001111c61 :
; • i : : ;

Figure 8: Simulation waveform for OR operation of test values

Master Tune Bar \ 59™ «[•{ Partes! 530ns jntaivatj 472m Stat] End: J

Name

3ps 10pra 20pns 3Lpn> 4G.pm 50,pns Bap™ TOpnt
5£ ns

& C-2A !

Canji

IS L

0 R

S-3A

S-3B

SO

SI

S2

BH

Btt

r

! I ooni ooddoollool

[i oomuoouomoooo

i i '

j 'I
1 1 '

i ' 1
i : i

V-1A !
mx Ibot

i i
[orjioaiinuiuiuui i |
! : i

Figure 9: Simulation waveform for minus operation of test values

Since the ALU standalone chips are functioning as expected, the next step is to

implement the buffers in the ALU. The section of the circuit is shown in Figure 10.

•±i 1--.

L
ft; !B B t SSFc £P£;:

!3S!isi3*ls

tc;

ss

Figure 10: Buffers in the ALU

The initial simulation results indicate that the bits are shifted to the right. It was

suspected then the cause of this could be due to the input from _DO_RSHIFT.

Therefore, _DO_RSHIFT is forced low (initially it was force high) and the simulation

results become accurate. This verifies that _DO_RSHIFT is an active low input. The

simulation output waveform is shown in Figure 11.

12

Master Time Bar. [7.225m «j>fPoirto:| Ops Inteivatj -7.23 ru Start: j Entt]

Nam

]ps 2ps 4ps 6ps 8ps 10 pi 12;p3 Ups iGw 1I8,pt 20,ps 22,p»

m

m

_D0 RSHIFT 1

AUJOP.SZ

F3

E X

H Z B(K

MWOooiOolflOl

0011100010010101

Figure 11: Simulation waveform of ALU buffers

After these few changes are made to the overall ALO circuit. Simulation was carried

out again and it functioned as expected except the USE_CARRY input is an invert

from the 'carry in' of the ALU chips standalone. This is because there were

intermediate logic components being used in the overall circuit. That means that

USE_CARRY is active low while 'carry in' is active high. The whole ALO schematic

is shown in Figure 12. For the full waveform simulation, the truth table in Table 1 is

still valid. The test values used for L and R bus are still the same as Table 2. The L

bus will be fed to the A inputs and the R bus will be fed to the B inputs.

=I>7

^CL
-7<q=

••3>h=t

^£>n=^
M

±^ r-CT;—zqsgpa--^

•<£-,

i I i *,

teftr wtf testr 4m

Figure 12: ALO schematic as a whole

The output waveforms for several logic and arithmetic operations are shown in Figure

13, 14, and 15. The shift right input will shift the output waveform one bit to the

13

right. We used the result waveform of AND operation (Figure 13) and shift it to the

right by one bit. The simulation waveform is shown in Figure 16.

Masta Trno Ban | . Ops • <[»|Pbnt°t:| • .- .44.51m ' ' lntarvat| • • 44:51 ra '; • Start:1' -End]

';*. .
' •Nemo] ••

• i

:

]p! •mpw:.- 20.pW . : '-' 30 Ins,- ,• ,*ipr*' • •5p,pm •:80,pns - - ".••-- TtLpm';.
)ps
1

m 13 ALUOP \ ! 01 >

&

&

&

m

m

»

ALUC

_O0_RSHIFT

ALUOP.SZ

ALUS

AUJV

ALUZ

a ir

a l

MSWC

a r

USE_CARRY

IZ

B«

BK'

BO!

! 1 [. ; i ! 1

i ! j i | j |
! i i ! ! i •

1 ! • ! • i 1 i !
1 OOOOttMO , i

00111000000110m ; ,

1 oooiooDbmildoaO 1 1

! ! i

btaoooooodltaod i i

Figure 13: Simulation waveform for AND operation of test values ofwhole ALO

"_•)•] Porta: |"Masta Tine Bar [Ops 55.02 ns Irjtavalf 5502b* Start | End

Name

]ps mom 20pra 30pm topos 50pm 60pm 70.pm I

1

jp 11 ALUOP j. i i 10 i i !

m

m
0

ALUC

_D0_RSH!FT

ALU0P_SZ

ALUS

ALUV

ALUZ

@ IR

m l

MSWC

S R

USE.CARRY

ElZ

an

B0(

sot

; I i i 1
; " ; iji

• • • i i
! OOOOOOOD • S 1

1 i oomodooaoiiaoi 'i i

OfflOOOOfll110000

•- ; 0010011110101001 !

i I ! ! i

Figure 14: Simulation waveform for minus operation of test values of whole
ALO

14

Master Tine Ban] Opt <j »1 PohtBrf 47.67 nt Entovatj 47.67 m Staft| Em±|

Nam .

ipt mpns 20.pra 300 n* 40.0 ni 50.0 ns 60.0 rtt 70.0 m ;

ips
i

£j> Bi ALUOP | ! 11 i 1 !

m
m

&

m.

ALUC

_DQ_RSHIFT

ALUOP.SZ

ALUS

ALUV

ALUZ

IE IR

m I

MSWC

IE R

USE_CAHRY

SZ

BH

b a

BIT;

i ; '

i ! ! ! ! i

0000)0)0 :
• 0011100000011001 1

WOlOObdOlllOOflO ; ;

!!!!!:•
! 0100100010W1001 ;

! : ; I ! ! :

Figure 15: Simulation waveform for addition operation of test values of whole
ALO

"id^r ,'fntervatj " **1.54rtt"Masler TimeBar. Qra 41.54 nt Start f ' End]"

; Nam
Ips mpns 20.pnt 3£pns 4apns STlpn* 60.p™ Tap™
Jps
1

S* El ALUOP I I i 01 1

. &

i.a*

.'&
i &

: &
•- s

&•

ALUC

_DD_RSH!FT

ALUOP.SZ

ALUS

ALUV

ALUZ

H IR

U L

HSWC

El R

USE.CARRY

ElZ

B(K

B0C

B Dt

I : I
; |

!!!:•!!

I 1 ! S \ |
1 OdOOUoO :

, ! oMIIoKKMollflol

! 1 1 ! :
oom oDDOoi n dooo

0000100000001000

Figure 16: Simulation waveform for AND operation shifted one bit to the right
of test values of whole ALO

4.2 MSW

Next, the schematic of MSW is being drawn in Quartus 2 (Figure 17). The MSW

deals mainly with the ALU flags (carry, zero, sign and overflow), control flags (Mode

for supervisor ofuser), paging and interrupts enable.

15

LL-1 Lj=>*i

t5=£&

t^=l V a&z

™ SSrJBgrl"

]i*yls3383i!3Sg5i

« Isjssaas5»

nTTTT

3S8B53S5
!_^JJJ._U

4iSffir::iiJ_"_"zi»-ii"_"i

..k,^™ J

^^ggyT^r—=S "B^^c r

•••jarfri^T-aa^-'ia^r- • —j

Figure 17: MSW schematic

All possible combinations of input have been tested to work accurately. One output

waveform has been shown in Figure 18.

16

anas
7.225m <(»|Partw; 55.47 rtt

)ps

_SET__FLAGS

ALUV

ALUS

ALUC

ALUZ

LJrfSW

HSWZ

MSWC

MSWS

MSWV

_RESET

HSWM

HSWE

MSWP

El L

_EL_MSW

LJ40DE

*CODE_PTB

L_EI

L.R4GING

L_FAULT

MEMREF

EL MSW

- jj

boi trndooobCT

lW A 35fa.

~-fl""l -' -B'

mpn sapB 7apri>

-aaanmnmr

J L

oMHooaioicioio

Figure 18: Simulation waveform of MSW

4.3 General Registers

Schematic of general registers have also been drawn. Refer to Appendix A.

The functional analysis of the general registers is much more straightforward than for

ALU and MSW. It is generally just choosing which entity to drive the L bus at any

particular time. One simulation output waveform is shown in Figure 19.

1

Mastai Tine Bac j 94ns '«|'j Pointer j 2425 ns Intrnvetf 1485n» Start j Er*tj

&\

Name

]ps 10pm 20.pra mp™
S4nt

; ;

0-

&•

0-

*

7>s~

El L

LA_HI

L_A_LO

ElZ

_EL_TPC

COMMIT

_EL_SP

L_SP

L_DP

_EL_DP

bir

B(T

ooooooooooooooocy i 0100101001010000

1 1 1 1 1 1 1

1 1 1 1 1 1 1
01OOl01o01OtOOM

1 1 !

1 1 1 i 1 1 1

i i ;
1 I i 1 i i i
1 till i i

Figure 19: Simulation waveform of general registers

17

4.4 Special Registers

The special registers schematic is shown in Figure 20. It is also a rather

schematic and the output waveform is shown in Figure 21.

-33£

j^sln^l S39353335S

Sfc i*£t SKEE £

simple

"'frjg'-"^Tfj"'_ __*dEJ^* J

Figure 20: Schematic of special registers

sms
faster Tme Bar.

Name

7.225 ns JjPoHec' 39.11
3t» 10pm

7225 nt

r.itti-r*-. -• * a •*— t» • • i t

21pm 30.0 nt 40pm

iMiMViievii v«

Dpi Ops

50.pra EOprw lUBra SOpnt

^ ••

El IMMVAL

_ER_IMM

El R

_RESET

L_MAR

ElZ

El MAR

_EL_MAR

El L

x *r * "is»--I
iTrtiif-

J |_! l

Figure 21: Simulation waveform of special registers

4.5 MDR

MDR The schematic for MDR has been shown in Figure 22. There is a missing

component in the schematic which is the 74F245 which is an octal bidirectional

transceiver with 3-state outputs. In the original design, this chip plays the role of a

bidirectional buffer between the data bus and the MDR. The IC is not available in the

schematic entry library. Therefore, the component will be included in the design in

HDL.

18

-ssesii:;:::o~.j

-&t

X
fsagesesi"" 35SS8Sb5I"" SJ J 313 S = ; iajaiaaaji

•SiiiisiUSSsi

»; ;g Be

S33aS3335S

SSSSEEZf

saas535==i

gfESIS3SK

&88a a

-^SSSKZZTC-ZZ)

Figure 22: Schematic of MDR

The 16 bits that will be loaded into L, R and data busses will depend on the input of

XL_MDR_HI and XL_MDR_LO whose combination will select input from either the

8 bits data bus (D bus) or 16 bits Z bus or the combination of both (see Table 4).

Table 4: Selection of input to MDR

XL_MDR_HI XL_MDR_LO Higher 8 bits Lower 8 bits

0 0 Zbus Z bus

0 1 - D bus

1 0 Dbus Zbus

1 1 D7 Dbus

The simulation output waveform is shown in Figure 23. When bidirectional busses

are being used, input must not be driven strong high or low because if output to the

busses contradict with the input values error will be produced. Therefore to avoid

producing any errors, weak low or high is being used for input. Weak low is indicated

by L and weak high, H whereas strong high is 1 and strong low 0 (see Figure 23)

19

9^SmiiaHonRepcE
I MDR.bdf mffiBg [•0MDH.«i»l >SniiJalbnRepgrt-SbUstBnWaveforms

SIS Leoal Notfci

^•flwiSertht
E S5S Sfrntiator

^-^fflSettbO!
. gH^Sfciufetj
k^SlNIUsa

MadarTipeBan| 7.225m •|'lPoin'llKl 5a4a~" Interval) ' ' 43.26m Stot| Ops End: j U3uT

ftmL-ij

Zttpre S0.pr

o»00Q0fri11(UoM

3&X ;xm:

'dB1Ta060TTfOoMB7 MdOOOQgjiai1t)1tia X 0M1oiaailMfloo X nMfflMflHIOloo XooiflOOOOiilOOOdd
lioToTffffliraoWX DMoWoWllflllB X— "011010^111WOW j floWfloMDOliOloa ypHoBodflii fljrx-J

LLHHLHI1 =

< JL5 El.

Figure 23: Simulation waveform of MDR

4.5.1 Bidirectional Buffer in Verilog

As the components library in Quartus 2 does not contain the 74245 bidirectional

buffer. It has to be written in verilog. The code written is appended in Appendix B.

4.6 Integrated ALU

The separate ALU schematics are combined into an integrated schematic to carry out

functional analysis. The integrated schematic is appended in Appendix A.

Preliminary results were unsuccessful and many errors were listed. These errors have

been corrected and among them are:

1. The logic contention errors occurred because input and output buses are of a

different logic value.

2. During integration some non-existent connections have been established and

this has been corrected.

3. The registers to any busses can only be enabled one at a time.

4. L, R, Z and D busses have to be set as bidirectional.

5. Output cannot be obtained immediately. Each process has to be run

separately. In the real operation of a microprocessor, a microcode will control

20

the operation of the ALU. Since the microcode is not available to simulate it,

simulation of each processes are done manually. For example, data are loaded

in the D bus first and buffered into L and R busses which will be fed to the Z

bus for ALU operation. During the next process, the previous buffers have to

be disabled and current related registers have to be enabled. After ALU

operation, the output in Z bus have to be loaded in L bus which again required

the previous bus to be disabled. As the operation is a feedback loop, the output

waveform is very complicated.

6. Logic level must be specified for bidirectional node even if the tri-state that

feeds the bidirectional node is always enabled. A constant logic level of high

impedance (z), weak low (l), or weak high (h) for the channel can be

specified. If a logic level is not specified, the simulator will assume the logic

level is forcing unknown (x), that typically produces unexpected results.

7. If a tri-state buffer that feeds a bidirectional node is enabled, the logic level of

the bidirectional node must be high impedance (z) or a weak signal—for

example, weak low (l), weak high (h), or weak unknown (w). If the

bidirectional node does not have the correct logic level, the Simulator could

produce an error if there is logic contention. For example, if the logic level at

the output of the tri-state buffer is different— strong high (l)—from the logic

level that the bidirectional channel drives in—strong low (o), the Simulator

produces an error.

8. If the tri-state buffer that feeds a bidirectional node is disabled, the logic level

of the bidirectional node must not be high impedance (z), because the

Simulator propagates a forced unknown (x) logic level. If the logic level of the

bidirectional node is any of the weak signals, for example, weak low (l), weak

high (h), or weak unknown (w), the Simulator uses them as strong signals once

the signals propagate through the device.

9. The input channel cannot be written to by the simulator. Thus, if an output

node named "a" and an input channel named "a" exist in the waveform,

simulation will fail.

21

The output waveform is shown in Figure 24.

mtiatlon Repc
) LegalNotlci
| Flow Sumrne
1 FlowSettm
j SmJator '
JS Summar
IS SetHnjs'
§0Si»i*l
|B INI Lisa
^-V Messag

_ £ J £J

MastwTmeBer:! a2ns ^[f] Pomten [132.36ns Interval) 123.1Gm Start j End|

Name

140,0ra 150,001 160,0m |fe$l

LES]~result

Lieneailt

L[7T'«ull

UEl-result

L[Er««ilt
mrieoit

LI3]~iesift

L[2]~iesult

L[1]~«ajlt

LlOnesnlt

Z[15]-"esult

Z[14]"resjl[

ZH3r'esult

2J12rremll

Zflirresult

ZH01~result

ZIETresi*

Z[Bl~iesuA

Z|?T~result

Z[B]~iesiJt '•
Z|5]~iesul

Z[4j-iesu<

ZPnest*

1 1

1 !

1

1

i

i i

1

1 !
1

1 T " '

; i
1 i

l 1 i •*.

Figure 24: Output waveform of integrated ALU

4.7 Timing Analysis

Timing analysis was performed on the integrated ALU schematic. The result of the

analysis is shown in Figure 25 and Figure 26. No error was indicated during the

timing analysis. The compilation was successful.

'£ Quarlus II -C:/altEra/!Fiiarlus50/bin/wholeALL] -wholaAl.ti -[Compilation Report - Timing Analyzer Summflry] [^Hl^lix"!
^> Ffc Edft Mem Project Assortments Frocessng Took Window Help _ S X

DG? a j& \ $ %(rl ["-> "• j*ff j|wholeALij 2l'Mf<8i&\&*- »^ •& ' ft. j<8> |^
•fje| whoteALu.bdf | Q whdeALuvnl | #" Dm;JatiotiBepsit-T™igAiHk™Sunmay]

mpSatton Report Timing Analyser Summary |

3 Flow Summery
3 FlowSettings
9 FlowElapsed Time
| FlowLog
J Analysis & Synthesis
] Fitter
] Assembler
I TimingAnalyzer

JS Summary

Tjpo Slack1, flequred
Tme

Actual
Tine Front To

Rom
Clock

To
Clock

Paled
Petfo

1 Worst-casa tsu N/A None 1731ns ALU0P[1] 74273:iisi63tl2 L MDR LO 0 1

2 Worst-case tco N/A None 15700 nt 74273 inst41i1B Z|10I LJASW 0

3 Worst-caia tpd NA None 23631ns ALU0PI1] 2110] 0

4 Worst-case th N/A Norte -Z340ns _D0_RSWFT 7474:hst39l3 L MODE D

b Clock Setup l_MSW NA None 113.39 MHz[oeibd-9.819ns' 74273 insMlnE 74273: hst41|1S L_MSW L_MSW "-Q
e Total number of failed oaths Q

-

Figure 25: Timing analyzer summary

22

4', Quartus II - C:/alter<i/qiiai tu550/bin/wholeALu - v/IioIgALu - [CompilationReport - Timing Analyzer Messages]

• He Erft Vfcw Project Assignments Protoising Tools Window Hefe

|d esq \&
I «howuibn

platbn Report
LegalNotice
Flow Summary

FlowSettings
FlowElapsed TWte
FlowLog
Analysisa.Synthesis
FKSor

Assembler

TimingAnatyier
Summary

Settings

ClockSettings Sum
dockSetup.'LJ15

35 Lsu
^ tco
15 tpd

ij Messages

i

'V Info "
51'^1 Info FtunrwigQuartiKlj Timing Ana^™

'$} Into Command: quaitusjan -read..;eMiigs_liles=«l -write^tethng^lilss'ofr whdenbj1.wliole°Lu -tirTBng_anrfjt:rs_cnS^
IB Jji Warning; Found pins functioning asundBSrwd clocks and/or memory enables
S3;A Warring; Found1 nocte(s) inclockpathswhich may beacling as rpple and/orgaledclocks nodofs) analyzed as buffer[s] reeling
B'^y Info Dock l^MS '̂hosWemallrnar oM13 J8MHzb&twa8riaiiiica!tjisiM'74273i™,l41l13"

Q-'-j) Info * Longest regqler lo legists! delaji> S 593n.
& Into 1 +!CtorjflOnsJ +CELUrjOUOrc)=0004JrB Lac =LCFFJ«1„Y24_N3 Far,BUt =£REG NoIl= =';427^-!nsl41l1S•

-^> Into 2-J-iqo;i1ri)*CELL(0ZeOn;)-0531iB Loc- LCroMrj_X41_Y24.N1 GTancui-^ COMB Node - 7402ir„l3114'69
'*•/ Wo 3 +ICEOZ78n.] +CEmO447n-J=1 315^ Lo- - LCCOMR_X41_Y24JI?^ Fonwil - 2 COMB Node- 74182.msii2iJ~490
'•}J Wo 4 +iq_ 262rB)+CELL(0 42Bmi-ODDSm Loo -LCCOMB_X41_Y24„N4 Faraut-1 COMB Node=7418:mstEa 491

U>V Into 5 ciq0 251ra]*trLL(0 42BlH!"2E35rtsLK • LCC0MB_1M1„ '24„NB Farraut -B. COMB Node -74182 insil29~494
if into b +ID02(*rBl->-(Tll[Q4^ns!"9-'Bans.Loc -LCCOMBJi41_Vi4_N11,Fanoul =1 COMB Nods-7*182 in,,tE!r43l5
** Into7 +IC[Q251rr] +C£LLBn53n0.3 792m t-X =L(XOM8_X41_Y..4_N2.Farraiil-l COMB Nude =74182in,lpa'4dS

-,V Wo a +IC(OZ5Unsl-i-C£LU0153rt)"4l95n. Lrv ™LCCOMB_?'41„Y24„N24 Farraut =4 C0MBNode"74182inst!2S~43?
-',*> Inlo3-i-ia0 70yn:)TLtLL[U42BnI| =5332n! Lot, =LCCOMB_X3EL.f24„M22.Fei™u-2 CDMB Node * 743B1 n>W7"Al

_'J hijn 1U 1IC(j2G7rtsl-i-CELL{Q433ii.l->S 027ns Loe .LECOHE X^S.r^JHB Fanouf-3 COMB Nodu=74301insl8IB1
•iJ Infr. 11 +IC(0lH2n,-J + rELLl0153ns!-7122rit Loc - LCCOne„/<40Jlf?4_M;, Fannut= 1. COMB Ncd».74157in;i4rj|22~132
•4» Info12: + !C(0253ns)-*CELL|U42amj = 7B0;ns Loc -LCCOMB„^40„124JI12 Famut =1 COMB Node=74157 mst4U122 195

-'£> Wo 13 *iC(Q3fi3ns)4-C£LL(Q4'17rrs) =8S13riS.Loc "LCCQMB„-40_Y24J>I8 FiBOut =1 COMB Node" 74157msUB^" 200
-'& Wo 14 +!C(nQUDns) +CELL[0OBensU853bns,L<ic =.LCFF X40Jr24_l19 F™ut =2 SEGNode-74273-ms!411b'
-'.V Wo Tot=ktfHdeSfl« =42e?ns[4935 5S)
•fy Info Totaln>BrHj™ecidelay'4"12ns!5ni5'i,]

h$/ Into-SmaWtclo-kikews-OOfJI n-
& Wo i-Mioioclork tocsutpiSdelayuisosiicftis025Crii
3> Wo: + Microwto del*, nf HwHraliunh -CUMS n<

It? [jwhDleAUi

|Q«rd=AU™>
~%m • ^ •* fc

| ^JiComplatfoh Report -T«mngAna|jHerMestaB9S

clack skaw

deslinahon rsgrts. '742?3-!riSl4in 9' (period* 8 813 r

izmm

Figure 26: Timing analyzer messages

4.8 Test rig

Test rigs are built to ensure that the hardware results are coherent and functionally

working as the software simulation results. The conceptualized test rig is to interface

the expansion slots of the UP2 board (Fig 28) with external circuits of purely LEDs

and switches as inputs and outputs. The switches will be used to trigger input pins and

LEDs to display output pins logic level from the UP2 board. The 3 three expansion

slots can support 60 pins each. However, 60 pins interfacing components were not

found and the more common 40 pins interface was constructed instead. Three test

circuits were constructed (Figure27) for each of the three expansion slots.

23

Figure 27: Test rigs

88888' | Bias88838888888888888888888888)'

Figure 28: UP2 board

IDE cables were made to interface the flex expansion slots with the three test rigs.

4.9 MDR on test rig

The MDR module is programmed for hardware tests. Results were observed on L bus

and seen through lighted LEDs (see Appendix C). The MDR module is fully

24

functional on the test rig

4.10 ALU on test rig

The ALU module is also tested in the test rig and was verified to be functional. A

picture is appended in Appendix C.

4.11 Integrated ALU on test rig

Pin assignments are made before final recompilation. The software file is

programmed into the UP2 board to be interfaced with the test rig. Each switch is set

to the default position of either logic 0 or 1. The test procedures that were used are

outlined below:

1. Register Tl and T2 in MDR are cleared (COMMIT = positive pulse)

2. Immediate value is asserted at DBUS (01100110)

3. Two-way buffer direction is selected as B to A (_RW —low)

4. The buffer is then enabled, immediate data on D bus <_DMA_ACK = high)

5. MUX 2 is set to flow D into register T2 (XL_MDR_LO - high)

6. Load register T2 with immediate data (L_MDR_LO = positive pulse)

7. MUX 1 is set to flow D into register Tl (XL_MDR_LO = low, XL_MDR_HI

= high)

8. Load register Tl with immediate data (L_MDR_HI = positive pulse)

9. Buffer 1 and buffer 2 are set to assert both bus R and L with the same content

of bus T as right and left operand into the ALU - 0110011001100110

C_ER_MDR = low, ELMDR - low), content of bus L which is already

connected to LEDs can be viewed

10. ALU operation is set to ADD (ALUOP0 = high, ALUOP1 = high)

11. Use of carry is prohibited (USE_CARRY = low)

12. ALU operation size selected as 16 bits (ALUOP_SZ = low)

25

13. Result is not shifted right by one bit (__DO_RSHIFT = high), result of the

bitwise addition of the same operands with a carry in is now on the Z bus)

14. Result is then stored into one of the registers, selectively register C (L_C =

positive pulse, clock in)

15. To read the content of register C, first disable the buffering of operand into

bus L by buffer2 (_EL_MDR = high)

16. Read the content of register C through bus L (_EL_C = low), result of the

addition can now be viewed through the LEDs

17. Reading the flags (_SET_FLAGS = low, L_MSW = positive pulse)

18. ALU operation now replaced with AND and minus in step 10 and repeat steps

11-17

19. Results are right shifted in step 13 and steps 14 - 17 are repeated

20. 8 bit operations is then chosen (ALUOP_SZ = high) in step 12 and steps 13 -

17 are repeated

21. Carry-in in step 11 is set to high (USE_CARRY = high) and steps 12 - 17 are

repeated

22. General register used in step 14 is tested one at a time with 6 other general

registers (A, B, DP, SP, SSP, PC). Step 15 - 17 is repeated with step 16

replaced by the enable of the respective register

23. _Set_flags set high in step 17 and flags are read

24. The paging enable, interrupts enable, mode (supervisor/user), and data

checked are tested by varying the inputs of LJVIODE, LPAGING,

L_FAULT, MEMREF, xCODE_PTB, and L_EI.

25. Special registers are also tested by varying IMMVAL and observe output in R

bus

26. Memory address register are also checked at the MAR bus.

The test procedures covers a comprehensive test on all input and output pins.

26

4.11.1 Troubleshooting

Initially no output wasobserved in procedure 9. Not all pins are assigned on hardware

as the interface cannot accommodate all pins at once. The initial assumption is that

the choice of assigned pins could affect the test rig results. Software simulation that

was performed successfully encompasses all the pins and they were set to the correct

logic level. But the test rig has pin limitationconstraints. Therefore, to ensure that the

choice of pin will not affect its functionality, software simulation is performed with

only the assigned pins. The choice of assigned pins is changed until the functional

simulation is coherent. Once functional simulation is successful, timing simulation is

performed but was unsuccessful. The values on the busses were of unknown logic

level (Fig.29).

Length of applied enable signal was extended to longer than the worse setup time of

the timing report. 100ns pulse length was used. R bus could now register logic levels

but not L bus. Some signals are in 'X' state and Z bus is in 'U' state (see Figure 29).

Figure 29: Waveform of unknown logic levels

Since R bus was successfully registered in the timing simulation, pins were assigned

tohardware to test ifR bus could bedisplayed with theLEDs in the testrig. However

27

no results were obtained. It was later ascertained that the IR pins that were omitted in

pin assignment resulted in Z bus contention with software simulation. This means that

IR pins cannot be omitted from hardware pin assignment (see Figure 30).

|S| whotartt_bdl
nffi

IkI "l_*i*Lu-_vwl . [j_9 Ph.HamBi It@t Simulation Report -SmiatjonWaveform

Mama

_ffi Pc*to: I .^•^9")into,¥at | 6&33r •Start

BOJnt

•i65.0ns
3

Z!

Dl

U0|~renit

ZTofresul

2T4r™a41
ZJlSr-esut

ZH2rresu»

Zllirresdt

ZJIOnetutt

_19]~resdt

ZSapaJt

ZJ7]~ret_t

ZJ61~resJt

ZloTresi*

Z34nesi*

ZPrresUt

Z12]~rea*

ZPl~r«-t

_J0]~resdt

MSWC

DBUSnrresiit

DBLIS|6r<es-t

DBUS|5Tresi«

DBUS[4rieiut

OBUSPnesiit

_H__r—358&

J$T^-
" r

jST"
"ULTL

tt

BIS _ _B"_

Figure 30: Waveform of logic contention

Pins were rearranged pins in a more organized approach in the pin planner and tests

were reconducted while ensuring all logic levels of the default condition in the test rig

switches are accurate. No results were observed yet. Unassigned pins (pins not

connected to the test rig) in pin planner were set as reserved pins. Compilation fails.

This indicates that Quartus 2 automatically assign unassigned inputs/outputs to other

pins not user-assigned. Therefore pins that are not interfaced but were automatically

assigned as input/output pins by the program are left in a floating condition (or driven

to the wrong logic state by switches thought to be unused) and could affect the test

results and cause logic contention error.

The source of error could also be the test rig itself. There are possibilities that some

switches have trouble registering the logic levels to the UP2 board even though it is at

the correct logic level. Tests were conducted on each switch by constructing a register

in schematics that output the logic level of each switch to a particular LED in the test

rig when enabled. Some inputs/outputs did not display expected results. The cause of

28

=a

this could be the pins in the UP2 board are faulty, or the LEDs/switches in the test rig

are faulty. Pin assignments were avoided at these designated pins. Finally, results

were observed in the LEDs that represent the L bus (Fig 31) (test procedure 9).

However when ALU operations are performed, the results observed in general

registers are inaccurate (test procedure 16).

Figure 31: L bus values of MDR in integrated ALU

After numerous tests, it is observed that occasionally some input switches do not

function as expected. This means, the right logic level could not be input to the UP2

input pins. However when it does, the test rig verified the functionality of the

integrated ALU. Pictures are appended in Appendix C (Fig 42,45). The test results

obtained are accurate and shown in Table 5. Changing ALU size to high (8 bits) turns

the mode of operation to 8 bit and flags are read based on the 8 bits results. Setting

Carry_in to high will result in an output higher by 1 bit for arithmetic operations.

Setting _SET_FLAGS to high makes the flags output the upper four bits of Z bus.

Other than results shown in the table, the registers in MSW that output the paging

enable, interrupt enable and mode (user/supervisor) were also tested for functionality.

The memory data registers was also tested to output the loaded values. The other

general registers (A,B,PC,SSP,DP,PC,SP) were also used to replaced C register to

ensure that they work as expected.

29

o
e

I
I

I
I

I
l-

I
I

I.
t

I
I

i.
i

I
{•

I
1.

0
I

I
I

I
i

I
I

1
i

I
I

1.
V

I
V

0
1

I
0

u
0

0
0

0
0

0
0

0
0

0
0

0
0

l-
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

(sn
q

y
jn

d
T

O
"IV

A
IN

IA
II

0
I

I.
0

0
I

0
0

I
0

0
I

t
0

0
I

I
0

I
0

0
W

!M
S

0
U

^
1.

0
0

L
0

0
I

0
0

I
I

0
0

I
I

I
0

0
p

p
e

0
U

u
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

i
0

0
s
n

u
iiu

0
I

V
0

0
t

0
0

I.
0

0
l-

L
0

0
I

V
0

I
0

0
O

N
V

0
u

u
0

0
V

0
0

V
0

0
rV

1-
0

0
I

i
0

0
1.

0
U

'M
S

0
I

u
0

I
0

I
0

0
I

0
0

t
I

0
0

I
V

0
1.

0
p

p
e

0
0

0
0

I
0

0
0

0
0

0
0

0
0

0
0

0
0

0
i

0
s
n

u
i
a
i

"
'

"
*

0
0

I
0

0
I

0
0

I.
i

0
0

I
I

0
0

I
0

0
O

N
V

0
u

u
0

0
V

0
0

I
0

0
0

I
U

!M
S

i
I

u
0

0
0

^
0

0
I

0
0

i
p

p
e

0
u

V
I

0
0

0
0

0
0

0
0

0
I

0
s
n

u
iiu

"

"
™

U
0

I
0

0
I

0
0

0
i

0
O

N
V

0
0

0
0

0
I

0
0

I
0

0
V

I
0

0
I

I
0

0
0

0
W

!M
S

I
i

0
0

0
0

I
0

0
I

0
0

I
1.

0
0

I
I

0
0

0
p

p
e

0
u

I
I

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

s
n

u
ia

i

"

~
™

0
0

I
0

0
1

0
0

I
I

0
0

I
I

0
0

0
0

0
O

N
V

0
I

0
0

I
0

0
I

I
0

0
i

I
0

9
0

I
0

0
I

0
0

I
I

0
0

^
V

0
V

A
s

0
z

s
b

e
u

»nduifln
d

tn
0

s6e_i

1
9

S
A

jjbq
3

z
;s

n
iv

d
o

m
v

u
o

u
ejad

o

s
^

n
s
3

jj)s
a
x

:£
3

iq
^

X

O
p

er
at

io
n

IR
A

L
U

O
P

O
u

tp
u

t/
In

p
u

t
F

la
g

s

z
c

s
V

A
1

0
1

0
1

0
1

0
1

1
1

1
1

1
1

0

B
1

o
0

0
0

0
0

0
1

0
0

0
0

0
0

1

A
N

D
0

0
0

0
1

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
_

-
-

m
in

u
s

0
0

0
1

0
0

0
1

0
1

0
1

0
0

1
1

1
1

1
0

1
0

1
0

0

a
d

d
0

0
0

1
1

0
0

1
0

1
0

1
1

0
1

1
1

1
1

1
1

0
0

1
0

O
R

1
0

1
0

0
1

0
1

0
1

0
1

0
1

1
1

1
1

1
1

1
0

-
.

-

X
O

R
0

0
1

0
0

0
0

1
0

1
0

1
0

0
1

1
1

1
1

1
1

0
-

-
-

31

The inconsistencies of test results were further investigated. Sometimes, data values

cannot effectively load into the respective busses. One possible deduction was the

bounce-back effect of the mechanical switch used that especially when used as clock

signal. This will cause a few clock signal to pass and might result inthe wrong setof

data latched. Therefore a debouncer module is implemented in the design. The codes
are attached in Appendix B.

Unused I/Opins should remain unconnected as tying it to Vcc or ground could create

contention that can damage the output driver of the device. Unused dedicated inputs

should also be tied to the ground plane. Otherwise, pins may "float" in an

indeterminate state, possibly increasing the DC current in the device and introducing
noise. Other UP2 boards have been used. Interface is seldom successful with new

boards because their flex expansion holes were larger and thus the connections with

the test rigs become unreliable. This prompted the effort to solder the expansion slots

to the interface to ensure reliabilityof connection.

4.12 Interface with TTL CPU

Left Backplane
Itiim. Hill Buzbee. Hall Moon Sag. W

•-<________>

<M£R>

^tunrm.ei

jSi"" "*

111 ...t^T3f>

________£*•

laL..HHM.-j
r__j_____>

_________>

Figure 32: Left backplane

32

!__________>

i uixp.$z y

<2____J__T>

<T.'ra>-

<_3E1_C-

4fi..ppy

<________.
<::h..s5b >.
< „EL_TPC >
_E3_r>-

<_________>

Right Backplane

Si

2?^pr.-?s=S"rS3?issis§ss@^is

<T____>J
'Linurj

<5
<_______J

<T__>f

-<______>

>-<_____>
<____>J icirm

53=

~CT_2SH>

-<________>

<________>
-<LB_LD>

T1—__y___*
1 <T"",1BH'V

£ EJ9EB.Hi>
< ..fc..r»-ti;..nr>

£___|__D
<j__n_>
HfrsH>
-< cqsmt >

-<____>

Figure 33: Right backplane

The interface with the TTL CPU is made to a connectionless veraboard. The interface

is made to connect to the backplanes of the TTL CPU (Figure 32,33). 60 pins

interface components which were initially unavailable was successfully sourced. IDE

cables will connect the UP2 board to the veraboard and interfaced with the

backplanes of the TTL CPU with 3 rows edge connectors. Connections are made by

wire wrapping. Precautions not taken in the test rig were taken into account in the

construction of the interface. The interface is shown in Appendix C (Figure 46,47).

The size of the veraboard was cut to match the size of the TTL ALU card. However,

the TTL CPU casing was designed in such a way that the thickness of the slot can

only fit a particular PCB board. Therefore, an additional interface was constructed to

be connected (see Appendix C).

During interfacing, the boot loader fails to upload the program to the PC. Deductions

of possible causes include the previously mentioned data integrity during

transmission, error in wire wrapping interface, and the differing operating

requirements of the TTL CPU and the FPGA which is CMOS based. In addition, the

discrepancies of speed of these two technologies could also be the cause. Significant

propagation delay is sometime observed during tests conducted in test jig which

33

highly likely is due to the long interface connections. Since the CPU is operating at

lMhz, the built interface of the ALU card on FPGA will not be able to support it.

Therefore, the next approach adopted was to load the Fibonacci program into the

device card instead of the boot loader. Successful loading of the program should

display the Fibonacci series. First, the original ALU card is used. However the

program fails to output the Fibonacci series in the L bus. If the program did not work

as expected on the original TTL ALU card, it is highly unlikely to function with the

FPGA version. However, the L bus values observed as the manual clock is being

clocked is similar for both the TTL ALU and the ALU card on FPGA.

4.13 TTL components in verilog

Each TTL chip that was previously entered as schematics have been programmed in

Verilog with its functionality verified through software simulation. All the chips were

coded except for the ALU chip and the carry-lookahead-generator which was

combined and coded in a top down approach. The codes were appended in Appendix

B.

4.14 Control card in verilog

The control card is also programmed in Verilog as separate modules into the

microcode section, field decode section, field decode 2 section, and faults and

interrupts section. The schematics are attached in Appendix A and the codes are

appended in Appendix B.

34

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The objective of the project is to implement the ALU of an 8 bit register-based CPU

on FPGA. This would facilitate further research in computer architecture. The

methodologies employed begin involves schematic entry into Quartus 2, simulations,

synthesis of design, constructing the test jig, performing tests on the test jig,

troubleshooting, constructing the interface with TTL, interfacing with TTL CPU,

replacing schematic entry with Verilog HDL and also the implementation of the

control card in FPGA. The issues that caused simulation to fail have been solved. The

solutions include ensuring registers to a bus is only enabled one at a time and weak

signals have to be specified for bidirectional nodes, among others. The test jig

constructed is a set of generic switches and LEDs. Errors that have been resolved

during testing include assigning pins that has to be driven a logic level to the test jig,

disconnecting unused I/O pins, tying unused dedicated input pins to ground, soldering

the interface and implementing a debouncer module in the design to address bounce-

effect of mechanical switch used for clock signals. A detailed test was carried out to

test the functionality of the ALU. The details are described in Chapter 4.8 until

Chapter 4.11. The test results verified that the ALU is successfully implemented on

FPGA.

Interface with TTL CPU is successfully constructed. Interface has not been successful

yet and initial deduction for the cause include the discrepancies in speed of the FPGA

and the TTL CPU. Schematic entry was replaced by verilog HDL codes. The control

card has also been coded and simulated in individual modules. In conclusion, the

ALU ofthe 8-bit register based CPU was successfully implemented on FPGA.

35

5.2 Recommendations

• Perform troubleshooting using oscilloscope to verify deductions made on

interface

• Implement memory and device card on FPGA

• Design own computer architecture and implement using top down approach

• Measure performance difference by implementing different computer

architecture

36

REFERENCES

[1] Unknown author, "Wikipedia, the free encyclopedia", http://en.wikipedia.org.

[2] Bill Buzzbee, "Magic-1, Homebrew CPU", 2003, http://www.homebrewcpu.com.

[3] Muhamad Aidil b Jazmi, "Development of an 8-bit CPU using TTL logic",
B.ENG Electrical & Electronic Final Year Project, Universiti Teknologi
PETRONAS, Malaysia, 2006.

[4] M.G. Arnold, Verilog Digital Computer Design. Upper Saddle River: Prentice
Hall, 1999.

[5] T.R. Padmanabhan, B.Bala, Design Through Verilog HDL. Hoboken: IEEE Press,
2004.

[6] Ken Koffrnan, Real World FPGA Design with Verilog. Upper Saddle River:
Prentice Hall, 2000.

[7] Michael D.Ciletti, Modelling, Synthesis, and Rapid Prototyping with Verilog
HDL. Upper Saddle River: Prentice Hall, 1999.

[8] James M. Lee, Verilog Quickstart. Kluwer Academic Publisher, 1999.

37

APPENDIX A - SCHEMATICS

38

m
li

it

i-
i

-i
-

F
ig

u
re

3
4

:
S

ch
em

at
ic

o
f

g
en

er
al

re
g

is
te

r

3
9

W

—
—

iP
L

.i
U

-i
--

*a
:;

_:
:

5i
-.

|ii]
]n

i|

F
ig

ur
e

35
:

S
ch

em
at

ic
of

in
te

gr
at

ed
A

L
U

li
c
ro

c
o

d
e

24
24

^
-J

U
t4

D

-(
__

__
__

__
>

tm
'a

m
.B

m
B

ui
im

.H
M

lf
A

om
B

m
.C

U

F
ig

u
re

3
6

:
M

ic
ro

co
d

e

4
0

_
j
,
r
*

-
®

i

M
ia

?
0

3
5

I
*<

$)
*-

•
Ih

O
^
™

__
__

__
__

__
[>

•r
r
<

^
^

JT
IT

_"

4
_

a
ti

_
»

y
>

a
a
>

__
__

?

_
_

_
_

£
_

_§
_!

__
__

>

<
__

_«
__

-
*

t-
y

^
U

F
ie

ld
D

e
c
o

d
e

^Q
iB

.B
II

IB
llZ

lm
.H

af
fH

04
H

ia
g|

fv
W

<

F
ig

u
re

37
:

F
ie

ld
de

co
de

4
1

b
i
b

s
v

-
as

se
t*

;
F

ie
ld

d
e
c
o

d
e

2
|jU

.,f
e>

l-S
ff

*

__
__

__
!_

>

SJ
_

M
m

-M
-ra

3w
g'S

M
M

-J
^

-g
rl

llg
l2

flP
3.a

il|:
Bl

gB
afl

.f
W

M
oo

tl
Ba

y.
Si

j

F
ig

u
re

3
8

:
F

ie
ld

d
ec

o
d

e
2

4
2

Fi
gu

re
39

:F
au

lts
an

d
in

te
rr

up
ts

4
3

-3-

APPENDIX B - VERILOG CODES

Bidirectional Buffer in Verilog

module tristate_buffer(out,in, en)
parameter SIZE = 8;

output out;

input in, en;

reg [SIZE-1:0] out;

wire [SIZE-1:0] in;
wire en;

always @ {in or en)
begin

if (en === 1)
out = in;

else if (en === 0)
out = *bz;

else

out = 'bx;
end

endmodule

module enabled_register (di, do, enable, elk)
parameter SIZE = 8;

input di, enable, elk;
output do;

reg [SIZE-1:0] do;

wire [SIZE-1:0_ di;
wire enable;

wire elk;

always @ (posedge elk)
if (enable)

do = di;

endmodule

module rw__register (bus, rd, wr, elk)
parameter SIZE = 8;

inout bus;

input rd, wr, elk;

wire [S1ZE-1:0] bus;
wire [SIZE-1:0] do;
wire rd, wr;

enabled_register #SIZE rl(bus,do,wr,elk);
tristate_buffer #SIZE bl(bus,do,rd);

endmodule

74P273 in verilog
module reg273

(

D, elk, clear, Q

45

// Port Declaration

input [7:0] D;

input elk;

input clear;

output [7:0] Q;

reg Q;

always @{posedge elk or negedge clear)

begin

if (clear == 0)

Q <= 8'bO;

else

Q <= D;

end

endmodule

7474 in Verilog

module flipflop7474

(

d, elk, s, r, q, q_b

);
// Port Declaration

input d;

input elk;

input s;

input r;

output q;

output q_b;

reg q, q_b;

always @ (posedge elk or negedge s or negedge r)

begin
if (s == 0}begin

#4 q <= l'bl;
#3 q_b <= 1'bO;

end else if (r == 0) begin

#4 q <= 1'bO;

#3 q_b <=" l'bl;
end else begin

#4 q <= d;
#3 q_b <= ~d;

end

end

endmodule

74F374 on Verilog

module reg374

{

46

D, CK, OC, Q

);

// Port Declaration

input [7:0] D;

input CK;

input OC;

output [7:0] Q;

reg Q;

always @(posedge CK or posedge OC;
begin

if (OC = 1)

Q <= 8'bz;

else if (OC == 0)

#5 Q <= D;

else

Q <= 8'bx;

end

endmodule

74F244 on Verilog

module buf244

(

A, en, Y

);
// Port Declaration

input [7:0] A;
input en;
output [7:0] Y;

reg Y;

wire A, en;

always @(A or en)

begin

if (en === 0)

Y <= A;

else if (en === 1)

Y <= 8'bz;

else

Y <= 8'bx;

end

endmodule

74F153 on Verilog

module muxl53

(

47

sel, iO, il, i2, i3, Y

);
// Port Declaration

input [1:0] sel;

input iO;

input il;

input i2;

input i3;

output Y;

wire iO, il, 12, i3, sel;

reg Y;

always _ (iO or il or i2 or i3 or sel)

begin

case (sel)

2'bOO :

Y <= iO;

2'b01 :

Y <= il;

2'blO :

Y <= i2;

2'bll :

Y <= i3;

default:

Y <= 1'bO;

endcase

end

endmodule

module mux!57

(
A, B, S, Y

);
// Port Declaration

input [3:0] A;
input [3:0] B;

input S;

output [3:0] Y;

wire A, B, S;

reg [3:0]Y;

always _(A or B or S)

begin

if (S == 1'bO)

Y <= A;

else

Y <= B;

end

endmodule

ALU module

module aluehip (Sel, A, B, Cin, _DO_RSHIFT, F, v, c, s, t.\

input [2:0] Sel;

input [15:0] A, B;

48

input Cin, _DO_RSHIFT;
output [15:0] F;
output v,c,s,z;

reg F,v,c,s,z,c_out;
reg [15:0] out;

always@(Sel,A,B,Cin,_DO_RSHIFT)
begin

case(Sel)

3'bOOO: out = 16'hOOOO;

3'bOOl:

begin

out = AAB;

z = out==0;

end

3'bOlO:

begin

{c_out,out} = A+(~B)+l'bl;
z = out==0;

s = out[15];

c = ~c_out;
v = c_outAout[15]AA[15]AB[15];
end

3'b011:

begin

out = A&B; z = out==0;

end

3'bl00:

begin

{c_out,out} = B+(~A)+l'bl; z = out==0; s = out [15]; c
-c_out; v = c_outAout[15]AA[15]AB[15] ;

end

3*1.101:

begin

out = A|B; z = out==0;

end

3'bll0:

begin

{c,out} = A+B+Cin;

z = out==0;

s = out[15];

v = cAout[15]AA[15]AB[15];

end

3Tblll: out = 16'hFFFF;

endcase

if(_DO_RSHIFT)
F = (out » 1) ;

else

F = out;

end

endmodule

Debouncer

module debouncer

49

set, clear, Q, Q b

input set;

input clear;

output Q;

output Q_b;
reg Q, Q_b;

nand(Q,set,Q_b);
nand(Q b,clear,Q)

endmodule

74151 (Multiplexor)

module muxl51

(

D, sel, W, Y);

input [7:0] D;

input [2:0] sel;

output W;

output Y;

reg Y, W;

always @ (D or sel)
begin

case (sel)

3'bOOO Y <= D[0]

3'bOOl Y <= D[l]

3'b010 Y <= D[2]

3'b011 Y <= D[3]

3'bl00 Y <= D[4]

3'bl01 Y <= D[5]

3'bllO Y <= D[6]

3'blll Y <= D[7]

default : Y <:= D[0];

endcase

W <= ~Y;

end

endmodule

74138 (Decoder)

module decl38

(

A, Gl, G2A, G2B, YO, Yl, Y2, Y3, Y4, Y5, Y6, Y7

50

input [2:0]

input Gl;
input G2Aj

input G2B,

output YO,

output Yl.

output Y2.

output Y3,

output Y4

output Y5,

output Y6,

output Y7

A;

reg YO, Yl, Y2, Y3, Y4, Y5, Y6, Y7;

always @ (Gl or G2A or G2B or A)

begin

if (Gl && !G2A && !G2B) begin

YO <= (A == 3'bOOO) ? I'b0:l'bl;

Yl <= (A == 3'b001) ? I'b0:l'bl;

Y2 <= {A == 3'b010) ? l'bOil'bl;

Y3 <= {A == 3'b011) ? I'b0:l'bl;

Y4 <= (A == 3'bl00) ? I'b0:l'bl;

Y5 <= (A == 3'blOl) ? I'b0:l*bl;

Y6 <- (A == 3'bllO) ? I'b0:l'bl;

Y7 <= (A == 3'blll) ? I'b0:l'bl;

end

else

begin

(Y0,Y1 ,Y2,Y3,Y4,Y5,Y6,Y7} <= 8'fc

end

end

endmodule

74240 (Tri-state buffer)

module buf240

(

);

A, en, Y

input [7:0] A;
input en;

output [7:0] Y;

reg Y;

wire A, en;

always @(A or en)

begin
if {en === 0)

Y <= ~A;

else if (en === 1)

Y <= 8'bz;

51

else

Y <= 8*bx;

end

endmodule

7485 (Comparator)

module comp7 4 85
(

A, B, eq, A_gt_B, A_lt_B

);

input [3:0] A;
input [3:0] B;
output eq;

output A__gt_B;
output A_lt_B;

reg eq, A_gt_B, A_lt_B;

always©(A or B)

begin

if {A > B)

begin

eq <= 0;

A_gt_B <= 1;
A__lt_B <= 0;
end

else if (A < B)

begin

eq <= 0;

A_gt_B <= 0;
A_lt_B <= 1;
end

else

begin

eq <= 1;

A_gt_B <= 0;
A_lt_B <= 0;
end

end

endmodule

74472 (512x8 (4096 bits) PROM)

module rom472

(

A, CE, 0

52

);

input [8:0] A;
input CE;
output [7:0] 0;
reg [7:0] O;
always @ (A,CE)
begin
if (CE == 1)

0 <= 8'bz;

else

begin
case (A)

/^Insert prom bits here. Below are test bits*/

9*b000000000: 0 <= 8'b00000000

9'b000000001: 0 <= 8'bOOOOOOOl

9'b000000010: 0 <= 8*b00000010

9'b000000011: 0 <= 8'b00000011

9^111111100: 0 <= 8'bllllllOO

9*blllllll01: 0 <= 8'bllllll01

9'bllllllllO: 0 <= S'blllllllO

9'blllllllll: 0 <= a'bllllllll

default: 0 <= 8 bllllllll;

endcase

end

end

endmodule

74148 (8-line to 3-line priority encoder)
module encl48

{
EI, Data, EO, GS, A

input EI;

input [7:0] Data;

output EO;

output GS;

output [2:0] A;

reg [2:0] A;

assign GS = SData | EI;

assign EO = ~&Data | EI;

always.{Data,EI)

if(EI) A=7;

else

begin
casex(Data)

8'bOxxxxxxx :A-=0

8'blOxxxxxx :A==1

8'bll0xxxxx :A==2

8*blll0xxxx :A==3

53

8'bllllOxxx :A=4;

8'blllllOxx :A=5;

8'bllllllOx :A=6;

8'blllllllO :A=7;

default :A=7;

endcase

end

endmodule

Microcode section of control card

module microcode (INIT_INST, DBUS, IR, NEXT, _NEXT0, ENCODER,
_RESET, CLKM,
CODE_PTB, RUSER_PTB, LATCH_SZ, USE_CARRY, ALUOP, ALUOP_SZ, RIMMVAL, ER,
EL, MISC, XLJ?AGING, XL_MODE, PRIV, XL_MDR_HI, XL_MDR_LO, XL_MAR,
LATCH,_E_MDR_LO, _E_MDR_HI,_DMA_ACK, _FP_WRITE, R_RW, MSWC, MSWZ,
MSWS, MSWV, _DO_BRANCH, FAULT_PENDING

>;

output

output

[7:0] IR, NEXT;

_NEXT0, C0DE_PTB, RUSER_PTB, LATCH_SZ, USEJ3ARRY,ALUOP_SZ ,XL_PAGIN
G, XL_M0DE, PRIV;
output XL__MDR_HI, XL_MDR_L0, XL_MAR, _E_MDR_LO, _E_MDR_HI,
R_RW;
output

output

input

input

input

wire

wire

IR,B,_NEXT0,NEGATE_BR,EMDRHI,EMDRLO, wl, w2,w3,w4,w5,w6,w7,w8,w9,wl0,w
ll,wl2,NEXT,W,Y;

[1:0] ALUOP, RIMMVAL,ER;

[3:0] EL, MISC, LATCH;

INIT_INST, _RESET, CLKM, _DMA_ACK, _FP_WRITE, MSWC,
MSWZ, MSWS, MSWV, __DO_BRANCH, FAULT_PENDING;
[7:0] DBUS;

[3:0] ENCODER;

[7:0]A, ROM1, ROM2, ROM3, ROM4, ROM5;

reg

reg273

muxl53

muxl53

muxl53

mux!53

muxl53

A[3]);

muxl53

A[2]);

muxl53

A[l]);

muxl53

A[0]);

wl2,w3;

U19(DBUS, INIT_INST, 1, IR) ;
U15b{{B,_NEXT0}, 0, IR[7], 0, NEXT[7], A[7])
Ul5a{{B,_NEXT0}, 0, IR[6], 0, NEXT[6], A[6])
U16b({B,_NEXT0}, 0, IR[5], 0, NEXT[5], A[5])
U16a({B,_NEXT0}, 0, IR[4], 0, NEXT[4], A[4]).
U17b({B,_NEXT0}, ENCODER[3], IR[3], ENCODER[3], NEXT[3],

U17a({B,_NEXT0}, ENCODER[2], IR[2], ENCODER[2], NEXT[2],

U18B({B,_NEXT0}, ENCODER[l], IR[1], ENCODER[l], NEXT[1],

U18a({B, NEXTO}, ENCODER[0], IR[0], ENCODER[0], NEXT[0],

rom472 Ul({B,A[7:0]}, 0, ROM1}

rom472 U2({B,A[7:0]}, 0, ROM2)
rom472 U3({B,A[7:0]}, 0, ROM3)

rom472 U4({B,A [7:0] }, 0, ROM4)

rom472 U5({B,A[7:0]}, 0, ROM5)

54

reg273 U10(ROM1, CLKM, __RESET,
{CODE_PTB,RUSER_PTB,NEGATE_BR,LATCH_SZ, USE_CARRY,ALUOP,ALUOP_SZ});
reg273 U9(ROM2, CLKM, _RESET, {RIMMVAL,ER, EL});
reg273 U8(ROM3, CLKM, __RESET, {MISC,XL_PAGING, XL_MODE, PRIV,
EMDRHI});

reg273 U7(ROM4, CLKM, _RESET, {EMDRLO,XL_MDR_HI, XL_MDR_LO, XL_MAR,
LATCH});

reg273 U6(ROM5, CLKM, _RESET, NEXT);

not U14C(_E_MDR_L0,EMDRLO) ;
not U14B {_EJVIDR_HI,EMDRHI) ;

or U6lB(wl,_DMA_ACK, _FP_WRITE);
nand U25A (R_RW, _E_MDR_LO, _E_MDR_HI, wl) ;

nor U20 (w2, NEXT[7], NEXT[6], NEXT[5], NEXT[4], NEXT[3], NEXT[2],
NEXT[1], NEXT[0]};

not U21 (w3, w2);

not U14E (w4, MSWC);

or U13C {w5, w4, MSWZ);

xor U12B (w6, MSWS, MSWV);
not U14A (w7, MSWZ);

or U13B (w8, MSWZ, w6);

muxl51 Ull ({w7,MSWZ,w5,w4,w8,MSWZ,MSWZ}, IR[6:4], W, Y);

xor U12A (w9, Y, NEGATE_BR);
or U13A (wlO, __DO__BRANCH, w9) ;

not U14D (wll, FAULT_PENDING) ;
and U44B (_NEXT0, w3, wlO, wll);

nand U24 (wl2, NEXT[7], NEXT[6], NEXT[5], NEXT[4], NEXT[3], NEXT[2],
NEXT[1], NEXT[0]);

or U61D (B, wl2, FAULT PENDING);

endmodule

Field Decode of control card

module fieldec (EL, IR, MISC, _SYSCALL, __HALT, _BKPT, _TRAP0,
_E_PTE, _SET__FLAGS,_DO_RSHIFT, _DMA_ACK, _DO_BRANCH, _CLR_TRAP,
RL_IE, CLKM, RINIT_INST, R_L_PTE, RCOMMIT, FP_L,_EL_MAR, _EL_MSW,
_EL_C, _EL_PC, _EL_DP, _EL_SP, _EL_A, _EL_B, _EL_MDR, _EL_SSP,
_EL_TPC, _EL_FCODE,
RL_FPL, _ER_MDR, _ER_IMM, LATCH, CLKS, FAULT_PENDING, RL_MDR,
RL_PTB, LATCH_SZ,RL_B__LO, RL_A_LO, RL_SP, RL_DP, RL_PC, RL_C,
RL_MSW, RL_SSP, MSWM, ER, _STOP_CLK

);

input [7:0] IR;
input [3:0] EL, MISC, FP_L, LATCH;
input [1:0] ER;
input CLKM, __STOP__CLK, CLKS, FAULT_PENDING, LATCH_SZ, MSWM;
output _SYSCALL, __HALT, _BKPT, _TRAP0, _E_PTE, _SET_FLAGS,

_DO_RSHIFT, _DMA_ACK, _DO_BRANCH;
output _CLR_TRAP, RL_IE, RINIT_INST, R_L_PTE, RCOMMIT, _EL_MAR,

_EL_MSW, _EL_C, _EL_PC, _EL_DP,

55

_EL_SP, _EL_A, _EL_B, _EL_MDR, _EL_SSP, _EL_TPC,
_EL_FC0DE, RL__FPL, _ER_MDR, _ER_IMM,
RL_MDR, RL_PTB, RL_B_LO, RL_A_LO, RL_SP, RL_DP, RL_PC,
RL_C, RL_MSW, RL_SSP;

wire wl, w2, w3, w4, w5, w6, w7, w8, w9, wlO, wll, wl2, wl3,
wl4, wl5, wl6, wl7, wl8, wl9,w20,w21,

w22, w23, w24, w25, _SET_FLAGS, E_PTE, _DMA_ACK, eq,
A_gt_B, A_lt_B, RL_A_LO, RL_B_LO, RL_SP;

wire [3:0] Y, out, result;

wire [7:0] con, conB;

nand U2IB {wl, EL[3], EL[2], EL[1], EL[0]);
muxl57 U37 ({2'bOl,IR[1],IR[0] }, EL, wl, Y) ;

decl38 U33 (MISC[2:0], l'bl, MISC[3], 1'bO, w2, _SYSCALL, _HALT,
_BKPT, _TRAP0, _E_PTE, _SET_FLAGS, w3) ;
decl38 U32 (MISC[2:0], MISC[3], 1'bO, 1'bO, _DO__RSHIFT, _DMA_ACK,
w6, _DO_BRANCH, w7, w5, w4, w8);

nor U38C (w9, CLKM, _SET_FLAGS);
or U40A (wlO, w9, w22);

not U39C (w24, FAULT_PENDING) ;
and U41B (RL_MSW, w24, wlO);

or U40D (_CLR_TRAP, CLKM, w7);
nor U38A (RL_IE, CLKM, w6);
nor U38B (RINIT_INST, CLKM, w3);
or U40B (R_L_PTE, CLKM, E_PTE);

and U41A (wll, w3, w5);

nor U38D (RCOMMIT, CLKM, wll);

nand U22C (wl2, _STOP_CLK, _DMA_ACK);
muxl57 U34 (Y, FP_L, wl2, out);

decl38 U31 {out[2:0], l'bl, out[3], 1'bO, _EL_MAR, _EL_MSW, _EL_C,
_EL_PC, _EL_DP, _EL_SP, _EL_A, _EL_B);
decl38 U30 (out[2:0], out[3], 1'bO, 1'bO, _EL__MDR, wl3, _EL_SSP,
_EL_TPC, _EL_FCODE, wl4, wl5, wl6);

nor U43A (wl7, FP_L[2], FP_L[1]);
and U44A (wl8, FP_L[0], FP_L[3]);

comp7485 U35 {out, FP_L, eq, A__gt_B, A_lt_B) ;
and U60C (wl9, eq, CLKM);

or U40C (RL_FPL, wl8, wl9);

assign _ER_MDR = ER[0];
not U39B (_ER_IMM,ER[0]);

nand U42A (w20, LATCH[3], LATCH[2], LATCH[1], LATCH[0]);
muxl57 U36 {{1'b0,IR[2:0]}, LATCH, w20, result);
not U14F (w21, result[3]);

decl38 U27 (result[2:0], CLKS, result[3], FAULT_PENDING, con[0],
con[l], con[2], con[3], con[4], con[5], con[6], con[7]);
decl38 U26 (result [2:0], CLKS, w21, FAULT_PENDING, conB[0], conB[l],
conB[2], conB[3], conB[4], conB[5], conB[6], conB[7]);

xor U12C (RL_PTB, conB[1], l'bl);

56

xor U12D (RL_MDR, conB[0], l'bl);

buf240 U29 {con, I'bO, {RL_B_LO, RL_AJLO, RL_SP, RL_DP, RL_PC, RL_C,
w22, w23});

and U23B (RL_A_HI, RL_A_LO, LATCH_SZ) ;
and U23C (RL_B_HI, RL_B_LO, LATCH_SZ);

not U39A (w25, MSWM);

and U23D (RL_SSP, w25, RL_SP);

endmodule

Field decode 2 of control card

module fieldec2 (XL_MODE, CLKS, XL_PAGING, XL_MDR_LO, XL_MDR_HI,
XL_MAR, R_RW, FAULT_PENDING, RL_MDR, RL_PTB,RL_FAULT,L_MODE,
L_PAGING, CLKM, L_MDR_LO, L_MDR__HI, L_MAR, _RW, _WR, L_PTB, L_FAULT,
L_MAR1,
COMMIT, L_FPL, L_A_HI, L_B_HI, L_SSP, L_C, L_PC, L_DP, L_SP, L_A_LO,
L_B_LO, L_MSW, INIT_INST,L_IE, L_PTE, RIMMVAL, RCOMMIT, RL_FPL,
RL_A_HI, RL_B_HI, RL_SSP, RL_C, RL_PC, RL_DP, RL_SP, RL_A_LO,
RL_B_LO,
RL_MSW, RINIT_INST, RL_IE, R_L_PTE, IMMVAL);

input XL_MODE, CLKS, XL_PAGING, XL_MDR_LO, XL_MDR__HI, XL_MAR,
R_RW, FAULT_PENDING, RL_MDR, RL_PTB,RL_FAULT, RCOMMIT,
RL_FPL, RL_A_HI, RL_B_HI, RL_SSP, RL_C, RL_PC, RL_DP,
RL_SP, RL_A_LO, RL_B_LO, RL__MSW, RINIT_INST, RL_IE,
R_L_PTE;

input [1:0] RIMMVAL;

output L_MODE, L_PAGING, L_MDR_LO, L_MDR_HI, L_MAR, _RW, _WR,
L_PTB, L_FAULT, CLKM, L_MAR1,COMMIT, L_FPL, L_A_HI,
L_B_HI, L_SSP, L_C, L_PC, L_DP, L_SP, L_A_LO, L_B_LO,
L_MSW, INIT_INST,L_IE, L_PTE;

output [1:0] IMMVAL;

wire Wl, W2, W3, W4, W5, W6, CLKM, L_MAR1, COMMIT, L__FPL,
L_MAR1, COMMIT, L_FPL, L_A_HI, L_B_HI, L_SSP, L_C, L_PC,
L_DP, L_SP, L_A_LO, L_B_LO, L_MSW,INIT__INST, L_IE,
L_PTE;

and U5 9C (LJtfODE, XL_MODE, CLKS);
and U59D {L_PAGING, XL_PAGING, CLKS);
and U60A (Wl, XL_MDR_LO, CLKS);
and U60B (W2, XL_MDR_HI, CLKS);
nand U62A (W3, XL_MAR, CLKS);

nand U62C (CLKM, CLKS, CLKS);

nand U62B (W4, R_RW, CLKS);
or U61C (W5, W4, FAULT_PENDING);

or U49D (L_MDR_LO, Wl, RLJtfDR);
or U61A (L_MDR_HI, W2, RLJYIDR) ;
nor U43D (L_MAR, W3, FAULT_PENDING) ;

buf244 U63 ({RIMMVAL, R_RW, W5, RL_PTB, I'bO, RL_FAULT, CLKM}, I'bO,
{IMMVAL, _RW, _WR, L_PTB, W6, L_FAULT, CLKM});

assign L_MAR1 = CLKM;

assign COMMIT = RCOMMIT;

assign L_FPL = RL_FPL;

57

assign L_A_HI - RL A HI;
assign L_B_HI = RL_B_HI;
assign L_SSP = RL SSP;
assign L_C = RL_C;
assign L_PC = RL PC;
assign L DP = RL DP;

assign L_SP = RL_SP;
assign L_A_LO = RL_A_LO;
assign L_B_LO = RL B LO;
assign L_MSW = RL_MSW;
assign INIT_INST = RINIT INST;
assign L_IE = RL_IE;
assign L_PTE = R L PTE;

endmodule

Faults and Interrupts

module interrupts (_IRQ0, __IRQ1, __IRQ2, _IRQ3, _IRQ4, _IRQ5, _RESET,
_DMA_REQ, MSWE, CLK__M, _EL_FCODE, CLKM,JTRAPO, MSWM, PRIV, MSWV,
ENCODER, RL_FAULT, FAULT_PENDING, L, _NEXT0, CLKS, _CLR_TRAP,__NP,
_NW, _BKPT,_SYSCALL);

input _IRQ0, _IRQ1, _IRQ2, _IRQ3, _IRQ4, _IRQ5, _RESET,
_DMA_REQ, MSWE, CLK_M, _EL_FCODE, CLKM,_TRAPO, MSWM,
PRIV, MSWV, _NEXT0, CLKS, _CLRJTRAP,_NP, _NW,
_BKPT,_SYSCALL;

output RL_FAULT, FAULT_PENDING;
output [15:0] L;

output [3:0] ENCODER;

wire ql, q2, q3, q4, q5, q6, RL_FAULT, FAULT_PENDING, Wl, W2,
W3,W4,W5,W6,W7,W8,W9,W10,W11,W12,W13,W14,W15,W16,W17,W18
,W19,W20,W21,W22,W23,W24,W25,W26,W27,W2 8,W29,W30,W31,W32
,W33,W34,W35,W36,W37,W38 ;

wire [3:0]wai, bai, ENCODER, out. A, B;

wire [7:0] Q;

not U53D {Wl, _IRQ0);
not U53C (W2, _IRQ1);
not U53B (W3, _IRQ2);
not U53A (W4, _IRQ3);
not U39F (W5, _IRQ4);
not U39E {W6, _IRQ5);

and U54D (W7, _RESET, W13)
and U54C (W8, _RESET, W14)
and U54B (W9, _RESET, W15)
and U54A (WlO, _RESET, W16) ;
and U41D {Wll, _RESET, W17);
and U41C (W12, _RESET, W18);

flipflop7474 U51A (l'bl, Wl, l'bl, W7, ql, W19);
flipflop7474 U52A (l'bl, W2, l'bl, W8, q2, W20);
flipflop7474 U50A (l'bl, W3, l'bl, W9, q3, W21);
flipflop7474 U50B (l'bl, W4, l'bl, WlO, q4, W22)
flipflop7474 U51B (l'bl, W5, l'bl, Wll, q5, W23)
flipflop7474 U52B (l'bl, W6, l'bl, W12, q6, W24)

58

reg273 U ({_DMA_REQ, W19, W20, W21, W22, W23, W24, MSWE}, CLK_M,
_RESET, Q);

not U53F (W25, _NEXT0) ;
or U49C (W26, W25, FAULT_PENDING) ;
and U59B (RL_FAULT, CLKS, W26) ;
and U59A (W27, __CLR_TRAP, _RESET);

reg273 U56 ({wai,ENCODER} , RL_FAULT, W27, {bai,out});
buf244 U57 ({3'bO, out, I'bO}, _EL_FCODE, L[7:0]);
buf244 U58 ({8'b0}, _EL_FCODE, L[15:8]);

decl38 U45 (out[2:0], CLKM, out[3], out[3], W29, W18, W17, W16, W15,
W14, W13, W28);

not U53E (W30, __TRAPO) ;
nand U48D (W31, MSWM, PRIV);

nand U48C (W32, MSWV, W30) ;

encl48 U46 (I'bO, {l'bl, _NP, _NW, _BKPT, W31, W32,1'bl,_SYSCALL},
FAULT_PENDING, W34, A);
encl48 U47 (W35, {Q[7:1],1'b0} , W36, W37, B);

not U39D (ENCODER[3], W34);

nand U22D (ENCODER[2], A[2], B[2])

nand U48B (ENCODER[l], A[l], B[l])

nand U48A (ENCODER[0], A[0], B[0])

nor U43C (W38, Q[7], Q[7]);

nor U43B (W33, W38, Q[0]);

or U49A (W35, W33, FAULT_PENDING) ;

endmodule

59

APPENDIX C - PICTURES

Figure 40: A working MDR module on test rig

60

Figure 41: AND operation of ALU module

Figure 42: Minus operation of ALU module

61

Figure 43: AND operation of integrated ALU with both carry and overflow
lighted

w;

Figure 44: Add operation of integrated ALU with sign lighted

62

Figure 45 : Minus operation of integrated ALU with zero flag lighted

Figure 46: Results in L, R and Z busses

63

Figure 47: Wire wrap connections of interface

Figure 48: Top view of interface

64

Figure 49: Final interface

Figure 50: Top view of final interface

65

