A STUDY OF PROTECTION SYSTEM TO IMPROVE POWER SYSTEM RELIABLITY USING ATP (ALTERNATIVE TRANSIENT PROGRAM)

By
WOO KEAN HING
FINAL PROJECT REPORT
Submitted to the Electrical \& Electronics Engineering Programme in Partial Fulfillment of the Requirements for the Degree
Bachelor of Engineering (Hons) (Electrical \& Electronics Engineering)
Universiti Teknologi Petronas
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan
© Copyright 2007
by
Woo Kean Hing, 2007

CERTIFICATION OF APPROVAL

A STUDY OF PROTECTION SYSTEM TO IMPROVE POWER SYSTEM RELIABLITY USING ATP (ALTERNATIVE TRANSIENT PROGRAM)

by
Woo Kean Hing

A project dissertation submitted to the Electrical \& Electronics Engineering Programme

Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)
(Electrical \& Electronics Engineering)

Approved:

Ir. Perumal Nallagownden
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2007

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

Abstract

Electric power systems are one of the largest and more complex systems man has ever built. Faults represent a threat to the operation and security of power systems if the faults are not promptly corrected. Therefore protection of the power system is very important. Protective relays are electronic or electromechanical devices that are designed to protect equipment and limit injury caused by electrical failures. Protective relays cannot prevent faults; they can only limit the damage caused by faults. This thesis investigates the importance of power systems protection and also introduces the widely used power system software, ATP (Alternative Transient Program). Using this software, power system are modeled and disturbance scenarios such as lightning overvoltages and short circuit are generated. The simulation of this scenarios provides the graphical charateristics of the power system through the use of PLOTXY function. Another major work in this project is the modeling of relays that were embeded in the system to enable clossed loop simulation whereby the relay will provide a 'feedback' to the system. The 'feedback' is a trip signal which will be sent to the circuit breaker to open or reclose. The algorithm of the relay are designed by writing specific code using the MODELS language. The relays succesfully fuctioned according to the algorithm when simulated under different disturbance scenarios and the results obtained were same as the predicted output.

ACKNOWLEDGEMENTS

The author expresses his gratitude and appreciation for Ir. Perumal Nallagownden for his supervision of this work. His advice and assistance in the preparation of this thesis are thankfully acknowledged.

TABLE OF CONTENTS

LIST OF FIGURES viii
LIST OF ABBREVIATIONS ix
CHAPTER 1 INTRODUCTION 1
1.1 Background Study 1
1.2 Problem Statement 2
1.3 Objectives of the Project 2
1.4 Scope 2
CHAPTER 2 LITERATURE REVIEW/THEORY 4
2.1 Importance of Power Systems Protection 4
2.1.1 Goals of Protection 4
2.2 Modeling of Power System Protection 6
2.3 Introduction to Protective Relays 8
2.4 Investigation Topics on Protective Relaying 9
CHAPTER 3 METHODOLOGY/PROJECT WORK 10
3.1 Introduction 10
3.2 Tool required in the Methodology 10
3.3 Models Description 13
3.4 Models Object Composition 14
3.5 Type of relay used and its algorithm. 15
CHAPTER 4 RESULTS \& DISCUSSION 16
4.1 Scenario 1 : Lightning Overvoltage 16
4.1.1 Result for Scenario 1 simulation 17
4.2 Scenario 2 : Short Circuit Fault 19
4.2.1 Result for Scenario 2 simulation. 20
4.3 Scenario 3 : Relay controlling multiple circuit breakers 22
4.3.1 Result for Scenario 3 simulation. 23
CONCLUSION 26
REFERENCES 28
APPENDICES 29
APPENDIX A RELAY ALGORITHM FOR SCENARIO 1\&2 29
APPENDIX B RELAY ALGORITHM FOR SCENARIO 3 30
APPENDIX C ATP FILE FOR SCENARIO 1 34
APPENDIX D ATP FILE FOR SCENARIO 2 37
APPENDIX E ATP FILE FOR SCENARIO 3 42

LIST OF FIGURES

Figure 3.1 Closed loop Simulation 11
Figure 3.2 Project Methodology 12
Figure 3.3 Descriptive file MODELS standard 13
Figure 3.4 Windows edition of the support file MODELS 14
Figure 4.1 Power network with lightning overvoltage fault 16
Figure 4.2 Voltage transient measured at node B 17
Figure 4.3 Voltage measured at node XX0002 18
Figure 4.4 Short circuit test 19
Figure 4.5 Current measured form node XX0020 to XX0002. 20
Figure 4.6 Voltage measured at node XX0002 20
Figure 4.7 A 9 bus system power network 22
Figure $4.8 \quad$ Voltage charateristics at node XX0007. 23
Figure 4.9 Voltage measured at XX0116 24
Figure $4.10 \quad$ Voltage measured at XX0014 24
Figure $4.11 \quad$ Voltage measured at XX 0110 25

LIST OF ABBREVIATIONS

ATP
EMTP
IEEE
TACS

Alternative Transient Program
The Electromagnetic Transient Program
The Institute of Electrical and Electronics Engineers
Transient Analysis of control Systems

CHAPTER 1

INTRODUCTION

1.1 Background Study

Modern civilization makes use of large amounts of energy to generate goods and services. From the industrial plants, the providers of public services to the ordinary man, all of them need energy to satisfy and create the well being of modern society. The purpose of electric power systems is to provide energy for human use in a secure, reliable and economic manner. Electric power systems are made up of facilities and equipment that generate, transmit and distribute electrical energy. Electric power systems are one of the largest and more complex systems man has ever built. The importance of the services that power systems offer and the high amount of investments that represent the facilities and equipments, make the normal and constant operation of power systems critical and strategic for every society. Faults and failures normally occur in power systems. Due to the great amounts of energy involved, faults represent a threat to the operation and security of power systems if the faults are not promptly corrected. Power systems need an auxiliary system that must take corrective actions on the occurrence of a fault. This auxiliary system is known as protection system.Protection systems must provide different schemes and equipments to detect and to react to each and every one of these fault scenarios, from the most simple of them to the most complex and compelling.

Protective relays are electronic or electromechanical devices that are designed to protect equipment and limit injury caused by electrical failures. Relays are only one part of power system protection, because
protection must be designed into all aspects of power system facilities. Protective relays cannot prevent faults; they can only limit the damage caused by faults. A fault is any condition that causes abnormal operation for the power system or equipment serving the power system. Faults include but are not limited to: short- or low-impedance
circuits, open circuits, power swings, overvoltages, elevated temperature, off-nominal frequency operation, and failure to operate.

1.2 Problem Statement

A comprehensive evaluation of a protection system can be carried out using sophisticated test equipments such as digital simulators [1],[2]. Although relays testing using digital simulators is the most attractive method to test individual relays, however extended length of time are required to carry out the test and it is expensive as it involves costly amplifiers and interfacing equipments. Computer simulation of power system and protective relays on the other hand provides a good alternative to relay performance evaluation. Protection system simulation can be used a valuable preliminary step for overall relay design performance testing. This approach allows complex, coordinated relaying systems simulations and its also cost effective to test the algorithm of the relays on the modeled power network. If the initial algorithm of the relay does not perform accurately under certain fault condition, the algorithm can be redesigned and retested again until its suitable to be implemented on the real power system. One software which can be used for this purpose is the widely used power system software ATP which is suitable for power network modeling and also the modeling of relays using the MODELS function.

1.3 Objectives of the research

In this project, three(3) objectives are to be achieved which are:
i) To study the importance of power systems protection
ii) To do modelling of power network and relays using ATP (Alternative Transient Program)
iii) To do simulation to study the charateristics of the power system under diferrent disturbance scenarios.

1.4 Scope

This project involves research for information about the importance of power systems protection and also the important function of the main component of protection, which is
the relay. The information and knowledge gained from this study helps in the accurate modelling of power system network using ATP (Alternative Transient Program). Understanding the basic operation of relays also helped in the designing of accurate relay algorithm that operate accordingly to certain fault and provide a feedback to the system. The other major work involved after familiarization of the ATP software during FYP 1 are to model power system network and generate disturbance scenarios such as lightning overvoltages and short circuit fault. This works involved heavy research from Internet and also understanding of the ATP User's Manual. The generated disturbance scenarios were important for simulation studies to observe the behavior of the power systems in response to the faults.

Another important work involved after that is the modeling of relays. In order to study protective relaying system performance accurately, a closed loop simulation of the system is highly desirable, therefore it is important to embed relays in the system which will provide trip signal to the circuit breaker to open or reclose. Modeling of relays needs the users to understand the MODELS language, where the algorithm of the relay is written in MODELS codes.

CHAPTER 2

LITERATURE REVIEW/THEORY

2.1 IMPORTANCE OF POWER SYSTEMS PROTECTION

2.1.1 GOALS OF PROTECTION

Maintain the Ability to Deliver Electric Power

Abstract

th Power systems that have evolved in the 20 century consist of generation plants, transmission facilities, distribution lines, and customer loads, all connected through complex electrical networks. In the United States, electrical energy is generated and distributed by a combination of private and public utilities that operate in interconnected grids, commonly called power pools, for reliability and marketing. Elsewhere in the world, generation is tied to load through national or privatized grids. Either way, power flows according to electrical network theory.

Interconnection improves the reliability of each pool member utility because loss of generation is usually quickly made up from other utilities. However, interconnection also increases the complexity of power networks. Power pool reliability is a function of the reliability of the transmission in the individual members. Protection security and dependability is significant in determining the reliability of electrical service for both individual utilities and the interconnected power system pool.

Public Safety

Relays are designed to deenergize faulted sections as quickly as possible, based on the premise that the longer the power system operates in a faulted condition, the greater the chance that people will be harmed or equipment damaged. In some cases power system stability and government regulatory commissions set the speed requirements of extra high voltage (EHV) systems. Because of cost constraints, relays are not designed to prevent the deaths of people or animals who make direct contact with high voltage lines. Instead,
designers use physical separation and insulation to prevent direct contact. Still, the faster a faulted system element can be detected, isolated, and deenergized, the lower the probability that anyone will encounter hazardous voltages.

Equipment Protection

The primary function of power system protection is to limit damage to power system apparatus. Whether the fault or abnormal condition exposes the equipment to excessive voltages or excessive currents, shorter fault times will limit the amount of stress or damage that occurs. The challenge for protective relays is to extract information from the voltage and current instrumentation that indicates that equipment is operating incorrectly. Although different faults require different fault detection algorithms, the instrumentation remains the same, namely voltages and currents.

Power System Integrity

Properly operating relay systems isolate only the portions on the network directly involved with the fault. If relays operate too quickly or fail to operate, the fault-affected area expands and some circuits are deenergized. Parts of the power system can become isolated from the rest of the network. A large mismatch between generation and load can put an islanded network in jeopardy of losing the generation control that holds frequency and voltage within acceptable limits. Without generation control, the isolated systems will eventually be tripped off by other relays. Widespread outages caused by cascading voltage or frequency excursions require many work hours to restore power, which is costly from both a labor and a lost revenue perspective.

Power Quality

The factors measured to determine the quality of power are voltage amplitude, frequency, and waveform purity. Voltage amplitude quality takes into account persistent RMS value, flicker, and intermittent dips and peaks, as well as momentary and long-term outages. Frequency changes at most a few hundredths of a hertz, unless the power system has lost generation control. Induction motors have the most sensitivity to power system
frequency. Waveform purity is largely a function of harmonic content and is predominantly influenced by load.

The quality of electrical power is an issue for loads that are sensitive to momentary outages and harmonics. In the past, when loads were primarily resistive and inductive, harmonics were either inconsequential or nonexistent. Also, momentary outages had little effect on residential customers. Commercial and industrial customers compensated for momentary outages either with multiple feeds from the utility power sources or with local generation.

Today, every residential customer knows that there was an outage whether she or he was home to experience it. Outages affect home computers and the digital clocks on VCRs, microwave ovens, and other numerous appliances. Although the inconvenience may seem trivial to the relay engineer and perhaps the actual number of outages is even less than in years past, the customer may perceive that the power system is not as reliable today. Good relay selectivity is key to reducing the number of outages and faster relaying minimizes the duration of power dips.

2.2 Modelling of power systems protection

Relay models have been used for a long time by manufacturers, consultants and academics for designing new prototypes and algorithms, to check and optimize the performance of relays already installed in power systems and to train new protection personnel.

Relay manufacturers were the first to develop relay models for evaluating the performance of their designs. Those models implemented the processes by substituting the values of inputs in equations representing the relays to check if the outcomes were acceptable. The characteristics of overcurrent relays were the first to be modeled. Mathematical models [3], [4] were developed in the form of algebraic equations for representing time-current characteristics of overcurrent relays. The first transient model of a distance relay was presented in [5], where the ninth-order state space mathematical model of a mho element was developed.

Electromagnetic transient programs are computer software developments that simulate transients of multiphase networks, and their use has been popular and generally approved. When working with computer models of relay, electromagnetic transient programs are powerful tools for protection investigations and studies.
The Electromagnetic Transient Program (EMTP) was the first software that simulates the transient nature of power systems [6]. EMTP, which is based on the algorithm proposed by Hermann W. Dommel [7], was presented to the public domain by the Bonneville Power Administration (BPA) in the late 1960's.

To rationalize the development of the program, the EMTP Development Coordination Group (DCG) was founded in 1982. Original members of the DCG included BPA, the US Bureau of Reclamation, Western Area Power Administration (WAPA), the Canadian Electrical Association, Ontario Hydro and Hydro-Quebec. The DCG and the Electric Power Research Institute (EPRI) started the initiative of commercial sale of the EMTP in 1984. The first version of the DCG EMTP was released in 1987.

The Alternative Transient Program (ATP) is the free version of EMTP, and today it is widely used for power system simulation [8]. Complex networks and control systems can be simulated with ATP. ATP has extensive modeling capabilities and additional features such as the Transient Analysis of Control Systems (TACS) and MODELS, which enable modeling of control systems and components with non-linear characteristics, respectively. However, while having strong features for programming in simulation tasks, MODELS has limited memory allocation size for data arrays. M. Kezunovic and Q. Chen presented in 1997 a work where the power system transients are simulated using ATP and the protective relay is modeled in MATLAB [9]. The interaction between both systems was implemented in a closed-loop employing an "interaction buffer" for communication. The approach also permitted the simulation of the relay model in other high level languages while maintaining the link. Minor modifications to the ATP program were included to establish the interaction between the power system modeled in ATP and the external relay model.

2.3 Introduction to protective relays

One of the most important equipments employed in the protection of power systems are protective relays. These are one of the most flexible, economic and well-known devices that provide reliable, fast and inexpensive protection.

Relay is defined by the IEEE as "an electric device that is designed to interpret input conditions in a prescribed manner, and; after specified conditions are met, to respond to cause contact operation or similar abrupt changes in associated electric control circuits [10]". Relays acquire signals from the power system (electrical, magnetic, heat, pressure, etc.) and process them with a designed process or algorithm. IEEE defines a protective relay as "a relay whose function is to detect defective lines or apparatus or other power conditions of an abnormal or dangerous nature and to initiate appropriate control circuit action [10]".

Protective relays have provided protection since the beginning of the electric industry, and have encountered great transformations with time as power systems have grown in size and complexity. Early protective relays were constructed using solenoids and electromagnetic actuators. Those relays were bulky and heavy devices that needed lot of space to be mounted. Because of their development and use over several decades, electromechanical relays evolved to become standard accepted devices. Even modern relays use most of the principles of operation of electromechanical relays.

Solid-state relays replaced electromechanical actuators by analog electronic elements. Even when the protection systems based on electromechanical relays had proved to be reliable, solid-state relays gained confidence of protection engineers because of their advantages of lower costs, reduced space and weight, and ease to set, maintain and operate.

The developments in digital technology led to the incorporation of microprocessors in the construction of relays. Digital and numerical relays are sophisticated, multiplepurpose equipment with the capacity to record signals during faults, monitor themselves and communicate with their peers. Numerical relays employ microprocessors especially constructed to process digital signals, which make them faster and more powerful, while preserving their economic advantages.

2.4 Investigation topics on protective relaying

The developments in relaying technology have not solved definitively all the protection issues, and, therefore, substantial investigations and research on protection and protective relaying continues [11]. The following are the most relevant topics currently being investigated in the field of protective relaying.

- Setting and adjustment of relays and interrelation of protective relays with different component of the power system, especially control elements
- Behavior of relays during different operating states of power systems (steadystate, faulted system, etc.)
- Designing of new relay algorithms, relay functions and protection schemes
- Engineering of new relay products
- Education and training of protection personal

Most of the times, it is impossible to investigate the mentioned topics on real systems due to operation, security and economical restrictions. Several approaches and resources have been developed to overcome these difficulties. These include Real Time Digital Simulators (RTDS), Real Time Playback Simulators (RTPS) and software packages for modeling protective relays.

Computer models of protective relays offer an economical and feasible alternative to investigate the performance of relays and protection systems. Computer models of relays permit investigators to observe in a very detailed way the performance of processes in each internal module of the relay.

Designing new relaying algorithms or new relaying equipment is also improved with relay modeling because relay designs are refined before prototypes are built and tested. For specific problems and conflicting scenarios, use of models open the possibility of creating new solutions when known approaches do not work satisfactorily.

CHAPTER 3

METHODOLOGY/PROJECT WORK

3.1 Introduction

The importance of power systems protection and the functions and operations of the relaying system had been addressed in the earlier chapter.The methodoly of this project will be divided into two major steps which are the modelling of the power network and also the modelling of relays. The modeled power network are faulted to generate disturbance scenarios and simulated to observe the system behavior. Relays modeled are embedded in the system to provide neccessary action during the fault i.e sending trip signal to circuit breaker.

The modelling of relays are important in this project as it can provide a closed loop simulation or a 'feedback' to the system when the system detected a fault. Figure 3.1 shows the structure of closed loop simulation. The normal open loop simulation on the other hand will only provide the graphical transient behavior of the system. Fault such as lightning and short circuit will also be generated as analysis for disturbance scenarios and algorithm designed for the relays will act accordingly in response to the fault. Figure 3.2 shows the detail methodology of this project.
3.2 Tool required in the methodology

ATP (Alternative Transient Program) is used as the software to do the modelling of power system while the designing of relay algorithm is done by writing codes using the MODELS language.

MODELS language is a description language for general usage, associated to the interface ATPDraw, based on a group of simulation tools for representation and study of
variant systems in the time. The language MODELS (similar to PASCAL) is focused on the description of the structure of a model and in the function of their elements.

The MODELS language contain many simple and power commands that allow several different constructions of routines. Its functionality can be more explored to develop others applications.

Figure 3.1: Closed loop simulation

Figure 3.2 : Project Methodology

Figure 3.3: Descriptive file MODELS standard

3.3 MODELS Description

Figure 3.3 shows the default text file which is used write the MODELS code to design the algorithm of the relay.A model writen in the MODELS language includes declarations and operations procedures. declarations:

- DATA declaration specify the name, array name and optional default value od the data parameters of the model (the externally assigned constant value holding of the element) - VAR declaration specify the name and the array range of the variables of the model (the internally assigned variable value holding element)
- INPUT declaration specify the name, array range, and optional default value of the inputs of the model (the externally assigned variable value holding elements)
- OUTPUT declaration specify which of the models's element may be used as the output of the model.
operation procedures:
- the EXEC procedure describes the execution algorithm of the model
- the INIT procedure describes the initialization algorithm of the model

3.4 MODELS Object Composition

An object MODELS consists of a file called support file, possessing the extension .sup. Each model should have a support file with objective of being used in ATPDraw. The support file pattern for all components contains the icon, information in the types and positions of us and parameters of data. There are two options for creation of the object of a model in ATPDraw:

- Manual Operation: selecting a file support manually by main menu Object Model | New sup-file;
- Automatic Operation: selecting a file mod directly in the option MODELS of the menu of selection of components and leaving ATPDraw to create the file support.

Figure 3.4 : Windows edition of the support file MODELS

3.5 Type of Relay used and its algorithm

In this project, the type of relay chosen is the voltage magnitude relay. The algorithm designed for the operation of this relay is to basically measure voltage at certain point of the network and preventing the voltage from exceeding the threshold set by the relay. Disturbance scenarios such as lightning overvoltage and short circuit will be generated to test the performance of the relay. If the measured voltage exceeded the threshold, the the relay will send a signal to the circuit breaker to open or reclose.

CHAPTER 4

RESULTS \& DISCUSSION

Three scenarios were generated where power network modeled were given short circuit and lightning fault. Relays were used to control the circuit breakers to activate and clear the fault. The result are tabulated using the PLOTXY function.

4.1 Scenario 1: Lightning overvoltages

Figure 4.1: Power network with lightning overvoltage fault

Figure 4.1 above shows a power network which was modeled using a 500 KV source. A circuit breaker was placed before the transmission line. As shown, a lightning stroke with 6 Megavolt was placed on the line to create an over voltage fault. Voltage and current probe were placed on the circuit to observe the transient in the system operating voltage. A magnitude relay is modeled to control the circuit breaker. Appendix A shows the
algorithm of the relay written in MODELS code. The relay measure the voltage input at node XX0008. When the measured voltage at the input exceeded the voltage threshold of the relay settings, the output of relay which is TRIP will send a signal " 0 " to the the circuit breaker which means opening the circuit to break the connection.

4.1.1 Result for Scenario 1 simulation

Figure 4.2 : Voltage transient measured at node B

Discussion

The network was simulated (Refer Appendix C for the ATP file) and result were generated in the PLOTXY. The above graph shows that the power network was initially operating normally at steady state. A lightning stroke was injected to the system at time 0.2 seconds and there is observed that there is a surge of voltage and the lightning was set to end at 0.8 seconds. And after that the system will return to its normal operating state.

Figure 4.3 : Voltage measured at node XX 0002

Figure above show exactly how the relay modeled in this simulation perform according to its algortihm. The system was initially operating in steady state. The lightning stroke at time 0.2 seconds caused the voltage to surge. The threshold set in this relay is 790 KV whereby voltage exceeding this threshold is unacceptable by the system and the relay immediately send a trip signal (trip: $=0$) to the circuit breaker an open the connection as observed from Figure 4.3 as the measured voltage is zero. After the lightning stroke ended at 0.8 seconds which means that the fault is cleared, the relay again send signal (trip:=1) to the circuit breaker to reclose the connection and the system again resume its normal operating condition.

4.2 Scenario 2 : Short Circuit Test

Figure 4.4 : Short Circuit test

In this scenario, a short circuit test was performed on the power network. A switch is placed at the transmission line to which was set to close at time 0.04 seconds providing a short circuit fault to the line. A current probe is placed after the switch to observe the rise in current after the switch is closed. The same relay (refer to Appendix A for the algorithm of the relay) is used in this case where the relay will send a trip signal to the circuit breaker when the measured voltage at node has exceeded the voltage settings by the relay. The scenario was simulated and the ATP file is shown in Appendix D.

4.2.1 Result for Scenario 2 simulation

Figure 4.5: Current measured form node XX0020 to XX0002

Figure 4.6 : Voltage measured at node XX0002

Based on the Figure 4.5 above, when the switch closed at time 0.04 seconds, it is observed that there is a huge transient and an increase in current and Figure 4.6 shows the voltage measured at the load also shows the rise of voltage due to the increase of current. The voltage threshold set to the relay in this case is 375 KV and when the voltage rise exceeded the relay setting, the relay immediately send a trip signal (trip: $=0$) to the
circuit breaker and break the system connection which can observed from both Figure 4.5 and Figure 4.6 as both current and voltage values dropped to zero. The short circuit fault was set to end at time 0.09 seconds and the relay send signal to the circuit breaker to reclose the line when the fault is cleared.

Based on Figure 4.7 it is a power network modeled with 9 buses. A relay is modeled to control multiple circuit breakers which is 4 in this case, circuit breaker A,B,C and D. The algorithm designed for the relay in this case is to send signal to the circuit breaker nearest the fault to disconnect the systems which are affected by the fault and and the rest of the system will resume normal operation. In this case, a short circuit test is performed where a switch is placed at one of the loads in the system.(Refer to Figure 4.7). The MODELS code for the relay algorithm is shown in Appendix B. The ATP file for this scenario is shown in Appendix E.

4.3.1 Result for Scenario 3 simulation

Figure 4.8: Voltage charateristics at node XX0007

The generated graph was measured at node XX0007. The short circuit had caused a rise of voltage which started at time 0.05 seconds. The relay immediately send signal to circuit breaker B which is nearest to the fault and disconnect the load from the system. After the fault is cleared, the relay send signal to circuit breaker B to reclose the system. The other 3 circuit breakers did not activate as no trip signals were given by the relay as
intended for the simulation of this case. Figure 4.8 shows the plot graph measured at node XX0116, XX0014 and XX0110. These figures shows that the rest of the system resume its operation although there is a fault as the relay had disconnected the system which is the nearest to the short circuit fault.

Figure 4.9 : Voltage measured at XX 0116

Figure 4.10 : Voltage measured at XX0014

Figure 4.11 : Voltage measured at XX0110

Conclusion

1) The importance of power system protection and the functions of relays in preventing fault or minimizing the damage to the systems were studied. This provides adequate knowledge in the modeling of correct power network and designing the algorithm or relays. Magnitude relay was used in the study to prevent overcurrernt or overvoltages from damaging the transmission lines or load in the systems. The algorithm designed for the relay also ensured that it will feed signal back to the circuit breaker to reclose the system after the fault is cleared so that the operating system will resume normal operating condition.
2) Alternative Transient Program was used in modeling real power system network and faults such as lightning overvoltages and short circuit were given to the system. The simulation of the disturbance scenarios provides important charateristics of the power system or how the system behaves under this condition or fault. The PLOTXY function of the ATP software was very useful in providing the graphical result which is important for transient analysis.
3) Another major work in this project is the modeling of relays which were embeded in the system to provide 'feedback' to the system. This enables closed loop simulation which is important to study the relaying system performance. The algorithm of the relays designed for the purpose of simulation in this project were successfully simulated and working appropriately according to its operating procedures.

Recommendations for future work

Although ATP (Alternative Transient Program) is a very useful program for power system simulation it has a few shortcomings. It has small capacity and unable to simulate large network together with too many relays and faults and sometimes the simulations can be very long. This is due to too many datas were given to the software. One alternative to this problem is to interface Matlab, a powerful software with ATP. Systems parameters, relay settings and disturbance scenaris can be done using Matlab and Matlab can transfer data to ATP and vice versa therefore enhancing the simulation capabillity
and more faults can be simulated automatically for the same power system.

REFERENCE

[1] M.Kezunovic, et.al. " An Advanced Method For Testing of Distance Relay Operating Charateristics," IEEE PES Winter Paper Meeting no. 95 WM 028-1 PWRD, New York, Februrary 1995
[2] M. Kezunovic, et. al. "Distance Relay Application Testing Using a Digital Simulator," IEEE PES Winter Meeting, Paper no. 96 WM 017-4 PWRD, Baltimore, January 1996.
[3] J. Singh, M. S. Sachdev, R. J. Fleming, E. Krause, "Digital IDTM Overcurrent Relays," Proceedings of IEE 1980 DPSP Conference, IEE Publication No. 185, pp. 84-87.
[4] E. O. Schweitzer and A. Aliaga, "Digital Programmable Time-Parameter Relay Offers Versatility and Accuracy," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-89, No. 1, pp. 152-157, Jan./Feb. 1980.
[5] Z. Peng, M. S. Li, C. Y. Wu, T. C. Cheng, and T. S. Ning, "A dynamic State Space Model of a Mho Distance Relay," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-104, No. 12, December 1985.
[6] H. Dommel, "EMTP Reference Manual," Bonneville Power Administration 1986.
[7] H. W. Dommel, "Digital Computer Solution of Electromagnetic Transient in Single- and Multiphase Networks," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-88, No. 4, April 1969.
[8] Canadian/American EMTP users Group, Alternative Transient Program (ATP)Rule book, Portland, Oregon, 1992.
[9] Kesunovic M., and Chen Q., "A novel approach for interactive protective system simulation," IEEE Trans. on Power Systems, vol. 12, no. 2, pp. 668-694, Apr. 1997 [10] IEEE Standard Dictionary of Electrical and Electronics Terms, IEEE, Wiley Interscience, 1972
[11] P. G. McLaren, K. Mustaphi, G. Benmouyal, S. Chano, A. Girgis, C. Henville, M. Kezunovic, L. Kojovic, R. Marttila, M. Meisinger, G. Michel, M. S. Sachdev, V. Skendzic, T. S. Sidhu, and D. Tziouvaras, " Software Models for Relays", IEEE Transactions on Power Delivery, Vol. 16, No. 12, April 2001, pp: 238-45,

APPENDICES

APPENDIX A
 RELAY ALGORITHM FOR SCENARIO 1 \& 2

MODEL relay_b

```
INPUT V1 -- Voltage measured [V]
DATA Vset -- Voltage threshold [V]
        tset -- Time fault
VAR trip -- relay controlled signal [0 or 1]
OUTPUT trip
INIT trip:=1 -- close circuit breaker
ENDINIT
EXEC
IF V1<Vset -- Measured voltage less the relay voltage setting (threshold)
AND trip>0
THEN
    trip:=1 -- circuit breaker remain closed
ENDIF
```

IF V1>Vset -- Measured voltage more than the relay voltage setting
AND trip >0
THEN
trip: $=0 \quad-$ relay send signal to open circuit breaker
ENDIF

IF trip=0 -- circuit breaker open
AND $t>$ tset -- fault cleared
THEN
trip: $=1 \quad$-- relay send signal to reclose circuit breaker ENDIF

ENDEXEC

ENDMODEL

APPENDIX B

RELAY ALGORITHM FOR SCENARIO 3

MODEL relay_f
INPUT V1 -- Voltage measured at first node [V]
V2 -- Voltage mesaured at second node [V]
V3 -- Voltage measured at third node [V]
V4 -- Voltage measured at fourth node [V]

```
DATA Vset -- Voltage threshold [V]
    Vset2 -- Voltage threshold [V]
    Vset3 -- Voltage threshold [V]
    Vset4 -- Voltage threshold [V]
    tset -- Time fault
\begin{tabular}{|c|c|}
\hline VAR trip_A -- relay controlled signal & [0 or 1] \\
\hline trip_B -- relay controlled signal & [0 or 1] \\
\hline trip_C -- relay controlled signal & [0 or 1] \\
\hline trip_D -- relay controlled signal & [0 or 1] \\
\hline
\end{tabular}
OUTPUT trip_A
    trip_B
    trip_C
    trip_D
INIT trip_A:=1 -- close circuit breaker
    trip_B:=1 -- close circuit breaker
    trip_C:=1 -- close circuit breaker
    trip D:=1 -- close circuit breaker
```

ENDINIT

EXEC

IF V1<Vset -- Measured voltage less the relay voltage setting (threshold)
AND trip_A>0
THEN
trip_A:=1 -- circuit breaker remain closed
ENDIF

```
IF V2<Vset2 -- Measured voltage less the relay voltage setting (threshold)
AND trip_B>0
THEN
trip_B:=1 -- circuit breaker remain closed
ENDIF
IF V3<Vset3 -- Measured voltage less the relay voltage setting (threshold)
AND trip_C>0
THEN
trip_C:=1 -- circuit breaker remain closed
ENDIF
```

IF V4<Vset4 -- Measured voltage less the relay voltage setting (threshold)
AND trip_D>0
THEN
trip_D:=1 -- circuit breaker remain closed
ENDIF
IF V1>Vset -- Measured voltage more than the relay voltage setting
AND trip_A>0
THEN
trip_A:=0 -- relay send signal open circuit breaker
ENDIF
IF V2>Vset2 -- Measured voltage more than the relay voltage setting
AND trip_B>0
THEN
trip_B:=0 -- relay send signal open circuit breaker
ENDIF

IF V3>Vset3 -- Measured voltage more than the relay voltage setting AND trip_C>0
THEN
trip_C:=0 - relay send signal open circuit breaker
ENDIF

IF V4>Vset4 -- lightning voltage more than the relay voltage setting
AND trip $\mathrm{D}>0$
THEN
trip_D:=0 -- relay send signal open circuit breaker
ENDIF

IF trip_A=0 -- circuit breaker open
AND $t>$ tset -- fault cleared
THEN
trip $A:=1 \quad-$ relay send signal to reclose circuit breaker
ENDIF

IF trip_B=0 -- circuit breaker open
AND $t>t$ set -- fault cleared

THEN

trip_B:=1 -- relay send signal to reclose circuit breaker
ENDIF

IF trip_C $=0 \quad$-- circuit breaker open
AND $t>$ tset -- fault cleared
THEN
trip_C:=1 -- relay send signal to reclose circuit breaker
ENDIF

IF trip_D=0 -- circuit breaker open

AND $1>$ tset -- fault cleared

THEN
trip_D:=1 -- relay send signal to reclose circuit breaker
ENDIF

ENDEXEC

ENDMODEL

APPENDIX C

ATP FILE FOR SCENARIO 1

Alternative Transients Program (ATP), GNU Linux or DOS. All rights reserved by Can/Am user group of Portland, Oregon, USA. Date (dd-mth-yy) and time of day (hh.mm.ss) $=07$-May-07 18:09:56 Name of disk plot file is lightning.pl4 Consult the 860 -page ATP Rule Book of the Can/Am EMTP User Group in Portland, Oregon, USA. Source code date is 19 December 2003.
Total size of LABCOM tables $=9872109$ INTEGER words. 31 VARDIM List Sizes follow: 6002 10K 192K 900420 K 1200 15 K
120K $2250380072012007280051090 \mathrm{~K} 80090254120 \mathrm{~K} \quad 100 \mathrm{~K} \quad 3 \mathrm{~K} \quad 15 \mathrm{~K} \quad 192 \mathrm{~K} \quad 12030 \mathrm{~K} \quad 160 \mathrm{~K} \quad 600210 \mathrm{~K} .30019$ 200

Comment card. NUMDCD $=1$.	\|C data:LIGHTNING.ATP
Marker card preceding new EMTP data case.	\|BEGIN NEW DATA CASE
Comment card. NUMDCD $=3$.	\|C
Comment card. $\mathrm{NUMDCD}=4$.	\|C Generated by ATPDRAW May, Monday 7, 2007
Comment card. NUMDCD $=5$.	\|C A Bonneville Power Administration program
Comment card. NUMDCD $=6$.	\|C Programmed by H. K. Heidalen at SEfAS - NORWAY 1994-2003
Comment card. $\mathrm{NUMDCD}=7$.	
Comment card. $\mathrm{NUMDCD}=8$.	$\mid \mathrm{C} \mathrm{dT}><$ Tmax $><$ Xopt $><$ Copt $>$
Misc. data. $\quad 1.000 \mathrm{E}-031.000 \mathrm{E}+00 \quad 0.000 \mathrm{E}$	+00\| . 0011.
Misc. data. 50011111001001	$\begin{array}{llllllllllll}500 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0\end{array}$
No TACS data, but MODELS data begins (next)	(M). ${ }^{\text {MODELS }}$
Another ordinary MODELS data card.	\|INPUT
Another ordinary MODELS data card.	\| IX0001 $2 \mathrm{v}(\mathrm{XX} 0008)\}$
Another ordinary MODELS data card.	\|OUTPUT
Another ordinary MODELS data card.	\| A
Another ordinary MODELS data card.	\|MODEL relay b
Another ordinary MODELS data card.	INPUT V1 -- Voltage measured [V]
Another ordinary MODELS data card.	DATA Vset -- Voltage setting [V]
Another ordinary MODELS data card.	tset -- Time fault
Another ordinary MODELS data card.	VAR trip -- relay controlled signal [0 or 1]
Another ordinary MODELS data card.	OUTPUT trip
Another ordinary MODELS data card.	\| INIT trip:=1 -- close circuit breaker
Another ordinary MODELS data card.	\| ENDINIT
Another ordinary MODELS data card.	EXEC
Another ordinary MODELS data card.	
Another ordinary MODELS data card.	IF V1<Vset -- Measured voltage more less the relay voltage setting (thres
Another ordinary MODELS data card.	1 AND trip >0

Another ordinary MODELS data card.
Another ordinary MODELS data card. Another ordinary MODELS data card.

THEN
trip:=1 -- circuit breaker remain closed
ENDIF
IF V1>Vset -- lightning voltage more than the relay voltage setting
AND trip>0
THEN
trip:=0 -- relay send signal open circuit breaker
ENDIF
IF trip $=0 \quad$-- circuit breaker open
AND \gg tset - fault cleared
THEN
trip:=1 \quad - relay send signal to reclose circuit breaker
ENDIF

ENDEXEC

ENDMODEL
USE relay_b AS relay_b
|INPUT
| V1:= IX0001
DATA
Vset:= 7.9E5
| tset:= 0.8
|OUTPUT
| A :=trip
|ENDUSE

Termination of data for Laurent Dube's MODELS. |ENDMODELS

| Comment card. | NUMDCD $=56$. | $\mid C$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Comment card. NUMDCD $=57 . \quad \mid \mathrm{C}$
345678901234567890123456789012345678901234567890123456789012345678901234567890
Optional blank card follows last of MODELS data. |BLANK MODELS
Comment card. NUMDCD $=59 . \quad \mid \mathrm{C}<\mathrm{n} 1><\mathrm{n} 2><$ refl $><$ ref2 $2<\mathrm{R}><\mathrm{L}><\mathrm{C}>$
Comment card. NUMDCD $=60$. $\quad \mid C<n 1><\mathrm{n} 2><$ refl $\mid><$ ref2 $><\mathrm{R}><\mathrm{A}><\mathrm{B}><$ Leng $><><0$
Series R-L-C. $2.000 \mathrm{E}+021.000 \mathrm{E}-054.000 \mathrm{E}-06 \mid \mathrm{XX} 0002$
200. 014.0

1st of PI-ckt. $2.000 \mathrm{E}+02 \quad 1.000 \mathrm{E}-02 \quad 1.000 \mathrm{E}-07 \mid 1 \mathrm{XX} 0025 \mathrm{XX} 0002$
200. 10. . 1

Series R-L-C. $1.000 \mathrm{E}+030.000 \mathrm{E}+000.000 \mathrm{E}+00 \mid \quad \mathrm{XX} 0025 \quad 1 . \mathrm{E} 3 \quad 0$
Blank card ending branches. IBR, NTOT $=33$ |BLANK BRANCH
Comment card. NUMDCD $=65$. $\mid \mathrm{C}<\mathrm{n} 1><\mathrm{n} 2><$ Tclose $><$ Top/Tde $><$ le $><\mathrm{Vf} / \mathrm{CLLOP}><$ type $>$
Permanently-closed switch used for metering. I B XX0008 MEASURING 1
Switch. TACS control = "A " |13XX0008XX0025 CLOSED A 0
Blank card ending switches. $\mathrm{KSWTCH}=2$. |BLANK SWITCH
Comment card. NUMDCD $=69 . \quad \mid \mathrm{C}<\mathrm{n} 1>\ll$ Ampl. $><$ Freq. $><$ Phase $/$ T0 $><$ Al $><\mathrm{Tl}><$ TSTART $><$
TSTOP >
Source. $5.00 \mathrm{E}+05 \quad 6.00 \mathrm{E}+01 \quad 0.00 \mathrm{E}+000.00 \mathrm{E}+00 \mid 14 \mathrm{~B} \quad 0 \quad 5 . \mathrm{E} 5 \quad 60 . \quad 1$.
Source. $6.00 \mathrm{E}+06-5.00 \mathrm{E}-05-1.20 \mathrm{E}-060.00 \mathrm{E}+00 \mid 15 \mathrm{~B} \quad 0 \quad 6 . \mathrm{E} 6 \quad-5 . \mathrm{E}-5 \quad-1.2 \mathrm{E}-6 \quad 2 . \mathrm{E}-5$

Blank card ends electric sources. $\mathrm{KCONST}=3$ |BLANK SOURCE
List of input elements that are connected to each node. Only the physical connections of multi-phase lines are shown (capacitive and inductive coupling are ignored). Repeated entries indicate parallel connections. Switches are included, although sources (including rotating machinery) are omitted -- except that U.M. usage produces extra, internally-defined nodes "UMXXXX".
-- .

```
    XX0002 [TERRA *XX0025*
    XX0025|TERRA *XX0002*XX0008*
    B [XX0008*
    XX0008 |XX0025*B *
    TERRA [XX0002*XX0025*
```

 +++ Node "XX0008" has no connected linear branches. Add (to ground) the conductance \(\mathrm{G}=1.00000000 \mathrm{E}-08\) mhos.
 Card of names for time-step loop output. | XX0002XX0002XX0002B
Blank card ending requests for output variables. |BLANK OUTPUT
Column headings for the 5 EMTP output variables follow. These are divided among the 5 possible classes as follows
First 4 output variables are electric-network voltage differences (upper voltage minus lower voltage);
Next 1 output variables are branch currents (flowing from the upper node to the lower node);
Step Time XX0002 XX0002 XX0002 B B
XX0008

${ }^{* * *}$		Switch "B "to "XX0008" closed before $0.00000000 \mathrm{E}+00 \mathrm{sec}$.		
${ }^{* * *}$		Switch "XX0008" to "XX0025" closed before $0.00000000 \mathrm{E}+00 \mathrm{sec}$.		
0	0.0	0.0	0.0	0.0
500	0.5	0.0	0.0	
5034321939.434321939 .434321939514870 .678 .005148707				

$\% \% \% \% \% \%$ Final time step, PLTFIL dumps plot data to ".PL4" disk file.
Done dumping plot points to C -like disk file.
$1000 \quad 1.0 \quad 138643.256138643 .256138643 .256 \quad 0.0-595.98361$
Extrema of output variables follow. Order and column positioning are the same as for the preceding time-step loop output.
Variable maxima : 779499.363779499 .363779499 .363 .2444866E7 1380.67497
$\begin{array}{lccclll}\text { Times of maxima : } & .21 & .21 & .21 & .233 & .1 E-2 \\ \text { Variable minima : } & -455382.43 & -455382.43-455382.43 & -500000 & -1071.7269\end{array}$
$\begin{array}{lcccccc}\text { Variable minima : }-455382.43 & -455382.43-455382.43 & -500000 . & -1071.7269 \\ \text { Times of minima : } & .009 & .009 & .009 & .025 & .09\end{array}$

Blank card terminating all plot cards. \quad BLANK PLOT

APPENDIX D ATP FILE FOR SCENARIO 2

Alternative Transients Program (ATP), GNU Linux or DOS. All rights reserved by Can/Am user group of Portland, Oregon, USA. Date (dd-mth-yy) and time of day (hh.mm.ss) = 07-May-07 18:42:53 Name of disk plot file is shortcircuit.pl4 Consult the 860 -page ATP Rule Book of the Can/Am EMTP User Group in Portland, Oregon, USA. Source code date is 19 December 2003.
Total size of LABCOM tables $=9872109$ INTEGER words. 31 VARDIM List Sizes follow: 600210 K 192 K 900420 K 1200 15 K
$120 \mathrm{~K} \quad 2250380072012007280051090 \mathrm{~K} 80090 \quad 254120 \mathrm{~K} \quad 100 \mathrm{~K} 3 \mathrm{~K} \quad 15 \mathrm{~K} \quad 192 \mathrm{~K} \quad 120 \quad 30 \mathrm{~K} \quad 160 \mathrm{~K} \quad 600210 \mathrm{~K} 30019$ 200

Descriptive interpretation of input data cards. Input data card images are shown below, all 80 columns, character by character
012345678901234567890123456789012345678901234567890123456789012345678901234567890

Comment card. NUMDCD $=1$.
Marker card preceding new EMTP data case.
Comment card. NUMDCD $=3$.
Comment card. NUMDCD $=4$.
Comment card. NUMDCD $=5$.
Comment card. NUMDCD $=6$.
Comment card. NUMDCD $=7$.
Comment card. $\mathrm{NUMDCD}=8$.
Misc data 000E-06 2000E-
$\begin{array}{llllllllllllllllllll}\text { Misc. data. } & 500 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 500 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0\end{array}$
No TACS data, but MODELS data begins (next). |MODELS
Another ordinary MODELS data card.
Another ordinary MODELS data card. Another ordinary MODELS data card.

IC data:SHORTCIRCUIT.ATP
|BEGIN NEW DATA CASE
IC Generated by ATPDRAW May, Monday 7,2007
IC A Bonneville Power Administration program
IC Programmed by H. K. Høidalen at SEfAS - NORWAY 1994-2003
C
C dT ><Tmax > Xopt > Copt>

IINPUT
| IX0001 \{v(XX0002)\}
ןOUTPUT
A
|MODEL relay_b
INPUT V1 - Voltage measured [V]
| DATA Vset -- Voltage setting
tset -- Time fault
| VAR trip -- relay controlled signal [0 or 1]
OUTPUT trip
INIT trip:=1 -- close circuit breaker
ENDINIT
EXEC
IF V1<Vset $\quad-$ Measured voltage more less the relay voltage setting (thres
AND trip >0
THEN
trip:=1 -- circuit breaker remain closed
ENDIF
IF V1 $>$ Vset $\quad-$ lightning voltage more than the relay voltage setting
AND trip>0
THEN
trip $:=0 \quad$-- relay send signal open circuit breaker
ENDIF

AND $\mathrm{t}>$ tset -- fault cleared
THEN
trip:=1 -- relay send signal to reclose circuit breaker
ENDIF
ENDEXEC
ENDMODEL
|USE relay_b AS relay_b
|INPUT
| V1:= IX0001
DATA
| Vset:= 3.75E5
| tset:= 0.09

$$
\begin{array}{ll}
\text { Another ordinary MODELS data card. } & \text { |OUTPUT } \\
\text { Another ordinary MODELS data card. } & \text { | A =trip } \\
\text { Another ordinary MODELS data card. } & \text { |ENDUSE }
\end{array}
$$

Termination of data for Laurent Dube's MODELS. |ENDMODELS

Comment card.	NUMDCD	$=56$.	C	C	1	2	3	4	5	6	7

Comment card. NUMDCD $=57 . \quad \mid C$
345678901234567890123456789012345678901234567890123456789012345678901234567890
Optional blank card follows last of MODELS data. |BLANK MODELS

Blank card ending switches. $\mathrm{KSWTCH}=4$. |BLANK SWITCH
Comment card. NUMDCD $=71 . \quad \mid \mathrm{C}<\mathrm{n} 1>\ll$ Ampl. $><$ Freq. $><$ Phase/T0>< Al $><\mathrm{Tl}><$ TSTART $><$ TSTOP >
$\begin{array}{lllllll}\text { Source. } & 5.00 \mathrm{E}+05 & 6.00 \mathrm{E}+01 & 0.00 \mathrm{E}+00 & -1.00 \mathrm{E}+00 & 14 \mathrm{XX} 00240 & 5 . \mathrm{E} 5 \\ 60 & -1 . & 1 .\end{array}$
Blank card ends electric sources. KCONST = 1 |BLANK SOURCE
List of input elements that are connected to each node. Only the physical connections of multi-phase lines are shown (capacitive and inductive coupling are ignored). Repeated entries indicate parallel connections. Switches are included, although sources (including rotating machinery) are omitted -- except that U.M. usage produces extra, internally-defined nodes "UMXXXX".

```
From bus name | Names of all adjacent busses.
    XX0002 |TERRA *XX0020*
    XX0022 XX 0020 *XX0028*XX0024*
    XX0020 |TERRA *XX0002*XX0022*XX0028*
    XX0028 XX0022*XX0020*
    XX0024 XX0022*
    TERRA |XX0002*XX0020*
```

Sinusoidal steady-state phasor solution, branch by branch. All flows are away from a bus, and the real part, magnitude, or "P" is printed above the imaginary part, the angle, or "Q". The first solution frequency $=6.00000000 \mathrm{E}+01$ Hertz.

| TERRA | 0.0 | 0.0 | -126.0453208387 | 174.698164172 | | 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllll}\mathrm{XX} 0020 & 82736.471644944 & 115902.33569001 & -208.7817924837 & 212.54076768015 & -.70218701948 \mathrm{E} 7\end{array}$ $-81166.66605291 \quad-44.4512583 \quad-39.79624421189 \quad-169.2082122 \quad .101193614296 \mathrm{E} 8$

| TERRA | | 0.0 | | 0.0 | -82.73647164494 | 115.90233569001 | | 0.0 | 67166757092 E 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{array}{cccccccc}
\text { XX0020 } & 82736.471644944 & 115902.33569001 & 82.736471644944 & 115.90233569001 & .67166757092 \mathrm{E} 7 \\
-81166.66605291 & -44.4512583 & -81.16666605291 & -44.4512583 & .40154191083 \mathrm{E}-9
\end{array}
$$

Total network loss P-loss by summing injections $=5.219544812092 \mathrm{E}+07$

XX0028 XX0020
$0.00000000 \mathrm{E}+00$
XX0024 XX0022 $9.94906105 \mathrm{E}+06$
$0.00000000 \mathrm{E}+00 \quad 0.00000000 \mathrm{E}+00 \quad 0.00000000 \mathrm{E}+00 \quad 0.0000 \quad 0.00000000 \mathrm{E}+00$
$2.08781792 \mathrm{E}+02 \quad 3.97962442 \mathrm{E}+01 \quad 2.12540768 \mathrm{E}+02 \quad 10.7918 \quad 5.21954481 \mathrm{E}+07 \quad-$

Solution at nodes with known voltage. Nodes that are shorted together by switches are shown as a group of names, with the printed result applying to the composite group. The entry "MVA" is $\operatorname{SQRT}\left(\mathrm{P}^{* *} 2+\mathrm{Q}^{* *} 2\right)$ in units of power, while "P.F." is the associated power factor.

| Node
 name | Source node voltage
 Rectangular | Injected source current
 Rolar | Injected source power
 Rectangular | Polar | P and Q MVA and P.F. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

+++ Node "XX0028" has no connected linear branches. Add (to ground) the conductance $\mathrm{G}=1.00000000 \mathrm{E}-08$ mhos.
Card of names for time-step loop output. XX0002XX0002XX0002
Blank card ending requests for output variables. |BLANK OUTPUT
Column headings for the 5 EMTP output variables follow. These are divided among the 5 possible classes as follows
First 3 output variables are electric-network voltage differences (upper voltage minus lower voltage);
Next 2 output variables are branch currents (flowing from the upper node to the lower node);
Step Time XX0002 XX0002 XX0002 XX0020 XX0028 XX0002 XX0020

26000	. 026 -106805.66-106805.66-106805.66-72.663804 . 001068057
26500	. $0265-113347.69-113347.69-113347.69-41.60773 .001133477$
27000	. $027-115874.32-115874.32-115874.32-9.0776811 .001158743$
27500	. $0275-114296.05-114296.05-114296.05$ 23.7739493 . 00114296
28000	. 028 -108668.78-108668.78-108668.78 55.7833756 .001086688
28500	. 0285 -99191.866-99191.866-99191.866 $85.8166481 .991919 \mathrm{E}-3$
29000	. 029 -86201.031-86201.031-86201.031 112.809823 .86201E-3
29500	. 0295 -70156.482-70156.482-70156.482 135.806654 .701565E-3
30000	. $03-51626.604-51626.604-51626,604153.992466$.516266E-3
30500	. $0305-31267.828-31267.828-31267.828$ 166.723018 .312678E-3
31000	.031-9801.3737-9801.3737-9801.3737 173.547325 .980137E-4
31500	. $031512012.299212012 .299212012 .2992174 .223631-.12012 \mathrm{E}-3$
32000	. 03233400.430433400 .430433400 .4304168 .727977 -.334E-3
32500	. $032553605.334753605 .334753605 .3347157 .255052-.53605 \mathrm{E}-3$
33000	. 03371911.243371911 .243371911 .2433140 .211287 -.71911E-3
33500	. 033587669.660387669 .660387669 .6603118 .200468 -.8767E-3
34000	. $034100322.336100322 .336100322 .33692 .0023383-.00100322$
34500	. 0345109421.043109421 .043109421 .043 62.5449799-00109421
35000	. $035114643.454114643 .454114643 .45430 .8719344-00114643$
35500	. $0355115804.565115804 .565115804 .565-1.8947647-00115805$
36000	. $036112863.24112863 .24112863 .24-34.594341$-.00112863
36500	. 0365105923.68105923 .68105923 .68 -66.068395-.00105924
37000	. 03795231.719995231 .719995231 .7199 -95.201944-.95232E-3
37500	. 037581166.128881166 .128881166 .1288 -120.96292-.81166E-3
38000	. 038 64225.1872 64225.1872 64225.1872-142.43872-.64225E-3
38500	. $038545009.036345009 .036345009 .0363-158.86855-45009 \mathrm{E}-3$
39000	. 03924198.417924198 .4179 24198.4179 -169.6704-.24198E-3
39500	. $03952530.558392530 .558392530 .55839-174.46158$-.25306E-4
***	Close switch "XX0022" to "XX0028" after 4.00000000E-02 sec.
40000	. 04 -19226.947-19226.947-19226.947-173.07237 .192269E-3
40500	. $0405-452413.53-452413.53-452413.53-377.1868-829.60033$
41000	. 041 -484291.58-484291.58-484291.58-209.41041-693.70199
41500	.0415 -499013.36-499013.36-499013.36-69.974637 -568.988
42000	.042-496057.35-496057.35-496057.35 71.8736768-424.18367
42500	.0425-475528.26-475528.26-475528.26 211.175707-264.35255
43000	. $043-438153.34-438153.34-438153.34342 .996732-95.156608$
43500	. 0435 -385256.62-385256.62-385256.62 462.666927 77.4103052
44000	. 044 -318711.99-318711.99-318711.99 565.946915 247.23492
44500	. 0445 -240876.84-240876.84-240876.84 649.177951 408.301114
45000	. $045-154508.5-154508.5-154508.5709 .411536554 .903038$
45500	. 0455 -62666.617-62666.617-62666.617 744.513862 681.847246
46000	. 04631395.259831395 .259831395 .2598753 .241414784 .636674
46500	. 0465124344.944124344 .944124344 .944735 .285014859 .629957
47000	. 047212889.646212889 .646212889 .646691 .280775904 .170421
47500	. 0475293892.626293892 .626293892 .626622 .78757916 .680196
48000	. 048 364484.314 364484.314364484 .314532 .231805896 .716119
48500	. $0485322918.937322918 .937322918 .937-322.92217-00322919$
49000	. 049285673.86 285673.86 285673.86-285.67672-.00285674
49500	. 0495 252724.584 252724.584 $252724.584-252.72711-.00252725$
50000	.05 223575.637 223575.637 223575.637-223.57787-.00223576
50500	.0505 197788.694197788.694 197788.694-197.79067-00197789
51000	051 174975.987 174975.987 174975.987-174.97774-00174976

51500
52000
52500
53000
53500
54000
54500
55000
55500
56000
56500
$\% \% \% \% \% \%$ Suspended simulation; plot data space exhausted; SPY SPACE is required, LIMBUF $=340000$. $\% \% \% \% \% \%$ Suspended simulation; plot data space exhausted; SPY SPACE is required. LIMBUF $=340000$.
+++ Time-sharing disabled. Send user-keyed interrupt to silence alarm.
Current values. INDBUF INDBEG LIMBUF MFLUSH NUMDCD KCARDI KCARD2 $339998 \quad 50340000 \quad 1000 \quad 75 \quad 1 \quad 76$
114000
114500
115000
115500
116000
116500
117000
117500
118000
118500
119000
119500
120000
120500
121000
121500
122000
122500
123000
123500
124000
124500
125000
125500
126000
126500
127000
127500
128000
128500
129000
129500
130000
130500
131000
131500
132000
132500
133000
133500
134000
134500
135000
135500
136000
136500
137000
137500
138000
138500
139000
139500
140000
140500
141000
141500
142000
142500
143000
143500
144000
144500
145000
145500
$0515154794.469154794 .469154794 .469-154.79602-.00154794$
$.052136940 .663136940 .663136940 .663-136.94203-.00136941$ $0525121146.093121146 .093121146 .093-121.1473-.00121146$ $053 \quad 107173.25 \quad 107173.25 \quad 107173.25-107.17432-00107173$ $053594812.017194812 .017194812 .0171-94.812965-.94812 \mathrm{E}-3$ $.05483876 .514283876 .514283876 .5142-83.877353-.83877 \mathrm{E}-3$ $054574202.298974202 .298974202 .2989-74.203041-.74202 \mathrm{E}-3$ $.05565643 .895865643 .895865643 .8958-65.644552-.65644 \mathrm{E}-3$ $055558072.608658072 .608658072 .6086-58.073189-.58073 \mathrm{E}-3$ $.05651374 .584451374 .584451374 .5844-51.375098-.51375 \mathrm{E}-3$ 056545449.102245449 .102245449 .1022 -45.449557-.45449E-3 $\begin{array}{lllll}114 & -24195.9 & -24195.9 & -24195.9 & 169.666613 .241959 \mathrm{E}-3\end{array}$. 1145 -2528.4598-2528.4598-2528.4598 174.458425 .252846E-4 .11519228 .696319228 .696319228 .6963173 .069744 -.19229E-3 $115540304.786540304 .786540304 .7865 \quad 165.5498$-. $40305 \mathrm{E}-3$.11659953 .159759953 .159759953 .1597152 .165022 -. $59953 \mathrm{E}-3$ $116577477.745877477 .745877477 .7458133 .389596-.77478 \mathrm{E}-3$ 11792257.713792257 .713792257 .7137109 .888673 -.92258E-3 1175103769.464103769 .464103769 .46482 .4948022 -. 00103769 $.118 \quad 111605.178111605 .178111605 .178 \quad 52.178439-.00111605$ $1185 \quad 115487.263115487 .263115487 .263120 .013568-.00115487$ 119115278.187115278 .187115278 .187 -12.860344-.00115278 $1195110985.353110985 .353110985 .353-45.278714$-. 00110985 $\begin{array}{llllll}.12 & 102760.83 & 102760.83 & 102760.83 & -76.093098 & -.00102761\end{array}$ $120590895.973190895 .973190895 .9731-104.21187-.90896 \mathrm{E}-3$ $12175811.097175811 .097175811 .0971-128.63892$-. $75811 \mathrm{E}-3$ $121558040.588758040 .588758040 .5887-148.50888-.58041 \mathrm{E}-3$.122. $38213.974838213 .974838213 .9748-163.11787-.38214 \mathrm{E}-3$ $122517033.621217033 .621217033 .6212-171.94833-.17034 \mathrm{E}-3$. 123 - $4750.1492-4750.1492-4750.1492-174.68745 .475015 \mathrm{E}-4$ $1235-26365.637-26365.637-26365.637-171.23819 .263656 \mathrm{E}-3$. 124 -47047.103-47047.103-47047.103-161.72274 .470471E-3 $1245-66061.897-66061.897-66061.897-146.47819 .660619 \mathrm{E}-3$. $125-82736.413-82736.413-82736.413-126.04458$. $827364 \mathrm{E}-3$ $.1255-96479.946-96479.946-96479.946-101.14578 .964799 \mathrm{E}-3$. 126 -106805.63-106805.63-106805.63-72,663852 . 001068056 $1265-113347.66-113347.66-113347.66-41.60777 .001133477$. 127 -115874.3-115874.3-115874.3-9.0777142.001158743 . 1275 -114296.03-114296.03-114296.03 23.7739217 . 00114296 $.128-108668.76-108668.76-108668.7655 .7833526 .001086688$ 1285 -99191.853 -99191.853-99191.853 85.8166289 .991919E-3 . 129 - $86201.021-86201.021-86201.021112 .809807$. $86201 \mathrm{E}-3$ $1295-70156.473-70156.473-70156.473135 .80664 .701565 \mathrm{E}-3$. 13 -51626.597-51626.597-51626.597 153.992455 .516266E-3 1305 -31267.822 -31267.822 -31267.822 166.723009 .312678E-3 . 131 -9801.3686-9801.3686-9801.3686 173.547317.980137E-4 131512012.303412012 .303412012 .3034174 .223624 -. 12012E-3 $13233400.433933400 .433933400 .4339168 .727972 \quad$-.334E-3 132553605.337753605 .337753605 .3377157 .255047 -. 53605E-3 .13371911 .245871911 .245871911 .2458140 .211283 -.71911E-3 $133587669.662387669 .662387669 .6623118 .200465-.8767 \mathrm{E}-3$ $134100322.338100322 .338100322 .33892 .0023357-.00100322$ $1345109421.044109421 .044109421 .04462 .5449778-.00109421$ $.135114643 .456114643 .456114643 .45630 .8719326-.00114643$ $1355115804.566115804 .566115804 .566-1.8947662-.00115805$. 136112863.241112863 .241112863 .241 -34.594342-.00112863 $1365 \quad 105923.68105923 .68 \quad 105923.68$-66.068396 -. 00105924 .13795231 .720495231 .720495231 .7204 -95.201945-.95232E-3 $137581166.129381166 .129381166 .1293-120.96292$-.81166E-3 13864225.187664225 .187664225 .1876 -142.43872 -. $64225 \mathrm{E}-3$ $138545009.036645009 .036645009 .0366-158.86856-.45009 \mathrm{E}-3$. $13924198.418124198 .418124198 .4181-169.6704-.24198 \mathrm{E}-3$ 13952530.558622530 .558622530 .55862 -174.46158 -.25306E-4 . 14 -19226.947-19226.947-19226.947-173.07237.192269E-3 1405 -40303.329-40303.329-40303.329-165.55199 .403033E-3 $.141-59951.945-59951.945-59951.945-152.16685 .599519 \mathrm{E}-3$ $1415-77476.733-77476.733-77476.733-133.39112 .774767 \mathrm{E}-3$. 142 -92256.87 $-92256.87-92256.87-109.88994 .922569 \mathrm{E}-3$ $1425-103768.76-103768.76-103768.76-82.495858 .001037688$ 143-111604.59-111604.59-111604.59-52.179319.001116046 . $1435-115486.77-115486.77-115486.77-20.014301 .001154868$. $144-115277.78-115277.78-115277.7812 .8597327 .001152778$ $.1445-110985.01-110985.01-110985.0145 .2782044$. 00110985 . $145-102760.55-102760.55-102760.5576 .0926731 .001027605$. $1455-90895.737-90895.737-90895.737104 .211521$, $908957 \mathrm{E}-3$

146000 146500 147000 147500 148000 148500 149000 149500 150000 150500 151000 151500
$.146-75810.901-75810.901-75810.901128 .638624 .758109 \mathrm{E}-3$ 1465-58040.425-58040.425-58040.425 148.508639.580404E-3 $\begin{array}{lllll}.147 & -38213.838 & -38213.838 & -38213.838 & 163.117662 \\ \text {. } 382138 \mathrm{E}-3\end{array}$. 1475 -17033.508-17033.508-17033.508 171.94816.170335E-3 .1484750 .243924750 .243924750 .24392174 .687309 -. $47502 \mathrm{E}-4$. 148526365.715626365 .715626365 .7156171 .238073 -. 26366E-3 $.14947047 .168747047 .168747047 .1687161 .722643-.47047 \mathrm{E}-3$ 149566061.952366061 .952366061 .9523146 .478108 -. $66062 \mathrm{E}-3$.1582736 .458482736 .458482736 .4584126 .044512 -. $82736 \mathrm{E}-3$ 150596479.984196479 .984196479 .9841 101.145727-.9648E-3 $.151 \quad 106805.658106805 .658106805 .65872 .6638044-.00106806$ $1515 \quad 113347.689113347 .689113347 .689 \quad 41.60773-.00113348$

Plot timespan now in memory (in sec) $=1.13314003 \mathrm{E}-01 \quad 1.69972000 \mathrm{E}-01$ ++++ Begin plot-data copy from memory to disk. MFLUSH, INDBUF, N4, Tbeg, Tend =1003 $339998 \quad 1-1.00000 \mathrm{E}+00$ $1.00000 \mathrm{E}+19$
SPY: $170000 \quad .17102760 .547102760 .547102760 .547$-76.092673-.00102761
$170500 \quad .170590895 .737590895 .737590895 .7375-104.21152-.90896 \mathrm{E}-3$
171000 . $17175810.900875810 .900875810 .9008-128.63862-.75811 \mathrm{E}-3$
171500 . 171558040.425158040 .425158040 .4251 -148.50864 -.5804E-3
172000 . 17238213.838538213 .8385 38213.8385-163.11766-.38214E-3
172500 . $172517033.5075 \quad 17033.507517033 .5075-171.94816-.17034 \mathrm{E}-3$
173000 . 173 - $4750.2439-4750.2439-4750.2439-174.68731$. $475024 \mathrm{E}-4$
173500 . 1735 -26365.716-26365.716-26365.716-171.23807.263657E-3
174000 . 174 -47047.169-47047.169-47047.169-161.72264 .470472E-3
174500 . 1745 -66061.952-66061.952-66061.952-146.47811 .66062E-3
175000 . 175 -82736.458-82736.458-82736.458-126.04451 .827365E-3
175500 . 1755 -96479.984-96479.984-96479.984-101.14573 .9648E-3
176000 . 176 -106805.66-106805.66-106805.66-72.663804 .001068057
$176500 \quad .1765-113347.69-113347.69-113347.69-41.60773 .001133477$
$177000 \quad .177-115874.32-115874.32-115874.32-9.0776811 .001158743$
177500 . $1775-114296.05-114296.05-114296.05$ 23.7739493 . 00114296
178000 . 178 -108668.78-108668.78-108668.78 55.7833756 .001086688
178500 . 1785 -99191.866-99191.866-99191.866 85.8166481 .991919E-3
179000 . 179 -86201.031-86201.031-86201.031 112.809823 . $86201 \mathrm{E}-3$
179500 . 1795 -70156.482-70156.482 -70156.482 135.806654 .701565E-3
180000 . 18 -51626.604-51626.604-51626.604 153.992466 .516266E-3
180500 . 1805 - $31267.828-31267.828$-31267.828 $166.723018 .312678 \mathrm{E}-3$
181000 . 181 -9801.3737-9801.3737-9801.3737 173.547325 .980137E-4
181500 . 181512012.299212012 .299212012 .2992174 .223631 -. $12012 \mathrm{E}-3$
182000 . 18233400.430433400 .430433400 .4304168 .727977 -.334E-3
182500 . 182553605.334753605 .334753605 .3347157 .255052 -. $53605 \mathrm{E}-3$
183000 . $18371911.243371911 .243371911 .2433140 .211287-.71911 \mathrm{E}-3$
183500 . 183587669.660387669 .660387669 .6603118 .200468 -.8767E-3
184000 . 184100322.336100322 .336100322 .336 92.0023383-.00100322
184500 . 1845109421.043109421 .043109421 .04362 .5449799 -. 00109421
185000 . $185114643.454114643 .454114643 .45430 .8719344-.00114643$
185500 . 1855 115804.565 115804.565 $115804.565-1.8947647$. 00115805
186000 . $186 \quad 112863.24 \quad 112863.24 \quad 112863.24-34.594341$-. 00112863
186500 . $1865 \quad 105923.68 \quad 105923.68105923 .68$-66.068395-.00105924
187000 . $18795231.719995231 .719995231 .7199-95.201944$-.95232E-3
187500 . $187581166.128881166 .128881166 .1288-120.96292-.81166 \mathrm{E}-3$
188000 . $188 \quad 64225.187264225 .187264225 .1872$-142.43872 -. $64225 \mathrm{E}-3$
188500 . $188545009.036345009 .036345009 .0363-158.86855-.45009 \mathrm{E}-3$
189000 . 18924198.417924198 .417924198 .4179 -169.6704-24198E-3
189500 . $18952530.558392530 .558392530 .55839-174.46158-.25306 \mathrm{E}-4$
190000 . 19 -19226.947-19226.947-19226.947-173.07237 .192269E-3
190500 . 1905 - $40303.329-40303.329-40303.329-165.55199$. $403033 \mathrm{E}-3$
191000 . $191-59951.945-59951.945-59951.945-152.16685$.599519E-3
191500 . 1915 -77476.733-77476.733-77476.733-133.39112 .774767E-3
$192000 \quad .192$-92256.87 -92256.87 -92256.87-109.88994.922569E-3
192500 . $1925-103768.76-103768.76-103768.76-82.495858 .001037688$
193000 . 193 -111604.59-111604.59-111604.59-52.179319.001116046 193500 . 1935 -115486.77-115486.77-115486.77-20.014301 . 001154868 194000 . 194 -115277.78-115277.78-115277.78 12.8597327 .001152778 194500 . 1945 -110985.01-110985.01-110985.01 45.2782044 . 00110985 195000 . 195 -102760.55-102760.55-102760.55 76.0926732 .001027605 195500 . 1955 -90895.738-90895.738-90895.738 104.211521 .908957E-3 196000 . 196 -75810.901-75810.901-75810.901 128.638624 . $758109 \mathrm{E}-3$ 196500 . 1965 - 58040.425 - $58040.425-58040.425148 .508639$. $580404 \mathrm{E}-3$
197000 . 197 - 38213.838 -38213.838-38213.838 163.117662 . $382138 \mathrm{E}-3$
197500 . 1975 -17033.508-17033.508-17033.508 171.94816.170335E-3 198000 . 1984750.243914750 .243914750 .24391 174.687309-.47502E-4 198500 . 1985 26365.7156 26365.715626365 .7156 171.238073 -.26366E-3 199000 . 199 47047.1687 47047.1687 47047.1687 161.722643-.47047E-3 199500 . 199566061.952366061 .952366061 .9523146 .478108 -.66062E-3 $\% \% \% \% \% \%$ Final time step, PLTFIL dumps plot data to ".PL4" disk file. Done dumping plot points to C -like disk file.
$200000 \quad 0.282736 .458482736 .458482736 .4584126 .044512 \cdot .82736 \mathrm{E}-3$

APPENDIX E

ATP FILE FOR SCENARIO 3

[^0]

Another ordinary MODELS data card. Another ordinary MODELS data card Another ordinary MODELS data card. Another ordinary MODELS data card Another ordinary MODELS data card Another ordinary MODELS data card Another ordinary MODELS data card. Another ordinary MODELS data card Another ordinary MODELS data card.

AND trip_D>0
THEN
trip_D:=1 -- circuit breaker remain closed
ENDIF
IF V1>Vset - - Measured voltage more than the relay voltage setting
AND trip_A>0
THEN
trip_A:=0 -- relay send signal open circuit breaker
ENDIF
IF V2 $>$ Vset2 - - Measured voltage more than the relay voltage setting
AND trip_B>0
THEN
trip_B:=0 -- relay send signal open circuit breaker ENDIF

IF V3>Vset3 -- Measured voltage more than the relay voltage setting
AND trip_C>0
THEN
trip_C:=0 -- relay send signal open circuit breaker
ENDIF
IF V4>Vset4 -- lightning voltage more than the relay voltage setting AND trip_D>0
THEN
trip_D:=0 -- relay send signal open circuit breaker ENDIF

IF trip_A=0 - circuit breaker open
AND \gg tset - - fault cleared
THEN
trip_A:=1 -- relay send signal to reclose circuit breaker
ENDIF
IF trip $B=0 \quad-$ circuit breaker open
AND \gg tset -- fault cleared
THEN
trip_B:=1 -- relay send signal to reclose circuit breaker
ENDIF
IF trip $\mathrm{C}=0 \quad$-- circuit breaker open
AND \gg tset - - fault cleared
THEN
trip $\mathrm{C}:=1 \quad-$ relay send signal to reclose circuit breaker ENDIF

IF trip_D=0 -- circuit breaker open
AND $t>$ tset - fault cleared
THEN
trip_D:=1 -- relay send signal to reclose circuit breaker
ENDIF
ENDEXEC
ENDMODEL
USE relay_f AS relay_f
INPUT
V1:= 1X0001
V2:= IX0002
V3:= IX0003
V4:= IX0004
DATA
Vset:= 4.6E5
Vset2:= 1.6E5
Vset3:= 1.111E15
Vset4:= 1.111E16
tset:= 0.08
IOUTPUT
| A :=trip_A
| B :=trip_B

Another ordinary MODELS data card.
Another ordinary MODELS data card.
|C :=trip_C
Another ordinary MODELS data card. | D :=trip_D

Termination of data for Laurent Dube's MODELS. |ENDMODELS
Comment card. $\mathrm{NUMDCD}=140$.
IC
IC
Comment card. NUMDCD $=141$.

345678901234567890123456789012345678901234567890123456789012345678901234567890

Optional blank card follows last of MODELS data. |BLANK MODELS
Comment card. NUMDCD $=143$.
$\mid \mathrm{C}\langle\mathrm{n} 1><$ n $2><$ ref $1><$ ref 2$\rangle\langle\mathrm{R}\rangle\langle\mathrm{L}\rangle\langle\mathrm{C}\rangle$

1st of PI-ckt.	$1.000 \mathrm{E}+00$	$1.000 \mathrm{E}-02 \quad 1.000 \mathrm{E}-07 \mid 1 \mathrm{XX} 0174 \mathrm{XX} 0003$	1.10.
1			

1st of PI-ckt. $\quad 1.000 \mathrm{E}+00 \quad 1.000 \mathrm{E}-02 \quad 1.000 \mathrm{E}-07 \mid 1 \mathrm{XX} 0003 \mathrm{XX} 0116$
Series R-L-C. $\quad 2.000 \mathrm{E}+01 \quad 1.000 \mathrm{E}-06 \quad 0.000 \mathrm{E}+00 \mid \mathrm{XX} 0007 \mathrm{XX} 0008$ 1st of PI-ckt. $\quad 1.000 \mathrm{E}+00 \quad 1.000 \mathrm{E}-02 \quad 1.000 \mathrm{E}-07 \mid 1 \mathrm{XX} 0140 \mathrm{XX} 0011$ Series R-L-C. $\quad 1.000 \mathrm{E}+03 \quad 0.000 \mathrm{E}+00 \quad 0.000 \mathrm{E}+00$ | XX0003 Series R-L-C. $2.000 \mathrm{E}+01 \quad 1.000 \mathrm{E}-06 \quad 0.000 \mathrm{E}+00 \mid \mathrm{XX} 0014 \mathrm{XX} 0015$ Series R-L-C. $2.000 \mathrm{E}+01 \quad 1.000 \mathrm{E}-060.000 \mathrm{E}+00$ | XX0110 Series R-L-C. $\quad 2.000 \mathrm{E}+01 \quad 1.000 \mathrm{E}-060.000 \mathrm{E}+00 \mid \mathrm{XX} 0110 \mathrm{XX} 0021$ Series R-L-C. $\quad 2.000 \mathrm{E}+01 \quad 1.000 \mathrm{E}-06 \quad 0.000 \mathrm{E}+00$ | XX0110 1st of PI-ckt. $\quad 1.000 \mathrm{E}+00 \quad 1.000 \mathrm{E}-02 \quad 1.000 \mathrm{E}-07 \mid 1 \mathrm{XX} 0116 \mathrm{XX} 0027$ 1st of PI-ckt. $\quad 1.000 \mathrm{E}+00 \quad 1.000 \mathrm{E}-02 \quad 1.000 \mathrm{E}-07 \mid 1 \mathrm{XX} 0027 \mathrm{XX} 0164$ 1st of PI-ckt $\quad 1.000 \mathrm{E}+00 \quad 1.000 \mathrm{E}-02 \quad 1.000 \mathrm{E}-07 \mid 1 \mathrm{XX} 0030 \mathrm{XX} 0031$ $\begin{array}{llll}\text { Series R-L-C. } & 2.000 \mathrm{E}+01 & 1.000 \mathrm{E}-06 & 0.000 \mathrm{E}+00 \mid \quad \text { XX0007 }\end{array}$ Series R-L-C. $2.000 \mathrm{E}+01 \quad 1.000 \mathrm{E}-06 \quad 0.000 \mathrm{E}+00$ XX0007 Series R-L-C. $1.000 \mathrm{E}+030.000 \mathrm{E}+000.000 \mathrm{E}+00 \mid$ XX0011 Ist of PI-ckt. $\quad 1.000 \mathrm{E}+00 \quad 1.000 \mathrm{E}-02 \quad 1.000 \mathrm{E}-07 \mid 1 \mathrm{XX} 0134 \mathrm{XX} 0030$ Series R-L-C. $1.000 \mathrm{E}+03 \quad 0.000 \mathrm{E}+000.000 \mathrm{E}+00 \mid$ XX0027 Series R-L-C. $1.000 \mathrm{E}+03 \quad 0.000 \mathrm{E}+000.000 \mathrm{E}+00$ | XX0044 1st of PI-ckt. $\quad 1.000 \mathrm{E}+00 \quad 1.000 \mathrm{E}-02 \quad 1.000 \mathrm{E}-07 \mid 1 \mathrm{XX} 0044 \mathrm{XX} 0166$ 1st of PI-ckt. $\quad 1.000 \mathrm{E}+00 \quad 1.000 \mathrm{E}-02 \quad 1.000 \mathrm{E}-07 \mid \mathrm{I} \mathrm{XX} 0011 \mathrm{XX} 0156$ lst of PI-ckt. $\quad 1.000 \mathrm{E}+00 \quad 1.000 \mathrm{E}-02 \quad 1.000 \mathrm{E}-07 \mid 1 \mathrm{XX} 0156 \mathrm{XX} 0049$ 1st of PI-ckt. $\quad 1.000 \mathrm{E}+00 \quad 1.000 \mathrm{E}-02 \quad 1.000 \mathrm{E}-07 \mid 1 \mathrm{XX} 0049 \mathrm{XX} 0138$ 1st of PI-ckt. $\quad 1.000 \mathrm{E}+00 \quad 1.000 \mathrm{E}-02 \quad 1.000 \mathrm{E}-07 \mid 1 \mathrm{XX} 0138 \mathrm{XX} 0044$ Series R-L-C, $\quad 1.000 \mathrm{E}+03 \quad 0.000 \mathrm{E}+000.000 \mathrm{E}+00 \mid$ XX0030 Series R-L-C. $2.000 \mathrm{E}+01 \quad 1.000 \mathrm{E}-060.000 \mathrm{E}+00$ | XX0014 Series R-L-C. $2.000 \mathrm{E}+011.000 \mathrm{E}-060.000 \mathrm{E}+00$ XX0014 Series R-L-C. $1.000 \mathrm{E}+030.000 \mathrm{E}+000.000 \mathrm{E}+00$ | XX0049
$\begin{array}{lll}\text { 1. } & 10 . & 1 \\ \text { 1. } & 10 . & .1\end{array}$
20. 001

1. 10 . 1
1.E3
2. 001
3. . 001
4. 001
5. .001
6. $10 . .1$
7. 10. . 1
1. 10 . 1
2. . 001
3. . $001 \quad 0$

1E3 0

1. 10. . 1
1.E3

0
.E3 0
10. . 1
. 10. . 1
. 10. . 1
. 10. . 1

1. $10 . .1$
1.E3 0

20. 001	0
20.001	0

0
0

Blank card ending branches. IBR, NTOT $=2722$ |BLANK BRANCH

Comment card. NUMDCD $=173$.
Permanently-closed switch used for metering. C $<$ n $1><$ n $2><$ Tclose $><$ Top/Tde $><$ Ie 1 X0164AX0019A X0164BX0019B X0164CX0019C XX0024XX0106 XX0075XX0140
Switch. TACS control = "D " 13XX0021XX0075
Switch. TACS control = "A " $13 \times X 0106 \times X 0174$
Permanently-closed switch used for metering. | X0019AX0166A
Permanently-closed switch used for metering. | X0019BX0166B Permanently-closed switch used for metering. | X0019CX0166C Permanently-closed switch used for metering. | XX0075XX0134 Permanently-closed switch used for metering. | X0031AXX0024 Permanently-closed switch used for metering. | X0031BXX0024 Permanently-closed switch used for metering. | X0031CXX0024 Switch. TACS control = "B " |13XX0008XX0116 Switch. TACS control = "C " |13XX0015XX0138 Switch. $4.00 \mathrm{E}-028,00 \mathrm{E}-020.00 \mathrm{E}+000.00 \mathrm{E}+00 \mid \mathrm{XX} 0007 \mathrm{XX} 0008$ Blank card ending switches. $\mathrm{KSWTCH}=17$. BLANK SWITCH Comment card. NUMDCD $=192$. $|\mathrm{C}<\mathrm{n}|>\ll$ Ampl. $><$ Freq. $><$ Phase/TO>< Al $><\mathrm{T} 1><$ TSTART $><$ TSTOP $>$
Source. $5.00 \mathrm{E}+056.00 \mathrm{E}+010.00 \mathrm{E}+00-1.00 \mathrm{E}+00 \mid 14 \mathrm{XX} 00240 \quad$ 5.E5 $60 . \quad 1$.

Source. $5.00 \mathrm{E}+05 \quad 6.00 \mathrm{E}+010.00 \mathrm{E}+00-1.00 \mathrm{E}+00 \mid 14 \mathrm{XX} 01560 \quad 5 . \mathrm{E} 560 . \quad-1$.
Blank card ends electric sources. KCONST $=3$ |BLANK SOURCE
List of input elements that are connected to each node. Only the physical connections of multi-phase tines are shown (capacitive and inductive coupling are ignored). Repeated entries indicate parallel connections. Switches are included, although sources (including rotating machinery) are omitted - except that U.M, usage produces extra, internally-defined nodes "UMXXXX".

From bus name \mid Names of all adjacent busses.
XX0174 |XX0003* ${ }^{2} \times 0106^{*}$
XX0003 |TERRA *XX0174* ${ }^{*}$ XX0116*
XX0116 XX0003*XX0008*XX0027*
XX0007|TERRA *TERRA *XX0008*XX0008*
XX0008 |XX0116*XX0007*XX0007*
XX0140 |XX0011*XX0075*
XX0011 |TERRA *XX0140*XX0156*
XX0014 |TERRA *TERRA *XX0015*
XX0015 [XX0014* $\mathrm{XX} 0138^{*}$
XX0110 |TERRA *TERRA *XX0021*

```
XX0021 [XX0110*XX0075*
XX0027 \TERRA *XX0116*XX0164*
XX0164 \XX0027*
XX0030 TERRA *XX0031*XX0134*
XX0031 XX0030*
XX0134 \XX0030*XX0075*
XX0044 |TERRA *XX0166*XX0138*
XX0166 \XX0044*
XX0156 [XX0011*XX0049*
XX0049 |TERRA *XX0156*XX0138*
XX0138 |XX0015*XX0044*XX0049*
X0164A|X0019A*
X0019A |X0164A*X0166A*
X0164B |X0019B*
X0019B |X0164B*X0166B*
X0164C |X0019C*
X0019C X0164C*X0166C*
XX0024 \XX0106*X0031A*X0031B*X0031C*
XX0106 [XX0174*XX0024*
XX0075 \XX0140*XX0021*XX0134*
X0166A X0019A*
X0166B | X0019B*
X0166C | X0019C*
X0031A \XX0024*
X0031B [XX0024*
X0031C [XX0024*
TERRA [XX0003*XX0007*XX0007*XX0011*XX0014*XX0014*XX0110*XX0110*XX0027*XX0030*XX0044*XX0049*
```

Sinusoidal steady-state phasor solution, branch by branch. All flows are away from a bus, and the real part, magnitude, or "P"
is printed above the imaginary part, the angle, or " Q ". The first solution frequency $=6.00000000 \mathrm{E}+01 \mathrm{Hertz}$.
Bus K Phasor node voltage Phasor branch current Power flow Power loss
Bus Mectangular Polar Rectangular Polar Pand Q P and Q
$\mathrm{XX} 0174 \quad 500000 . \quad 500000.15631 .14462167416067 .448379222 \quad .39077861554 \mathrm{E} 10$. 129116542927 E 9
$0.0 \quad 0.0 \quad-3718.899734502 \quad-13.3827799 \quad .929724933625 \mathrm{E} 982288276.4968863$
$\begin{array}{lllllll}\mathrm{XX} 0003 & 470313.40310007 & 473541.66055676 & -15630.1041318 & 16070.67957831 & -.3778669612 \mathrm{E} 10\end{array}$
$-55199.70242032 \quad-6.6940607 \quad 3737.1897112548 \quad 166.5529241 \quad-.44743665713 \mathrm{E} 9$
$\begin{array}{lllllll}\mathrm{XX} 0003 & 470313.40310007 & 473541.66055676 & 15159.790728696 & 15600.522599036 & .36665487604 \mathrm{E} 10 & .121705060483 \mathrm{E} 9\end{array}$
$-55199.70242032 \quad-6.6940607 \quad-3681.990008834 \quad-13.6515846 \quad .447436657129 \mathrm{E} 954757630.7134733$
$\begin{array}{llllll}\mathrm{XX} 0116 & 441240.45653435 & 454421.90141834 & -15156.70212167 & 15601.586317031 & -.35448437 \mathrm{E} 10\end{array}$
$\begin{array}{llllll}-108655.9892781 & -13.8339098 & 3699.1723942871 & 166.2844199 & .732097358496 \mathrm{E} 7\end{array}$
$\begin{array}{llllllll}\mathrm{XX} 0007 & 147080.15217812 & 151473.96713945 & -14707.94694201 & 15147.396711254 & -.1147218136 \mathrm{E} 10 & .22944362713 \mathrm{E} 10\end{array}$
$\begin{array}{llllll}-36218.66309271 & -13,8339098 & 3622.1435475398 & 166.1650102 & -21624.55240199 & 43249.1048039\end{array}$
$\begin{array}{llllllll}\text { XX0008 } & 441240.45653435 & 454421.90141834 & 14707.946942014 & 15147.396711254 & .34416544069 \mathrm{E} 10\end{array}$
$-108655.9892781 \quad-13.8339098 \quad-3622.14354754 \quad-13.8349898 \quad 64873.657205902$
XX0140 $441240.45653435454421 .90141834 \quad-15156.7021216715601 .586317031 \quad-.35448437 \mathrm{E} 10$. 121705060483 E 9
$-108655.9892781 \quad-13.8339098 \quad 3699.1723942871 \quad 166.2844199 \quad .732097358496 \mathrm{E} 754757630.7134735$
XX0011 $470313.40310007473541 .66055676 \quad 15159.79072869615600 .522599036$. 36665487604 E 10
$\begin{array}{lllll}-55199.70242032 & -6.6940607 & -3681.990008834 & -13.6515846 & .447436657129 \mathrm{E} 9\end{array}$
$\begin{array}{llllllll}\text { TERRA } & 0.0 & 0.0 & -470.3134031001 & 473.54166055676 & 0.0 .112120852141 E 9\end{array}$
$\begin{array}{llllll}0.0 & 0.0 & 55.199702420318 & 173.3059393 & 0.0 & 0.0000000\end{array}$
$\begin{array}{lllll}\mathrm{XX} 0003 & 470313.40310007473541 .66055676 & 470.31340310007473 .54166055676 & .112120852141 \mathrm{E} 9\end{array}$
$-55199,70242032 \quad-6.6940607 \quad-55.19970242032 \quad-6.6940607 \quad-.5193214747 \mathrm{E}-9$
$\begin{array}{llllllll}\mathrm{XX} 0014 & 147080.15217812 & 151473.96713945 & -14707,94694201 & 15147.396711254 & -.1147218136 \mathrm{E} 10 & .22944362713 \mathrm{E} 10\end{array}$
$\begin{array}{llllllll}-36218.66309271 & -13.8339098 & 3622.1435475398 & 166.1650102 & -21624.55240199 & 43249.1048039\end{array}$
$\begin{array}{llllll}\mathrm{XX} 0015 & 441240.45653435 & 454421.90141834 & 14707.946942014 & 15147.396711254 & .34416544069 \mathrm{E} 10\end{array}$
$\begin{array}{llllll}-108655.9892781 & -13.8339098 & -3622.14354754 & -13.8349898 & 64873.657205902\end{array}$
$\begin{array}{llllllllll}\text { TERRA } & 0.0 & 0.0 & -7353.973471007 & 7573.6983556268 & 0.0 & .57360906782 \mathrm{E} 9\end{array}$
$\begin{array}{llllll}0.0 & 0.0 & 1811.0717737699 & 166.1650102 & 0.0 & 10812.2762010\end{array}$
$\begin{array}{llllllll}\mathrm{XX} 0110 & 147080.15217812 & 151473.96713945 & 7353.9734710072 & 7573.6983556268 & .57360906782 \mathrm{E} 9\end{array}$
$\begin{array}{llllll}-36218.66309271 & -13.8339098 & -1811.07177377 & -13.8349898 & 10812.276200976\end{array}$
$\begin{array}{lllllll}\mathrm{XX} 0110 & 147080.15217812 & 151473.96713945 & -14707,94694201 & 15147.396711254 & -.1147218136 \mathrm{E} 10 & .22944362713 \mathrm{E} 10\end{array}$
$\begin{array}{lllllll}-36218.66309271 & -13.8339098 & 3622.1435475398 & 166.1650102 & -21624.55240195 & 43249.1048039\end{array}$
$\begin{array}{lllllll}\text { XX0021 } & 441240.45653435 & 454421.90141834 & 14707.946942014 & 15147.396711254 & .34416544069 \mathrm{E} 10\end{array}$
$-108655.9892781 \quad-13.8339098 \quad-3622.14354754 \quad-13.8349898 \quad 64873.657205855$
$\begin{array}{lllll}\mathrm{XX} 0110 & 147080.15217812 & 151473.96713945 & 7353.9734710072 & 7573,6983556268\end{array}$. 57360906782 E 9 $\begin{array}{llllll}-36218.66309271 & -13.8339098 & -1811.07177377 & -13.8349898 & 10812.276200976\end{array}$

XX0116
$441240.45653435454421 .90141834 \quad 448.75517965811455 .3181903913$. 103189292945 E 9103415.57255826 $-108655.9892781 \quad-13.8339098 \quad-77.02884674733 \quad-9.7399053 \quad-.73858472422 \mathrm{E} 7-3499464.5130083$
$\begin{array}{llllll}\mathrm{XX} 0027 & 440472.00250596 & 454061.31907626 & -444.6288105824 & 454.38404987028 & -.10308587737 \mathrm{E} 9\end{array}$ $\begin{array}{lllll}-110254.6891958 & -14.0529765 & 93.648735050727 & 168.1060769 & .388638272916 \mathrm{E} 7\end{array}$
$\begin{array}{lllllllll}\mathrm{XX} 0027 & 440472.00250596 & 454061.31907626 & 4.1568080764324 & 17.118316694451 & 36.63219885161 & 36.632198883101\end{array}$ $-110254.6891958 \quad-14.0529765 \quad 16.605954145042 \quad 75.9464834 \quad-38863827292 \mathrm{E} 7$-3886382.7291512

XX0164 440501.22647429 454093.58740888 .9982878239E-13 .1991890605E-12 $.31490894607 \mathrm{E}-7$ $-110270.8284204 \quad-14.0540566 \quad-.172367329 \mathrm{E}-12 \quad-59.9221640 \quad .3245990859 \mathrm{E}-7$
$\begin{array}{llllllll}\mathrm{XX} 0030 & 440472.00250596 & 454061.31907626 & 4.1568080764324 & 17.118316694451 & 36.632198851351 & 36.632198883265\end{array}$ $-110254.6891958 \quad-14.0529765 \quad 16.605954145042 \quad 75.9464834 \quad-.38863827292 \mathrm{E} 7$ - 3886382.7291512

XX0031 440501.22647429454093 .58740888 . $102846117 \mathrm{E}-12.1969621613 \mathrm{E}-12 \quad .31913483329 \mathrm{E}-7$ $-110270.8284204 \quad-14.0540566 \quad-.167978478 \mathrm{E}-12 \quad-58.5226271 \quad .31326899604 \mathrm{E}-7$
$\begin{array}{lllllllll}\text { TERRA } & 0.0 & 0.0 & -7353.973471007 & 7573.6983556268 & 0.0 & .57360906782 \mathrm{E} 9\end{array}$
$\begin{array}{llllll}0.0 & 0.0 & 1811.0717737699 & 166.1650102 & 0.0 & 10812.2762010\end{array}$
$\begin{array}{lllllll}\mathrm{XX} 0007 & 147080.15217812 & 151473.96713945 & 7353.9734710072 & 7573.6983556268 & .57360906782 \mathrm{E} 9\end{array}$ $-36218.66309271 \quad-13.8339098 \quad-1811.07177377$-13.8349898 10812.276200993
$\begin{array}{lllllllll}\text { TERRA } & 0.0 & 0.0 & -7353.973471007 & 7573.6983556268 & 0.0 & .57360906782 E 9\end{array}$ $\begin{array}{lllllll}0.0 & 0.0 & 1811.0717737699 & 166.1650102 & 0.0 & 10812.2762010\end{array}$
$\begin{array}{llllll}\mathrm{XX} 0007 & 147080.15217812 & 151473.96713945 & 7353.9734710072 & 7573.6983556268 & .57360906782 \mathrm{E} 9\end{array}$ $\begin{array}{llllll}-36218.66309271 & -13.8339098 & -1811.07177377 & -13.8349898 & 10812.276200993\end{array}$
$\begin{array}{llllllll}\text { TERRA } & 0.0 & 0.0 & -470.3134031001 & 473.54166055676 & 0.0 & .112120852141 E 9\end{array}$
$\begin{array}{llllll}0.0 & 0.0 & 55.199702420318 & 173.3059393 & 0.0 & 0.0000000\end{array}$
$\begin{array}{llllll}\mathrm{XX} 0011 & 470313.40310007 & 473541.66055676 & 470.31340310007 & 473.54166055676 & .112120852141 \mathrm{E} 9\end{array}$ $-55199.70242032 \quad-6.6940607 \quad-55.19970242032 \quad-6.6940607 \quad-.8858478395 \mathrm{E}-9$

XX0134
$441240.45653435454421 .90141834 \quad 448.75517965811455 .3181903913$. 103189292945 E9 103415.57255826 $\begin{array}{llllllll}-108655.9892781 & -13.8339098 & -77.02884674733 & -9.7399053 & -.73858472422 \mathrm{E} 7-3499464.5130083\end{array}$
$\begin{array}{lllllll}\mathrm{XX} 0030 & 440472.00250596 & 454061.31907626 & -444.6288105824 & 454.38404987028 & -.10308587737 \mathrm{E} 9\end{array}$ $\begin{array}{lllll}-110254.6891958 & -14.0529765 & 93.648735050727 & 168.1060769 & .388638272916 \mathrm{E} 7\end{array}$

| TERRA | 0.0 | 0.0 | $\mathbf{- 4 4 0 . 4 7 2 0 0 2 5 0 6}$ | 454.06131907626 | 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllll}0.0 & 0.0 & 110.25468919581 & 165.9470235 & 0.0 & 0.0000000\end{array}$

$\begin{array}{lllllll}\mathrm{XX} 0027 & 440472.00250596 & 454061.31907626 & 440.47200250596 & 454.06131907626 & .103085840741 \mathrm{E} 9\end{array}$ -110254.6891958 -14.0529765 $\quad-110.2546891958 \quad-14.0529765 \quad .29831426218 \mathrm{E}-9$

| TERRA | | 0.0 | 0.0 | -440.472002506 | 454.06131907626 | | $0.0 .103085840741 E 9$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0.0 | 0.0 | 110.25468919581 | 165.9470235 | 0.0 | 0.0000000 | |

XX0044 $440472.00250596454061 .31907626 \quad 440.47200250596454 .06131907626 \quad .103085840741 \mathrm{E} 9$ $\begin{array}{lllll}-110254.6891958 & -14.0529765 & -110.2546891958 & -14.0529765 & .29831426218 \mathrm{E}-9\end{array}$
$\begin{array}{llllllll}\text { XX0044 } & 440472.00250596 & 454061.31907626 & 4.1568080764324 & 17.118316694451 & 36.63219885161 & 36.632198883101\end{array}$ $-110254.6891958 \quad-14.0529765 \quad 16.605954145042 \quad 75.9464834 \quad-.38863827292 \mathrm{E} 7$-3886382.7291512

XX0166 $440501.22647429454093 .58740888 \quad .9982878239 \mathrm{E}-13.1991890605 \mathrm{E}-12 \quad .31490894607 \mathrm{E}-7$ $-110270.8284204 \quad-14.0540566 \quad . .172367329 \mathrm{E}-12 \quad-59.9221640 \quad .3245990859 \mathrm{E}-7$
$\begin{array}{lllllll}\mathrm{XX} 0011 & 470313.40310007 & 473541.66055676 & -15630.1041318 & 16070.67957831 & -.3778669612 \mathrm{E} 10 & .129116542927 \mathrm{E} 9\end{array}$ $-55199.70242032 \quad-6.6940607 \quad 3737.1897112547 \quad 166.5529241 \quad-.44743665713 \mathrm{E} 982288276.4968865$
$\mathrm{XX0156} \quad 500000,500000$. 15631.14462167416067 .448379222 . 39077861554 E 10 $\begin{array}{lllll}0.0 & 0.0 & -3718.899734502 & -13.3827799 & .929724933625 \mathrm{E} 9\end{array}$

XX0156 500000. 500000 . 15631.14462167416067 .448379222 . 39077861554 E 10 . 129116542927 E 9 $\begin{array}{lllll}0.0 & 0.0 & -3718.899734502 & -13.3827799 & .929724933625 E 9 \\ 82288276.4968863\end{array}$
$\begin{array}{lllllll}\text { XX0049 } & 470313.40310007 & 473541.66055676 & -15630.1041318 & 16070.67957831 & -.3778669612 \mathrm{E} 10\end{array}$ $-55199.70242032 \quad-6.6940607 \quad 3737.1897112548 \quad 166.5529241 \quad-.44743665713 \mathrm{E} 9$

XX0049 $470313.40310007473541 .66055676 \quad 15159.79072869615600 .522599036 \quad .36665487604 \mathrm{E} 10$. 121705060483 E 9
$\begin{array}{lllllll}\mathrm{XX} 0138 & 441240.45653435 & 454421.90141834 & -15156.70212167 & 15601.586317031 & -.35448437 \mathrm{E} 10\end{array}$ $\begin{array}{llllll}-108655.9892781 & -13.8339098 & 3699.1723942871 & 166.2844199 & .732097358496 \mathrm{E} 7\end{array}$

Solution at nodes with known voltage. Nodes that are shorted together by switches are shown as a group of names, with the printed result applying to the composite group. The entry "MVA" is $\operatorname{SQRT}\left(\mathrm{P}^{* * 2}+\mathrm{Q}^{* *} 2\right)$ in units of power, while "P.F." is the associated power factor.

Card of names for time-step loop output.
XX0014XX0156XX0027XX0027XX0027XX0031XX0030XX0075XX0044XX0138XX0116X0019AXX0024

Done dumping plot points to C -like disk file
$200 \quad 0.1147031 .082 \quad 500000.504091 .685504091 .685504091 .685440352 .462440323 .073441093 .224440323 .095$ 441093.246
$423716.305500000 .500000 .141287 .441141287 .441147031 .075 \quad-.00515015 .7393-15151.696 \quad .005$
$448.652837-.005$
Extrema of output variables follow. Order and column positioning are the same as for the preceding time-step loop output.
Variable maxima : 151442.859 500000. .1901582E7 .1901582E7.1901582E7454013.767453981.268454328.561 453981.283
454328.576
.2011455E7 500000. 500000. 206529.472 206529.472151442 .854 . 00521123.459815598 .0573 . 005
$455.222787 \quad .005$

Times of maxima :	.084	0.0	.0495	.0495	.0495	.034	.084	.084	.084	.084

.0495	0.0	0.0	.049	.049	.084	.025	.049	.009	.05

$.5 \mathrm{E}-3 \quad .025$
Variable minima: -151442.86 -500000. -604231.18-604231.18-604231.18-454013.77-453981.27-454328.56-453981.28454328.58

| -467443.78 | -500000 | -500000. | -341270.52 | -341270.52 | -151442.85 | -.005 | -34809.863 | -15598.057 | -.005 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -455.17799 | -.005 | | | | | | | | | | |
| Times of minima: | .009 | .025 | .0925 | .0925 | .0925 | .059 | .059 | .009 | .059 | .009 | |
| .092 | .025 | .025 | .0435 | .0435 | .009 | .05 | .0435 | .084 | .025 | | |
| .0255 | .05 | | | | | | | | | | |

Blank card terminating all plot cards. |BLANK PLOT
Memory storage figures for the preceding, now-completed data case. --- ------------------------- Present Program
A value of "-9999" indicates that no figure is available. 07-May-07 18:52:37 figure limit (name)
Size List 1. Number of electric network nodes.
376000 (LBUS)
Size List 2. Number of electric network branches.
2710000 (LBRNCH)
Size List 3. Number of data values in R, L, C tables.
27192000 (LDATA)
Size List 4. Number of electric network sources. $\quad 3900$ (LEXCT)
Size List 5. Storage for [Y] and triangularized [Y]. No. times $=6 \quad$ Factors $=44108420000$ (LYMAT)
$\begin{array}{lllll}\text { Size List 6. Number of entries in switch table. } & \text { No. flops }=22 & 17 & 1200 \text { (LSWTCH) }\end{array}$
Size List 7. Number of distinct ALPHANUMERIC data names plus program SPY variables. 1115000 (LSIZE7)
Size List 8. History points of distributed lines.
0120000 (LPAST)
Size List 9. Number of nonlinear elements.
$0 \quad 2250$ (LNONL)
Size List 10. Points of nonlinear characteristics.
Size List 11. Number of Type-59 S.M. outputs.
03800 (LCHAR)
Size List 12. Total number of EMTP output variables.
$0 \quad 720$ (LSMOUT)
Size List 13. Working space for batch/SPY plotting.
221200 (LSIZ12)

Size List 14. S.M./U.M. connections to TACS.
-9999 72800 (LSIZ13)
Size List 15. Character storage in bytes for MODELS.
-9999 510 (LBSTAC)
Size List 16. Total number of Type-59 S.M. masses.
Size List 17. Number of Type-59 Synchronous machines.
258390000 (LCTACS)
0800 (LIMASS)
090 (LSYN)
Size List 18. Branch and switch power/energy outputs.
0254 (MAXPE)
Size List 19. Total floating-point TACS table space.
23120000 (LTACST)
Size List 20. Non-copied recursive convolution data.
$0 \quad 100000$ (LFSEM)
Size List 21. Total modal/phase [T] matrix storage.
03000 (LFD)
Size List 22. Total recursive convolution history.
$0 \quad 15000$ (LHIST)
66192000 (LSIZ23)
Size List 23. Giant vectors for renumbering, phasors
Size List 24. Peak phases of compensation for data.
0120 (LCOMP)
Size List 25. Total table space for all U.M usage.
-999930000 (LSPCUM)

Size List 26. Square of max number of coupled phases.
Size List 28. MODELS. Total work space is divided into
INTEGER and REAL.
1st, REAL:

Second and last, statistics for INTEGER work space. 55940 (LITACS)
Size List 29. RAM disk used by "TAPSAV" table saving (limit is "LABCOM" size LTLABL). -9999300 (LSIZ29) Size List 30. Taku Noda frequency-dependent circuits.
Timing figures characterizing central processor (CP) solution speed.
Data input time (through blank card ending branches)
Node renumbering and phasor solution
After phasor solution, but before time-step loop ...
Integration of equations (time-step loop)
Plotting or STATISTICS termination overlays
$0 \quad 19$ (LSIZ30)
CP sec Wait sec Real sec
$0.016 \quad 0.000 \quad 0.016$
$\begin{array}{lll}0.000 & 0.000 & 0.000\end{array}$
$0.000 \quad 0.000 \quad 0.000$
$\begin{array}{lll}0.016 & 0.000 \quad 0.016\end{array}$
$\begin{array}{lll}0.000 & 0.000 & 0.000\end{array}$
$\begin{array}{llll}\text { Totals } & 0.031 & 0.000 & 0.031\end{array}$

[^0]: Alternative Transients Program (ATP), GNU Linux or DOS. All rights reserved by Can/Am user group of Portland, Oregon, USA. Date (dd-mth-yy) and time of day (hh.mm.ss) $=07-$ May-07 18:52:36 Name of disk plot file is projecttemplate.pl4 Consult the 860-page ATP Rule Book of the Can/Am EMTP User Group in Portland, Oregon, USA. Source code date is 19 December 2003.
 Total size of LABCOM tables $=9872109$ INTEGER words. 31 VARDIM List Sizes follow: 6002 10K 192K 900420 K 1200 15K
 $120 \mathrm{~K} 2250380072012007280051090 \mathrm{~K} 80090254120 \mathrm{~K} 100 \mathrm{~K} 3 \mathrm{~K} \quad 15 \mathrm{~K} \quad 192 \mathrm{~K} 12030 \mathrm{~K} 160 \mathrm{~K} 600210 \mathrm{~K} 300 \quad 19$ 200

