A STUDY OF PROTECTION SYSTEM TO IMPROVE POWER SYSTEM RELIABLITY USING ATP (ALTERNATIVE TRANSIENT PROGRAM)

By

WOO KEAN HING

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme in Partial Fulfillment of the Requirements for the Degree Bachelor of Engineering (Hons) (Electrical & Electronics Engineering)

> Universiti Teknologi Petronas Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

> > © Copyright 2007 by Woo Kean Hing, 2007

> > > i

CERTIFICATION OF APPROVAL

A STUDY OF PROTECTION SYSTEM TO IMPROVE POWER SYSTEM RELIABLITY USING ATP (ALTERNATIVE TRANSIENT PROGRAM)

by

Woo Kean Hing

A project dissertation submitted to the Electrical & Electronics Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the Bachelor of Engineering (Hons) (Electrical & Electronics Engineering)

Approved:

Ir. Perumal Nallagownden Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK

June 2007

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

Woo Kean Hing

ABSTRACT

Electric power systems are one of the largest and more complex systems man has ever built. Faults represent a threat to the operation and security of power systems if the faults are not promptly corrected. Therefore protection of the power system is very important. Protective relays are electronic or electromechanical devices that are designed to protect equipment and limit injury caused by electrical failures. Protective relays cannot prevent faults; they can only limit the damage caused by faults. This thesis investigates the importance of power systems protection and also introduces the widely used power system software, ATP (Alternative Transient Program). Using this software, power system are modeled and disturbance scenarios such as lightning overvoltages and short circuit are generated. The simulation of this scenarios provides the graphical charateristics of the power system through the use of PLOTXY function. Another major work in this project is the modeling of relays that were embedded in the system to enable clossed loop simulation whereby the relay will provide a 'feedback' to the system. The 'feedback' is a trip signal which will be sent to the circuit breaker to open or reclose. The algorithm of the relay are designed by writing specific code using the MODELS language. The relays succesfully fuctioned according to the algorithm when simulated under different disturbance scenarios and the results obtained were same as the predicted output.

ACKNOWLEDGEMENTS

The author expresses his gratitude and appreciation for Ir. Perumal Nallagownden for his supervision of this work. His advice and assistance in the preparation of this thesis are thankfully acknowledged.

TABLE OF CONTENTS

LIST OF FIGU	JRESviii	
LIST OF ABE	REVIATIONSix	
CHAPTER 1	INTRODUCTION1	
	1.1 Background Study1	
	1.2 Problem Statement	
	1.3 Objectives of the Project2	
	1.4 Scope2	
CHAPTER 2	LITERATURE REVIEW/THEORY4	
	2.1 Importance of Power Systems Protection4	
	2.1.1 Goals of Protection4	
	2.2 Modeling of Power System Protection	
	2.3 Introduction to Protective Relays	
	2.4 Investigation Topics on Protective Relaying	
CHAPTER 3	METHODOLOGY/PROJECT WORK10	
	3.1 Introduction10	
	3.2 Tool required in the Methodology10	
	3.3 Models Description13	
	3.4 Models Object Composition14	
	3.5 Type of relay used and its algorithm15	
CHAPTER 4	RESULTS & DISCUSSION16	
	4.1 Scenario 1 : Lightning Overvoltage16	
	4.1.1 Result for Scenario 1 simulation17	
	4.2 Scenario 2 : Short Circuit Fault19	
	4.2.1 Result for Scenario 2 simulation20	
	4.3 Scenario 3 : Relay controlling multiple circuit breakers22	
	4.3.1 Result for Scenario 3 simulation23	
CONCLUSION		
REFERENCES		
APPENDICES		

APPENDIX A	RELAY ALGORITHM FOR SCENARIO 1&2	29
APPENDIX B	RELAY ALGORITHM FOR SCENARIO 3	30
APPENDIX C	ATP FILE FOR SCENARIO 1	34
APPENDIX D	ATP FILE FOR SCENARIO 2	37
APPENDIX E	ATP FILE FOR SCENARIO 3	42

LIST OF FIGURES

Figure 3.1	Closed loop Simulation	.11
Figure 3.2	Project Methodology	.12
Figure 3.3	Descriptive file MODELS standard	.13
Figure 3.4	Windows edition of the support file MODELS	14
Figure 4.1	Power network with lightning overvoltage fault	.16
Figure 4.2	Voltage transient measured at node B	.17
Figure 4.3	Voltage measured at node XX0002	.18
Figure 4.4	Short circuit test	19
Figure 4.5	Current measured form node XX0020 to XX0002	20
Figure 4.6	Voltage measured at node XX0002	20
Figure 4.7	A 9 bus system power network	22
Figure 4.8	Voltage charateristics at node XX0007	.23
Figure 4.9	Voltage measured at XX0116	24
Figure 4.10	Voltage measured at XX0014	24
Figure 4.11	Voltage measured at XX0110	25

LIST OF ABBREVIATIONS

ATP	Alternative Transient Program
EMTP	The Electromagnetic Transient Program
IEEE	The Institute of Electrical and Electronics Engineers
TACS	Transient Analysis of control Systems

CHAPTER 1 INTRODUCTION

1.1 Background Study

Modern civilization makes use of large amounts of energy to generate goods and services. From the industrial plants, the providers of public services to the ordinary man, all of them need energy to satisfy and create the well being of modern society. The purpose of electric power systems is to provide energy for human use in a secure. reliable and economic manner. Electric power systems are made up of facilities and equipment that generate, transmit and distribute electrical energy. Electric power systems are one of the largest and more complex systems man has ever built. The importance of the services that power systems offer and the high amount of investments that represent the facilities and equipments, make the normal and constant operation of power systems critical and strategic for every society. Faults and failures normally occur in power systems. Due to the great amounts of energy involved, faults represent a threat to the operation and security of power systems if the faults are not promptly corrected. Power systems need an auxiliary system that must take corrective actions on the occurrence of a fault. This auxiliary system is known as protection system. Protection systems must provide different schemes and equipments to detect and to react to each and every one of

these fault scenarios, from the most simple of them to the most complex and compelling.

Protective relays are electronic or electromechanical devices that are designed to protect equipment and limit injury caused by electrical failures. Relays are only one part of power system protection, because

protection must be designed into all aspects of power system facilities. Protective relays cannot prevent faults; they can only limit the damage caused by faults. A fault is any condition that causes abnormal operation for the power system or equipment serving the power system. Faults include but are not limited to: short- or low-impedance

circuits, open circuits, power swings, overvoltages, elevated temperature, off-nominal frequency operation, and failure to operate.

1.2 Problem Statement

A comprehensive evaluation of a protection system can be carried out using sophisticated test equipments such as digital simulators [1],[2]. Although relays testing using digital simulators is the most attractive method to test individual relays, however extended length of time are required to carry out the test and it is expensive as it involves costly amplifiers and interfacing equipments. Computer simulation of power system and protective relays on the other hand provides a good alternative to relay performance evaluation. Protection system simulation can be used a valuable preliminary step for overall relay design performance testing. This approach allows complex, coordinated relaying systems simulations and its also cost effective to test the algorithm of the relays on the modeled power network. If the initial algorithm of the relay does not perform accurately under certain fault condition, the algorithm can be redesigned and retested again until its suitable to be implemented on the real power system. One software which can be used for this purpose is the widely used power system software ATP which is suitable for power network modeling and also the modeling of relays using the MODELS function.

1.3 Objectives of the research

In this project, three(3) objectives are to be achieved which are:

- i) To study the importance of power systems protection
- To do modelling of power network and relays using ATP (Alternative Transient Program)
- To do simulation to study the charateristics of the power system under diferrent disturbance scenarios.

1.4 Scope

This project involves research for information about the importance of power systems protection and also the important function of the main component of protection, which is

the relay. The information and knowledge gained from this study helps in the accurate modelling of power system network using ATP (Alternative Transient Program). Understanding the basic operation of relays also helped in the designing of accurate relay algorithm that operate accordingly to certain fault and provide a feedback to the system. The other major work involved after familiarization of the ATP software during FYP 1 are to model power system network and generate disturbance scenarios such as lightning overvoltages and short circuit fault. This works involved heavy research from Internet and also understanding of the ATP User's Manual. The generated disturbance scenarios were important for simulation studies to observe the behavior of the power systems in response to the faults.

Another important work involved after that is the modeling of relays. In order to study protective relaying system performance accurately, a closed loop simulation of the system is highly desirable, therefore it is important to embed relays in the system which will provide trip signal to the circuit breaker to open or reclose. Modeling of relays needs the users to understand the MODELS language, where the algorithm of the relay is written in MODELS codes.

CHAPTER 2

LITERATURE REVIEW/THEORY

2.1 IMPORTANCE OF POWER SYSTEMS PROTECTION

2.1.1 GOALS OF PROTECTION

Maintain the Ability to Deliver Electric Power

Power systems that have evolved in the 20th century consist of generation plants, transmission facilities, distribution lines, and customer loads, all connected through complex electrical networks. In the United States, electrical energy is generated and distributed by a combination of private and public utilities that operate in interconnected grids, commonly called power pools, for reliability and marketing. Elsewhere in the world, generation is tied to load through national or privatized grids. Either way, power flows according to electrical network theory.

Interconnection improves the reliability of each pool member utility because loss of generation is usually quickly made up from other utilities. However, interconnection also increases the complexity of power networks. Power pool reliability is a function of the reliability of the transmission in the individual members. Protection security and dependability is significant in determining the reliability of electrical service for both individual utilities and the interconnected power system pool.

Public Safety

Relays are designed to deenergize faulted sections as quickly as possible, based on the premise that the longer the power system operates in a faulted condition, the greater the chance that people will be harmed or equipment damaged. In some cases power system stability and government regulatory commissions set the speed requirements of extra high voltage (EHV) systems. Because of cost constraints, relays are not designed to prevent the deaths of people or animals who make direct contact with high voltage lines. Instead,

designers use physical separation and insulation to prevent direct contact. Still, the faster a faulted system element can be detected, isolated, and deenergized, the lower the probability that anyone will encounter hazardous voltages.

Equipment Protection

The primary function of power system protection is to limit damage to power system apparatus. Whether the fault or abnormal condition exposes the equipment to excessive voltages or excessive currents, shorter fault times will limit the amount of stress or damage that occurs. The challenge for protective relays is to extract information from the voltage and current instrumentation that indicates that equipment is operating incorrectly. Although different faults require different fault detection algorithms, the instrumentation remains the same, namely voltages and currents.

Power System Integrity

Properly operating relay systems isolate only the portions on the network directly involved with the fault. If relays operate too quickly or fail to operate, the fault-affected area expands and some circuits are deenergized. Parts of the power system can become isolated from the rest of the network. A large mismatch between generation and load can put an islanded network in jeopardy of losing the generation control that holds frequency and voltage within acceptable limits. Without generation control, the isolated systems will eventually be tripped off by other relays. Widespread outages caused by cascading voltage or frequency excursions require many work hours to restore power, which is costly from both a labor and a lost revenue perspective.

Power Quality

The factors measured to determine the quality of power are voltage amplitude, frequency, and waveform purity. Voltage amplitude quality takes into account persistent RMS value, flicker, and intermittent dips and peaks, as well as momentary and long-term outages. Frequency changes at most a few hundredths of a hertz, unless the power system has lost generation control. Induction motors have the most sensitivity to power system

frequency. Waveform purity is largely a function of harmonic content and is predominantly influenced by load.

The quality of electrical power is an issue for loads that are sensitive to momentary outages and harmonics. In the past, when loads were primarily resistive and inductive, harmonics were either inconsequential or nonexistent. Also, momentary outages had little effect on residential customers. Commercial and industrial customers compensated for momentary outages either with multiple feeds from the utility power sources or with local generation.

Today, every residential customer knows that there was an outage whether she or he was home to experience it. Outages affect home computers and the digital clocks on VCRs, microwave ovens, and other numerous appliances. Although the inconvenience may seem trivial to the relay engineer and perhaps the actual number of outages is even less than in years past, the customer may perceive that the power system is not as reliable today. Good relay selectivity is key to reducing the number of outages and faster relaying minimizes the duration of power dips.

2.2 Modelling of power systems protection

Relay models have been used for a long time by manufacturers, consultants and academics for designing new prototypes and algorithms, to check and optimize the performance of relays already installed in power systems and to train new protection personnel.

Relay manufacturers were the first to develop relay models for evaluating the performance of their designs. Those models implemented the processes by substituting the values of inputs in equations representing the relays to check if the outcomes were acceptable. The characteristics of overcurrent relays were the first to be modeled. Mathematical models [3], [4] were developed in the form of algebraic equations for representing time-current characteristics of overcurrent relays. The first transient model of a distance relay was presented in [5], where the ninth-order state space mathematical model of a mho element was developed.

Electromagnetic transient programs are computer software developments that simulate transients of multiphase networks, and their use has been popular and generally approved. When working with computer models of relay, electromagnetic transient programs are powerful tools for protection investigations and studies.

The Electromagnetic Transient Program (EMTP) was the first software that simulates the transient nature of power systems [6]. EMTP, which is based on the algorithm proposed by Hermann W. Dommel [7], was presented to the public domain by the Bonneville Power Administration (BPA) in the late 1960's.

To rationalize the development of the program, the EMTP Development Coordination Group (DCG) was founded in 1982. Original members of the DCG included BPA, the US Bureau of Reclamation, Western Area Power Administration (WAPA), the Canadian Electrical Association, Ontario Hydro and Hydro-Quebec. The DCG and the Electric Power Research Institute (EPRI) started the initiative of commercial sale of the EMTP in 1984. The first version of the DCG EMTP was released in 1987.

The Alternative Transient Program (ATP) is the free version of EMTP, and today it is widely used for power system simulation [8]. Complex networks and control systems can be simulated with ATP. ATP has extensive modeling capabilities and additional features such as the Transient Analysis of Control Systems (TACS) and MODELS, which enable modeling of control systems and components with non-linear characteristics, respectively. However, while having strong features for programming in simulation tasks, MODELS has limited memory allocation size for data arrays. M. Kezunovic and Q. Chen presented in 1997 a work where the power system transients are simulated using ATP and the protective relay is modeled in MATLAB [9]. The interaction between both systems was implemented in a closed-loop employing an "interaction buffer" for communication. The approach also permitted the simulation of the relay model in other high level languages while maintaining the link. Minor modifications to the ATP program were included to establish the interaction between the power system the power system the power system the power system the program were included to establish the interaction between the power system modeled in ATP and the external relay model.

2.3 Introduction to protective relays

One of the most important equipments employed in the protection of power systems are protective relays. These are one of the most flexible, economic and well-known devices that provide reliable, fast and inexpensive protection.

Relay is defined by the IEEE as "an electric device that is designed to interpret input conditions in a prescribed manner, and; after specified conditions are met, to respond to cause contact operation or similar abrupt changes in associated electric control circuits [10]". Relays acquire signals from the power system (electrical, magnetic, heat, pressure, etc.) and process them with a designed process or algorithm. IEEE defines a protective relay as "a relay whose function is to detect defective lines or apparatus or other power conditions of an abnormal or dangerous nature and to initiate appropriate control circuit action [10]".

Protective relays have provided protection since the beginning of the electric industry, and have encountered great transformations with time as power systems have grown in size and complexity. Early protective relays were constructed using solenoids and electromagnetic actuators. Those relays were bulky and heavy devices that needed lot of space to be mounted. Because of their development and use over several decades, electromechanical relays evolved to become standard accepted devices. Even modern relays use most of the principles of operation of electromechanical relays. Solid-state relays replaced electromechanical actuators by analog electronic elements. Even when the protection systems based on electromechanical relays had proved to be reliable, solid-state relays gained confidence of protection engineers because of their advantages of lower costs, reduced space and weight, and ease to set, maintain and operate.

The developments in digital technology led to the incorporation of microprocessors in the construction of relays. Digital and numerical relays are sophisticated, multiplepurpose equipment with the capacity to record signals during faults, monitor themselves and communicate with their peers. Numerical relays employ microprocessors especially constructed to process digital signals, which make them faster and more powerful, while preserving their economic advantages.

2.4 Investigation topics on protective relaying

The developments in relaying technology have not solved definitively all the protection issues, and, therefore, substantial investigations and research on protection and protective relaying continues [11]. The following are the most relevant topics currently being investigated in the field of protective relaying.

• Setting and adjustment of relays and interrelation of protective relays with different component of the power system, especially control elements

• Behavior of relays during different operating states of power systems (steadystate, faulted system, etc.)

· Designing of new relay algorithms, relay functions and protection schemes

· Engineering of new relay products

• Education and training of protection personal

Most of the times, it is impossible to investigate the mentioned topics on real systems due to operation, security and economical restrictions. Several approaches and resources have been developed to overcome these difficulties. These include Real Time Digital Simulators (RTDS), Real Time Playback Simulators (RTPS) and software packages for modeling protective relays.

Computer models of protective relays offer an economical and feasible alternative to investigate the performance of relays and protection systems. Computer models of relays permit investigators to observe in a very detailed way the performance of processes in each internal module of the relay.

Designing new relaying algorithms or new relaying equipment is also improved with relay modeling because relay designs are refined before prototypes are built and tested. For specific problems and conflicting scenarios, use of models open the possibility of creating new solutions when known approaches do not work satisfactorily.

CHAPTER 3

METHODOLOGY/PROJECT WORK

3.1 Introduction

The importance of power systems protection and the functions and operations of the relaying system had been addressed in the earlier chapter. The methodoly of this project will be divided into two major steps which are the modelling of the power network and also the modelling of relays. The modeled power network are faulted to generate disturbance scenarios and simulated to observe the system behavior. Relays modeled are embedded in the system to provide neccessary action during the fault i.e sending trip signal to circuit breaker.

The modelling of relays are important in this project as it can provide a closed loop simulation or a 'feedback' to the system when the system detected a fault. Figure 3.1 shows the structure of closed loop simulation. The normal open loop simulation on the other hand will only provide the graphical transient behavior of the system. Fault such as lightning and short circuit will also be generated as analysis for disturbance scenarios and algorithm designed for the relays will act accordingly in response to the fault. Figure 3.2 shows the detail methodology of this project.

3.2 Tool required in the methodology

ATP (Alternative Transient Program) is used as the software to do the modelling of power system while the designing of relay algorithm is done by writing codes using the MODELS language.

MODELS language is a description language for general usage, associated to the interface ATPDraw, based on a group of simulation tools for representation and study of

variant systems in the time. The language MODELS (similar to PASCAL) is focused on the description of the structure of a model and in the function of their elements.

The MODELS language contain many simple and power commands that allow several different constructions of routines. Its functionality can be more explored to develop others applications.

Figure 3.1: Closed loop simulation

Figure 3.2 : Project Methodology

🛛 Model Ed	itor:	default.mod	
File Edit C	hara		
MODEL DEI	FAU:	I	(大)(書
INPUT	- 1	Name of input variables. Variable names separated by ',' or CR	
OUTPUT		Name of output variables	
DATA	<u> </u>	Name of data variables	11/2/200
VAR		Name of local+output variables	10
HISTORY		Default values of variables and expressions {DFLT:n}	
INIT		Initialization	
ENDINIT			
EXEC		Execution	
ENDEXEC			
ENDMODEL			North State
		and the second	一般ない思い
1:1	4		

Figure 3.3: Descriptive file MODELS standard

3.3 MODELS Description

Figure 3.3 shows the default text file which is used write the MODELS code to design the algorithm of the relay. A model writen in the MODELS language includes declarations and operations procedures.

declarations:

DATA declaration specify the name, array name and optional default value of the data parameters of the model (the externally assigned constant value holding of the element)
VAR declaration specify the name and the array range of the variables of the model (

the internally assigned variable value holding element)

- INPUT declaration specify the name, array range, and optional default value of the inputs of the model (the externally assigned variable value holding elements)

- OUTPUT declaration specify which of the models's element may be used as the output of the model.

operation procedures:

- the EXEC procedure describes the execution algorithm of the model

- the INIT procedure describes the initialization algorithm of the model

3.4 MODELS Object Composition

An object MODELS consists of a file called support file, possessing the extension .sup. Each model should have a support file with objective of being used in ATPDraw. The support file pattern for all components contains the icon, information in the types and positions of us and parameters of data. There are two options for creation of the object of a model in ATPDraw:

- Manual Operation: selecting a file support manually by main menu Object | Model | New sup-file;
- Automatic Operation: selecting a file. mod directly in the option MODELS of the menu of selection of components and leaving ATPDraw to create the file support.

Edit: C:\AT	P\project\a	tpdraw\Mo	d\relay_b.s	шр			
Data	Nodes	41 s				Standard data	
Name	Default	Min	Мах	Param	Digits		
Vset	0	0	0	0	10		ible
tset	0	0	0	0	10	Nonlinear	
						Туре: Мос	iel 💽
Antipolitika - Anti-					, - 100000444 - 1100	aNum. data:	2
in the second						Num nodes:	2
						Carro	Cours de la
							odve <u>As</u>
	and the second	and the second		*********		Est.	Help

Figure 3.4 : Windows edition of the support file MODELS

3.5 Type of Relay used and its algorithm

In this project, the type of relay chosen is the voltage magnitude relay. The algorithm designed for the operation of this relay is to basically measure voltage at certain point of the network and preventing the voltage from exceeding the threshold set by the relay. Disturbance scenarios such as lightning overvoltage and short circuit will be generated to test the performance of the relay. If the measured voltage exceeded the threshold, the the relay will send a signal to the circuit breaker to open or reclose.

CHAPTER 4

RESULTS & DISCUSSION

Three scenarios were generated where power network modeled were given short circuit and lightning fault. Relays were used to control the circuit breakers to activate and clear the fault. The result are tabulated using the PLOTXY function.

4.1 Scenario 1: Lightning overvoltages

Figure 4.1: Power network with lightning overvoltage fault

Figure 4.1 above shows a power network which was modeled using a 500KV source. A circuit breaker was placed before the transmission line. As shown, a lightning stroke with 6 Megavolt was placed on the line to create an over voltage fault. Voltage and current probe were placed on the circuit to observe the transient in the system operating voltage. A magnitude relay is modeled to control the circuit breaker. Appendix A shows the

algorithm of the relay written in MODELS code. The relay measure the voltage input at node XX0008. When the measured voltage at the input exceeded the voltage threshold of the relay settings, the output of relay which is TRIP will send a signal "0" to the the circuit breaker which means opening the circuit to break the connection.

4.1.1 Result for Scenario 1 simulation

Figure 4.2 : Voltage transient measured at node B

Discussion

The network was simulated (Refer Appendix C for the ATP file) and result were generated in the PLOTXY. The above graph shows that the power network was initially operating normally at steady state. A lightning stroke was injected to the system at time 0.2 seconds and there is observed that there is a surge of voltage and the lightning was set to end at 0.8 seconds. And after that the system will return to its normal operating state.

Figure 4.3 : Voltage measured at node XX0002

Figure above show exactly how the relay modeled in this simulation perform according to its algortihm. The system was initially operating in steady state. The lightning stroke at time 0.2 seconds caused the voltage to surge. The threshold set in this relay is 790KV whereby voltage exceeding this threshold is unacceptable by the system and the relay immediately send a trip signal (trip:=0) to the circuit breaker an open the connection as observed from Figure 4.3 as the measured voltage is zero. After the lightning stroke ended at 0.8 seconds which means that the fault is cleared, the relay again send signal (trip:=1) to the circuit breaker to reclose the connection and the system again resume its normal operating condition.

4.2 Scenario 2 : Short Circuit Test

Figure 4.4 : Short Circuit test

In this scenario, a short circuit test was performed on the power network. A switch is placed at the transmission line to which was set to close at time 0.04 seconds providing a short circuit fault to the line. A current probe is placed after the switch to observe the rise in current after the switch is closed. The same relay (refer to Appendix A for the algorithm of the relay) is used in this case where the relay will send a trip signal to the circuit breaker when the measured voltage at node has exceeded the voltage settings by the relay. The scenario was simulated and the ATP file is shown in Appendix D.

4.2.1 Result for Scenario 2 simulation

Figure 4.5: Current measured form node XX0020 to XX0002

Figure 4.6 : Voltage measured at node XX0002

Based on the Figure 4.5 above, when the switch closed at time 0.04 seconds, it is observed that there is a huge transient and an increase in current and Figure 4.6 shows the voltage measured at the load also shows the rise of voltage due to the increase of current. The voltage threshold set to the relay in this case is 375KV and when the voltage rise exceeded the relay setting, the relay immediately send a trip signal (trip:=0) to the

circuit breaker and break the system connection which can observed from both Figure 4.5 and Figure 4.6 as both current and voltage values dropped to zero. The short circuit fault was set to end at time 0.09 seconds and the relay send signal to the circuit breaker to reclose the line when the fault is cleared.

Based on Figure 4.7 it is a power network modeled with 9 buses. A relay is modeled to control multiple circuit breakers which is 4 in this case, circuit breaker A,B,C and D. The algorithm designed for the relay in this case is to send signal to the circuit breaker nearest the fault to disconnect the systems which are affected by the fault and and the rest of the system will resume normal operation. In this case, a short circuit test is performed where a switch is placed at one of the loads in the system.(Refer to Figure 4.7). The MODELS code for the relay algorithm is shown in Appendix B. The ATP file for this scenario is shown in Appendix E.

4.3.1 Result for Scenario 3 simulation

Figure 4.8: Voltage charateristics at node XX0007

The generated graph was measured at node XX0007. The short circuit had caused a rise of voltage which started at time 0.05 seconds. The relay immediately send signal to circuit breaker B which is nearest to the fault and disconnect the load from the system. After the fault is cleared, the relay send signal to circuit breaker B to reclose the system. The other 3 circuit breakers did not activate as no trip signals were given by the relay as

intended for the simulation of this case. Figure 4.8 shows the plot graph measured at node XX0116, XX0014 and XX0110. These figures shows that the rest of the system resume its operation although there is a fault as the relay had disconnected the system which is the nearest to the short circuit fault.

Figure 4.9 : Voltage measured at XX0116

Figure 4.10 : Voltage measured at XX0014

Figure 4.11 : Voltage measured at XX0110

Conclusion

1) The importance of power system protection and the functions of relays in preventing fault or minimizing the damage to the systems were studied. This provides adequate knowledge in the modeling of correct power network and designing the algorithm or relays. Magnitude relay was used in the study to prevent overcurrent or overvoltages from damaging the transmission lines or load in the systems. The algorithm designed for the relay also ensured that it will feed signal back to the circuit breaker to reclose the system after the fault is cleared so that the operating system will resume normal operating condition.

2) Alternative Transient Program was used in modeling real power system network and faults such as lightning overvoltages and short circuit were given to the system. The simulation of the disturbance scenarios provides important charateristics of the power system or how the system behaves under this condition or fault. The PLOTXY function of the ATP software was very useful in providing the graphical result which is important for transient analysis.

3) Another major work in this project is the modeling of relays which were embedded in the system to provide 'feedback' to the system. This enables closed loop simulation which is important to study the relaying system performance. The algorithm of the relays designed for the purpose of simulation in this project were successfully simulated and working appropriately according to its operating procedures.

Recommendations for future work

Although ATP (Alternative Transient Program) is a very useful program for power system simulation it has a few shortcomings. It has small capacity and unable to simulate large network together with too many relays and faults and sometimes the simulations can be very long. This is due to too many datas were given to the software. One alternative to this problem is to interface Matlab, a powerful software with ATP. Systems parameters, relay settings and disturbance scenaris can be done using Matlab and Matlab can transfer data to ATP and vice versa therefore enhancing the simulation capabillity

and more faults can be simulated automatically for the same power system.

ι.

REFERENCE

 M.Kezunovic, et.al. "An Advanced Method For Testing of Distance Relay Operating Charateristics," IEEE PES Winter Paper Meeting no.95 WM 028-1 PWRD, New York, February 1995

[2] M. Kezunovic, et. al. "Distance Relay Application Testing Using a Digital Simulator," IEEE PES Winter Meeting, Paper no. 96 WM 017-4 PWRD, Baltimore, January 1996.

 [3] J. Singh, M. S. Sachdev, R. J. Fleming, E. Krause, "Digital IDTM Overcurrent Relays," *Proceedings of IEE 1980 DPSP Conference*, IEE Publication No. 185, pp. 84-87.

[4] E. O. Schweitzer and A. Aliaga, "Digital Programmable Time-Parameter Relay Offers Versatility and Accuracy," *IEEE Transactions on Power Apparatus and Systems*, Vol. PAS-89, No. 1, pp. 152-157, Jan./Feb. 1980.

[5] Z. Peng, M. S. Li, C. Y. Wu, T. C. Cheng, and T. S. Ning, "A dynamic State Space Model of a Mho Distance Relay," *IEEE Transactions on Power Apparatus and Systems*, Vol. PAS-104, No. 12, December 1985.

[6] H. Dommel, "EMTP Reference Manual," Bonneville Power Administration 1986.

[7] H. W. Dommel, "Digital Computer Solution of Electromagnetic Transient in Single- and Multiphase Networks," *IEEE Transactions on Power Apparatus and Systems*, Vol. PAS-88, No. 4, April 1969.

[8] Canadian/American EMTP users Group, Alternative Transient Program (ATP)-Rule book, Portland, Oregon, 1992.

[9] Kesunovic M., and Chen Q., "A novel approach for interactive protective system simulation," *IEEE Trans. on Power Systems*, vol. 12, no. 2, pp. 668-694, Apr. 1997
[10] IEEE Standard Dictionary of Electrical and Electronics Terms, *IEEE*, Wiley Interscience, 1972

[11] P. G. McLaren, K. Mustaphi, G. Benmouyal, S. Chano, A. Girgis, C. Henville, M. Kezunovic, L. Kojovic, R. Marttila, M. Meisinger, G. Michel, M. S. Sachdev, V. Skendzic, T. S. Sidhu, and D. Tziouvaras, "Software Models for Relays", *IEEE Transactions on Power Delivery*, Vol. 16, No. 12, April 2001, pp. 238-45,

APPENDICES

APPENDIX A RELAY ALGORITHM FOR SCENARIO 1 & 2

.

MODEL relay_b

INPUT V1 Voltage measured	[V]
DATA Vset Voltage threshold tset Time fault	[V]
VAR trip relay controlled signal	[0 or 1]
OUTPUT trip	
INIT trip:=1 close circuit breaker	
ENDINIT	
EXEC	
IF V1 <vset less="" measured="" relay="" the="" vol<br="" voltage="">AND trip>0 THEN</vset>	tage setting (threshold)
trip:=1 circuit breaker remain closed ENDIF	
	-

IF V1>Vset -- Measured voltage more than the relay voltage setting

AND trip>0 THEN trip:=0 -- relay send signal to open circuit breaker ENDIF

IF trip=0 -- circuit breaker open

AND t>tset -- fault cleared

THEN

trip:=1 -- relay send signal to reclose circuit breaker

ENDIF

ENDEXEC

ENDMODEL

APPENDIX B

RELAY ALGORITHM FOR SCENARIO 3

[V]

MODEL relay_f

INPUT V1 -	- V	oltage measured at first node	[V]
------------	-----	-------------------------------	-----

V2 -- Voltage mesaured at second node [V]

- V3 -- Voltage measured at third node
- V4 -- Voltage measured at fourth node [V]

DATA Vset Voltage threshold	[V]
Vset2 Voltage threshold	[V]
Vset3 Voltage threshold	[V]
Vset4 Voltage threshold	[V]
tset Time fault	

VAR trip_A relay controlled signal	[0 or 1]
trip_B relay controlled signal	[0 or 1]
trip_C relay controlled signal	[0 or 1]
trip_D relay controlled signal	[0 or 1]

OUTPUT trip_A

trip_B

trip_C

trip_D

INIT trip_A:=1 -- close circuit breaker

trip_B:=1 -- close circuit breaker

trip_C:=1 -- close circuit breaker

trip_D:=1 -- close circuit breaker

ENDINIT

EXEC

_____*

IF V1<Vset -- Measured voltage less the relay voltage setting (threshold)

AND trip_A>0

THEN

trip_A:=1 -- circuit breaker remain closed

ENDIF

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
IF V2 <vset2 (threshold)<br="" less="" measured="" relay="" setting="" the="" voltage="">AND trip_B&gt;0</vset2>
THEN trip_B:=1 circuit breaker remain closed ENDIF
IF V3 <vset3 (threshold)<br="" less="" measured="" relay="" setting="" the="" voltage="">AND trip_C&gt;0</vset3>
trip_C:=1 circuit breaker remain closed ENDIF
IF V4 <vset4 (threshold)<br="" less="" measured="" relay="" setting="" the="" voltage="">AND trip_D&gt;0 THEN trip_D:=1 circuit breaker remain closed ENDIF</vset4>
IF V1>Vset Measured voltage more than the relay voltage setting AND trip_A>0 THEN trip_A:=0 relay send signal open circuit breaker ENDIF
IF V2>Vset2 Measured voltage more than the relay voltage setting AND trip_B>0 THEN trip_B:=0 relay send signal open circuit breaker ENDIF

IF V3>Vset3 Measured voltage more than the relay voltage settin	g
AND trip_C>0	
THEN	
trip_C:=0 relay send signal open circuit breaker	
ENDIF	
IF V4>Vset4 lightning voltage more than the relay voltage setting	r S
AND trip_D>0	
THEN	
trip_D:=0 relay send signal open circuit breaker	
ENDIF	
IF trip A=0 circuit breaker open	
AND t>tset fault cleared	
THEN	
trip_A:=1 relay send signal to reclose circuit breaker	
ENDIF	
IF trip B=0 circuit breaker open	
AND t>tset fault cleared	
THEN	
trip_B:=1 relay send signal to reclose circuit breaker	
ENDIF	
IF trip_C=0 circuit breaker open	
AND t>tset fault cleared	
THEN	
trip_C:=1 relay send signal to reclose circuit breaker	
ENDIF	
IF trip_D=0 circuit breaker open	

AND t>tset -- fault cleared

THEN

trip_D:=1 -- relay send signal to reclose circuit breaker

ENDIF

#### ENDEXEC

#### ENDMODEL

### **APPENDIX C**

### **ATP FILE FOR SCENARIO 1**

Alternative Transients Program (ATP), GNU Linux or DOS. All rights reserved by Can/Am user group of Portland, Oregon, USA. Date (dd-mth-yy) and time of day (hh.mm.ss) = 07-May-07 18:09:56 Name of disk plot file is lightning.pl4 Consult the 860-page ATP Rule Book of the Can/Am EMTP User Group in Portland, Oregon, USA. Source code date is 19 December 2003.

Total size of LABCOM tables = 9872109 INTEGER words. 31 VARDIM List Sizes follow: 6002 10K 192K 900 420K 1200 15K

120K 2250 3800 720 1200 72800 510 90K 800 90 254 120K 100K 3K 15K 192K 120 30K 160K 600 210K 300 19 200

Descriptive interpretation of input data cards. | Input data card images are shown below, all 80 columns, character by character 0 1 2 3 4 5 6 7 8

Comment card. NUMDCD = $1$ .	C data:LIGHTNING.ATP
Marker card preceding new EMTP data case.	BEGIN NEW DATA CASE
Comment card, NUMDCD = 3.	C
Comment card. NUMDCD = 4.	C Generated by ATPDRAW May, Monday 7, 2007
Comment card, NUMDCD = 5.	C A Bonneville Power Administration program
Comment card. NUMDCD = $6$ .	C Programmed by H. K. Høidalen at SEFAS - NORWAY 1994-2003
Comment card, NUMDCD = 7.	C
Comment card. NUMDCD = 8.	C dT >< Tmax >< Xopt >< Copt >
Misc. data. 1.000E-03 1.000E+00 0.000E+	-00   .001 1.
Misc. data. 500 1 1 1 1 0 0 1 0 0   5	00 1 1 1 1 0 0 1 0
No TACS data, but MODELS data begins (nex	t). MODELS
Another ordinary MODELS data card.	INPUT
Another ordinary MODELS data card.	[ IX0001 {v(XX0008)}
Another ordinary MODELS data card.	OUTPUT
Another ordinary MODELS data card.	A
Another ordinary MODELS data card.	MODEL relay_b
Another ordinary MODELS data card.	INPUT V1 Voltage measured [V]
Another ordinary MODELS data card.	DATA Vset Voltage setting [V]
Another ordinary MODELS data card.	tset Time fault
Another ordinary MODELS data card.	VAR trip relay controlled signal [0 or 1]
Another ordinary MODELS data card.	OUTPUT trip
Another ordinary MODELS data card.	INIT trip:=1 close circuit breaker
Another ordinary MODELS data card.	ENDINIT
Another ordinary MODELS data card.	EXEC
Another ordinary MODELS data card.	
Another ordinary MODELS data card.	IF V1 <vset (thres<="" less="" measured="" more="" relay="" setting="" td="" the="" voltage=""></vset>
Another ordinary MODELS data card.	AND trip>0
-	• -

Another ordinary MODELS data card. THEN Another ordinary MODELS data card. trip:=1 -- circuit breaker remain closed Another ordinary MODELS data card. ENDIF Another ordinary MODELS data card. Another ordinary MODELS data card. IF V1>Vset -- lightning voltage more than the relay voltage setting Another ordinary MODELS data card. AND trip>0 Another ordinary MODELS data card. THEN Another ordinary MODELS data card. trip:=0 -- relay send signal open circuit breaker Another ordinary MODELS data card. ENDIF Another ordinary MODELS data card. Another ordinary MODELS data card. IF trip=0 -- circuit breaker open Another ordinary MODELS data card. AND t>tset -- fault cleared Another ordinary MODELS data card. THEN Another ordinary MODELS data card. trip:=1 -- relay send signal to reclose circuit breaker Another ordinary MODELS data card. ENDIF Another ordinary MODELS data card. Another ordinary MODELS data card. ENDEXEC Another ordinary MODELS data card. ENDMODEL Another ordinary MODELS data card. USE relay_b AS relay_b Another ordinary MODELS data card, INPUT Another ordinary MODELS data card. V1:= IX0001 Another ordinary MODELS data card. DATA Another ordinary MODELS data card. 7.9E5 Vset = Another ordinary MODELS data card. tset:= 0.8 Another ordinary MODELS data card. OUTPUT Another ordinary MODELS data card. | A :=trip Another ordinary MODELS data card. ENDUSE Termination of data for Laurent Dube's MODELS. |ENDMODELS 7 8 Comment card. NUMDCD = 56. C 1 2 3 4 5 6 Comment card. NUMDCD = 57. IC. 3456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 Optional blank card follows last of MODELS data. |BLANK MODELS Comment card. NUMDCD = 59. |C < n | > < n | > < ref | > < ref | > < R > < L > < C >|C < n 1>< n 2><ref1><ref2>< R >< A >< B ><Leng><>>0 Comment card. NUMDCD = 60. Series R-L-C. 2.000E+02 1.000E-05 4.000E-06 | XX0002 Ist of PI-ckt. 2.000E+02 1.000E-02 1.000E-07 |I XX0025XX0002 200. .01 4. Û 200. 10. .1 Series R-L-C. 1.000E+03 0.000E+00 0.000E+00 XX0025 1.E3 0 Blank card ending branches. IBR, NTOT = 3 3 BLANK BRANCH Comment card. NUMDCD = 65. Permanently-closed switch used for metering. B XX0008 MEASURING Switch. TACS control = "A 13XX0008XX0025 CLOSED 0 А BLANK SWITCH Blank card ending switches. KSWTCH = 2. |C < n 1><>< Ampl. >< Freq. >< Phase/T0>< A1 >< T1 >< TSTART >< Comment card. NUMDCD = 69. TSTOP > Source. 5.00E+05 6.00E+01 0.00E+00 0.00E+00 |14B 0 5.E5 60. 1. Source. 6.00E+06 -5.00E-05 -1.20E-06 0.00E+00 |15B 0 6.E6 -5.E-5 -1.2E-6 2.E-5 6.E6 Source. 6.00E+06 -2.00E+01 -5.00E+01 2.00E-01 |15B 0 -20. -50 2 .8 Blank card ends electric sources. KCONST = 3BLANK SOURCE

List of input elements that are connected to each node. Only the physical connections of multi-phase lines are shown (capacitive and inductive coupling are ignored). Repeated entries indicate parallel connections. Switches are included, although sources (including rotating machinery) are omitted -- except that U.M. usage produces extra, internally-defined nodes "UMXXXX".

From bus name | Names of all adjacent busses.

XX0002 |TERRA *XX0025* XX0025 |TERRA *XX002*XX0008* B |XX0008* XX0008 |XX0025*B * TERRA |XX0002*XX0025*

Step

+++ Node "XX0008" has no connected linear branches. Add (to ground) the conductance G = 1.00000000E-08 mhos. Card of names for time-step loop output. | XX0002XX0002XX0002B Blank card ending requests for output variables. |BLANK OUTPUT

Column headings for the 5 EMTP output variables follow. These are divided among the 5 possible classes as follows .... First 4 output variables are electric-network voltage differences (upper voltage minus lower voltage);

Next 1 output variables are branch currents (flowing from the upper node to the lower node);

Time XX0002 XX0002 XX0002 B B

XX0008

Switch "B " to "XX0008" closed before 0.0000000E+00 sec. Switch "XX0008" to "XX0025" closed before 0.00000000E+00 sec. Û 0.0 0.0 0.0 0.0 0.0 0.0 0.5 .434321939 .434321939 .434321939 514870.678 .005148707 500 %%%%%% Final time step, PLTFIL dumps plot data to ".PL4" disk file. Done dumping plot points to C-like disk file. 1000 1.0 138643.256 138643.256 138643.256 0.0 - 595.98361 Extrema of output variables follow. Order and column positioning are the same as for the preceding time-step loop output. Variable maxima : 779499.363 779499.363 779499.363 .2444866E7 1380.67497 Times of maxima : .21 .21 .21 .233 .1E-2 Variable minima : -455382.43 -455382.43 -455382.43 -500000. -1071.7269 Times of minima : .009 .009 .009 .025 .09 Blank card terminating all plot cards. BLANK PLOT Memory storage figures for the preceding, now-completed data case. ---------- Present Program A value of "-9999" indicates that no figure is available. 07-May-07 18:09:56 figure limit (name) Size List 1 Number of electric network nodes. 6000 (LBUS) 5 Size List 2. Number of electric network branches. 10000 (LBRNCH) 3 Size List 3. Number of data values in R, L, C tables. 192000 (LDATA) 3 Size List 4. Number of electric network sources. 3 900 (LEXCT) 9 420000 (LYMAT) Size List 5. Storage for [Y] and triangularized [Y]. No. times = 3 Factors = 2 1200 (LSWTCH) No. flops = 42 Size List 6. Number of entries in switch table. Size List 7. Number of distinct ALPHANUMERIC data names plus program SPY variables. 5 15000 (LSIZE7) Size List 8. History points of distributed lines. 0 120000 (LPAST) Size List 9. Number of nonlinear elements. 2250 (LNONL) 0 Size List 10. Points of nonlinear characteristics. 0 3800 (LCHAR) Size List 11. Number of Type-59 S.M. outputs. ۵ 720 (LSMOUT) Size List 12. Total number of EMTP output variables. 5 1200 (LSIZ12) Size List 13. Working space for batch/SPY plotting. **-9**999 72800 (LSIZ13) Size List 14. S.M./U.M. connections to TACS. -9999 510 (LBSTAC) Size List 15. Character storage in bytes for MODELS. 1875 90000 (LCTACS) Size List 16. Total number of Type-59 S.M. masses. 800 (LIMASS) 0 Size List 17. Number of Type-59 Synchronous machines. 0 90 (LSYN) Size List 18. Branch and switch power/energy outputs. 0 254 (MAXPE) 23 120000 (LTACST) Size List 19. Total floating-point TACS table space. Size List 20, Non-copied recursive convolution data. 100000 (LFSEM) 0 3000 (LFD) Size List 21. Total modal/phase [T] matrix storage. 0 Size List 22. Total recursive convolution history. n 15000 (LHIST) Size List 23. Giant vectors for renumbering, phasors. 192000 (LSIZ23) 3 Size List 24. Peak phases of compensation for data. 0 120 (LCOMP) Size List 25. Total table space for all U.M usage. -9999 30000 (LSPCUM) 1 160000 (LS1Z26) Size List 26. Square of max number of coupled phases. Size List 28. MODELS. Total work space is divided into INTEGER and REAL. 1st, REAL: 1700 210000 (LRTACS) Second and last, statistics for INTEGER work space. 0 (LITACS) 3602 Size List 29. RAM disk used by "TAPSAV" table saving (limit is "LABCOM" size LTLABL). -9999 300 (LSIZ29) Size List 30. Taku Noda frequency-dependent circuits. 19 (LSIZ30) 0 CP sec Wait sec Real sec Timing figures characterizing central processor (CP) solution speed. ----Data input time (through blank card ending branches) .... 0.000 0.000 0.000 0.000 0.000 0.000 Node renumbering and phasor solution .... After phasor solution, but before time-step loop .... 0.000 0.000 0.000 Integration of equations (time-step loop) .... 0.031 0.000 0.031 Plotting or STATISTICS termination overlays .... 0.000 0.0000.000 0.031 0.031 Totals 0.000

## **APPENDIX D ATP FILE FOR SCENARIO 2**

Alternative Transients Program (ATP), GNU Linux or DOS. All rights reserved by Can/Am user group of Portland, Oregon, USA. Date (dd-mth-yy) and time of day (hh.mm.ss) = 07-May-07 18:42:53 Name of disk plot file is shortcircuit.pl4 Consult the 860-page ATP Rule Book of the Can/Am EMTP User Group in Portland, Oregon, USA. Source code date is 19 December 2003.

Total size of LABCOM tables = 9872109 INTEGER words. 31 VARDIM List Sizes follow: 6002 10K 192K 900 420K 1200 15K

120K 2250 3800 720 1200 72800 510 90K 800 90 254 120K 100K 3K 15K 192K 120 30K 160K 600 210K 300 19 200

Descriptive interpretation of input data cards. | Input data card images are shown below, all 80 columns, character by character 0 1 2 3 4 5 6 7 8 012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

++	
Comment card. $NUMDCD = 1$ .	C data:SHORTCIRCUIT.ATP
Marker card preceding new EMTP data case.	BEGIN NEW DATA CASE
Comment card. NUMDCD = 3.	C
Comment card. NUMDCD = 4.	C Generated by ATPDRAW May, Monday 7, 2007
Comment card. NUMDCD = 5.	C A Bonneville Power Administration program
Comment card. NUMDCD = 6.	C Programmed by H. K. Høidalen at SEfAS - NORWAY 1994-2003
Comment card. NUMDCD = 7.	C
Comment card, NUMDCD = 8.	C dT >< Tmax >< Xopt >< Copt >
Misc, data. 1.000E-06 2.000E-01 0.000E+	00   1.E-6 .2
Misc. data. 500 1 1 1 1 0 0 1 0 0 1 5	00 1 1 1 1 0 0 1 0
No TACS data, but MODELS data begins (new	t), MODELS
Another ordinary MODELS data card.	INPUT
Another ordinary MODELS data card.	IX0001 {v(XX0002)}
Another ordinary MODELS data card.	OUTPUT
Another ordinary MODELS data card.	A
Another ordinary MODELS data card.	MODEL relay b
Another ordinary MODELS data card.	INPUT V1 Voltage measured [V]
Another ordinary MODELS data card.	DATA Vset Voltage setting [V]
Another ordinary MODELS data card	tset Time fault
Another ordinary MODELS data card	VAR trip relay controlled signal [0 or 1]
Another ordinary MODELS data card	OUTPUT trin
Another ordinary MODELS data card	INIT trip=1 close circuit breaker
Another ordinary MODELS data card	ENDINIT
Another ordinary MODELS data card	EXEC
Another ordinary MODELS data card	
Another ordinary MODELS data card	IF V1 <vset (three<="" less="" measured="" more="" relay="" setting="" td="" the="" voltage=""></vset>
Another ordinary MODELS data card	AND trin>0
Another ordinary MODELS data card	THEN
Another ordinary MODELS data card	trip=1
Another ordinary MODELS data card	FNDIF
Another ordinary MODELS data card	
Another ordinary MODELS data card	IF VI>Vset lightning voltage more than the relay voltage setting
Another ordinary MODELS data card	AND trin>0
Another ordinary MODELS data card	
Another ordinary MODELS data card	trin:=0relay send signal open circuit breaker
Another ordinary MODELS data card	FNDIF
Another ordinary MODELS data card	
Another ordinary MODELS data card	IF trip=0 circuit breaker open
Another ordinary MODELS data card	AND t>tset fault cleared
Another ordinary MODELS data card	THEN
Another ordinary MODELS data card	trip = relay send signal to reclose circuit breaker
Another ordinary MODELS data card	ENDIF
Another ordinary MODELS data card.	4/A 18/AE
Another ordinary MODELS data card	ENDEXEC
Another ordinary MODELS data card	ENDMODEL
Another ordinary MODELS data card	USE relay b AS relay b
Another ordinary MODELS data card	
Another ordinary MODELS data card	$V_1 = I_X 0001$
Another ordinary MODELS data card	DATA
Another ordinary MODELS data card	Vset:= 3.75E5
Another ordinary MODELS data card	tset = 0.09
i mount oronneg inconsisting and	

Another ordinary MODELS data card. OUTPUT Another ordinary MODELS data card. A :=trip ENDUSE Another ordinary MODELS data card. ENDMODELS Termination of data for Laurent Dube's MODELS. Comment card. NUMDCD = 56. C 1 2 3 4 5 7 8 Comment card. NUMDCD = 57. IC. 3456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 Optional blank card follows last of MODELS data. |BLANK MODELS Comment card. NUMDCD = 59. Comment card. NUMDCD = 60. |C < n | > < n | > < refl > < refl > < R > < L > < C >|C < n 1>< n 2><ref1><ref2>< R >< A >< B ><Leng><>0 Series R-L-C. 2.000E+01 1.000E-05 4.000E-06 | XX0002 20. .01 4. ۵ 
 Ist of PI-ckt.
 2.000E+03
 2.000E-02
 0.000E+00
 1
 XX0022XX0020

 Series R-L-C.
 1.000E+03
 0.000E+00
 0.000E+00
 XX0020
 2.E3 20. 0 1.E3 Blank card ending branches. IBR, NTOT = 3 4 |BLANK BRANCH Comment card. NUMDCD = 65. |C < n 1>< n 2>< Tclose ><Top/Tde >< Ie ><Vf/CLOP >< type > Permanently-closed switch used for metering. | XX0020XX0002 MEASURING 1 Switch. 4.00E-02 9.00E-02 0.00E+00 0.00E+00 | XX0022XX0028 .04 .09 0 Permanently-closed switch used for metering. XX0028XX0020 MEASURING 1 Switch. TACS control = "A " |13XX0024XX0022 CLOSED 0 A Blank card ending switches. KSWTCH = 4. BLANK SWITCH Comment card. NUMDCD = 71. |C < n 1><>< Ampl. >< Freq. ><Phase/T0>< A1 >< T1 >< TSTART >< TSTOP >Source. 5.00E+05 6.00E+01 0.00E+00 -1.00E+00 |14XX0024 0 5.E5 60. -1. 1. Blank card ends electric sources. KCONST = 1 |BLANK SOURCE

List of input elements that are connected to each node. Only the physical connections of multi-phase lines are shown (capacitive and inductive coupling are ignored). Repeated entries indicate parallel connections. Switches are included, although sources (including rotating machinery) are omitted -- except that U.M. usage produces extra, internally-defined nodes "UMXXXX".

From bus name | Names of all adjacent busses.

---+---

XX0002 |TERRA *XX0020* XX0022 |XX0020*XX0028*XX0024* XX0020 |TERRA *XX0002*XX0022*XX0028* XX0028 |XX0022*XX0020* XX0024 |XX0022* TERRA |XX0002*XX0020*

Sinusoidal steady-state phasor solution, branch by branch. All flows are away from a bus, and the real part, magnitude, or "P" is printed above the imaginary part, the angle, or "Q". The first solution frequency = 6.00000000E+01 Hertz. Bus K Phasor node voltage Phasor branch current Power flow Power loss P and Q Bus M Rectangular Ројат Rectangular Polar P and Q XX0002 82736.471644944 115902.33569001 126.04532083873 174.698164172 305194.48565068 305194.48565068 -81166.66605291 -44.4512583 120.9629102648 43.8212555 -.1011936143E8 10119361.4296309 TERRA -126.0453208387 174.698164172 0.0 0.0 0.0 0.0 0.0 -120.9629102648 -136.1787445 0.0 XX0022 500000. 208.78179248368 212.54076768015 .521954481209E8 .451735779261E8 500000. -.9949061053E7 170300.3766587 0.00.0 39.796244211889 10.7917878 XX0020 82736.471644944 115902.33569001 -208.7817924837 212.54076768015 - 70218701948E7 -81166.66605291 -44.4512583 -39.79624421189 -169.2082122 101193614296E8 TERRA 0.0 -82.73647164494 115.90233569001 0.0 67166757092E7 0.0 81.166666052906 0.0 0.0 135.5487417 0.0 0.0000000 XX0020 82736.471644944 115902.33569001 82.736471644944 115.90233569001 .67166757092E7 -81166.66605291 -44.4512583 -81.16666605291 -44.4512583 .40154191083E-9 Total network loss P-loss by summing injections = 5.219544812092E+07 Output for steady-state phasor switch currents. Node-K Node-M Degrees Reactive I-real I-imag I-magn Power 1.26045321E+02 1.20962910E+02 XX0020 XX0002 1.74698164E+02 43.8213 3.05194486E+05 -1.01193614E+07 XX0022 XX0028 Open Open Open Open Open Open

XX0	028 X	K0020	0.000000	00E+00	0.0000000E-	+00	0.000000	00E+00	0.0000	0.00000000	E+00
XX0 9.94906	000E+00 024 XX 105E+06	X0022	2.087817	792E+02	3.97962442E-	+01	2.125407	68E+02	10.7918	5.2195448	lE+07 -
Solution	at nodes	with know	wn voltage	. Nodes	that are shorted	d toge	ether by sw	itches a	ire shown as	a group of na	mes, with the printed
result ap	plying to ed nower	the comp	osite grou	p. The en	try "MVA" is	SQR	tT( P**2 +	Q**2)	in units of j	power, while	"P.F." is the
10000101	Node name	Sor Rectang	arce node gular	voltage Polar	Injected Rectangula	soui r	rce current Polar	P	Injected so and Q M	ource power VA and P.F.	
	XX0024	ţ									
	XX0022	500 0.0	000. 0.0	500000. 39.7962	208.7817924 244211889	48368 10.79	8 212.540′ 917878	7676801 9949	15 .52195 061053E7	4481209E8 0.9823141	.5313519192E8
+++ N Card of I Blank ca	ode "XX names fo urd ending	(0028" ha r time-stej g requests	is no conno 100p out; for output	ected linea put.   variables	ar branches, A XX0002XX0 BLANK OU	dd (to 0023 JTPU	o ground) t XX0002 T	he cond	uctance G =	1.00000000	E-08 mhos.
Column	headings	for the 5	EMTP o	utput vari	ables follow. 7	These	are divide	d amon	g the 5 possi	ble classes as	s follows
First 3	outpu	t variables	are electr	ic-networl	voltage differ	ence:	s (upper vo	ltage m	inus lower v	oltage);	
Step	Z Outpu Time	XX0002	XX00	$2 \times 10^{-10}$	002 XX0020	n me 0 ≯	CX0028		iowei iioue),		
			X	X0002 X	XX0020						
26000 26500	.026 -10	6805.66 -1	06805,66 -1	.06805.66 -′ 113347.69	72.663 <b>8</b> 04 .0010	68057 33477	,				
27000	.027 -11	5874.32 -1	15874.32 -1	15874.32 -	9.0776811 .0011	58743					
27500 28000	.0275 -1	14296.05 -1 18668,78 -1	14296.05 - 08668.78 -1	08668.78 5	5.7833756 .0010	14290 86688	3				
28500 29000	.0285 -9	9191.866 -9 201.031 -8	9191.866 -9 6201.031 -8	99191.866 8 6201 031 1	35,8166481 .9919 12,809823 .8620	919E- 01E-3	3				
29500	.0295 -7	0156.482 -7	0156.482 -	70156.482	135.806654 .701	565E-	3				
30000 30500	.03 -510	526.604 -51 1267.828 -3	626.604 -5. 1267.828 -3	1626.604 15 31267.828 1	53.992466 .51620 166,723018 .3120	66E-3 678E-	3				
31000	.031 -98	01.3737 -9	801.3737 -9	801.3737 1	73,547325 .9801	37E-4	Ļ				
31500 32000	.0315 12	012,2992 1 400 4304 31	2012.2992 3400 4304 3	12012,2992 3400 4304	174.22363112 168 727977 - 31	2012E 34E-3	-3				
32500	.0325 53	605,3347 5	3605.3347	53605,3347	157,25505253	3605E	-3				
33000	.033 719	911.2433 71 660 6603 8	1911.2433 7 7669 6603 1	'1911.2433 87669 6603	140.211287719	911E- 267E-	.3				
34000	.034 100	0322,336 10	0322.336 1	.00322.336	92.002338300	10032	2				
34500	.0345 10	9421.043 1	09421.043	109421.043	62.544979900	)10942	21				
35500	.0355 114	1643.454 I 5804.565 1	14643.454 1 15804.565 (	1464 <i>3.</i> 454 115804.565	-1.894764700	11464	13 )5				
36000	.036 11	2863.24 1	2863.24 1	12863.24 -3	4.5943410011	2863					
36500 37000	.0365 10	)5923,68 1 231 7199 94	05923.68 1 231 7199 9	05923.68 -0	56,0683950010 -95 201944 - 952	)5924 )32F-'	4				
37500	.0375 81	166.1288 8	1166.1288	81166.1288	-120.9629281	166E-	-3				
38000	.038 642	225.1872 64	225.1872 6	4225.1872	-142.43872642	225E-3	3				
39000	.0385 45	198.4179 24	198.4179 2	4198.4179	-169.6704241	98E-3					
39500	.0395 25	30.55839 2	530.55839	2530.55839	-174.4615825	306E	4	4 00000	0007 02		
40000	,04 -19	226.947 -19	226.947 -19	9226,947 -1	73.07237 .19226	59E-3	JUZO ARCI	+.00000	000E-02 SEC.		
40500	.0405 -4:	52413.53 -4	52413.53 -4	452413.53	-377.1868 -829.6	50033					
41000	.041 -48	4291.58 -4 99013.36 -4	84291.58 -4 99013.36 -4	-84291.58 -2 499013.36 -	209.41041 -095.7 69.974637 -568	/0199 3.988					
42000	.042 -49	6057.35 -4	96057.35 -4	96057.35 7	1.8736768 -424.	18367	- -				
42500 43000	.0425 -4	/5528.26 -4 8153.34 -4	38153.34 -4	4/5528.262 38153.343	42.996732 -95.1	.3525: 56608	5 				
43500	.0435 -3	85256.62 -3	85256.62 -	385256.62 4	462.666927 77.41	10305	2				
44000 44500	.044 -31	8711.99 -3 40876 84 -2	18711.99 -3 40876 84 -1	18711.99 5 240876 84 6	65.946915 247.2 649 177951 408 1	23492 30111	4				
45000	.045 -1	54508.5 -1	54508.5 -1:	54508,5 709	9.411536 554.903	3038	•				
45500	.0455 -6	2666.617 -6	2666.617 -( 1395 2598 3	62666.617 ( 1395 2598	744,513862 681.8 753 241414 784	84724 63661	6 74				
46500	.0465 12	4344.944 1	24344.944	124344,944	735.285014 859	.6299	57				
47000	.047 212	2889.646 23	2889.646 2	12889,646	691.280775 904.	17042	21				
48000	.047.5 29	484.314 3	54484.314 3	64484.314	532.231805 896.	,71611	19				
48500	.0485 32	2918.937 3	22918.937	322918.937	-322.9221700	32291	19				
49000 49500	.049 28 .0495 25	5673.86 28 2724,584 2	52724.584 2	850/3.86-2 252724.584	as.6/0720028 -252,7271100	0074 25272	25				
50000	50000 .05 223575.637 223575.637 223575.637 -223.5778700223576										
50500 51000	.0505 19	7788.694 I 1975.987 1	97788.694 74975.987 1	197788.694 .74975.987	-197.79067 -,00 -174.97774001	19778 17497	59 6				
	_ /										

.0515 154794.469 154794.469 154794.469 -154.79602 -.00154794 51500 52000 .052 136940.663 136940.663 136940.663 -136.94203 -.00136941 52500 .0525 121146.093 121146.093 121146.093 -121.1473 -.00121146 53000 .053 107173.25 107173.25 107173.25 -107.17432 -.00107173 53500 .0535 94812.0171 94812.0171 94812.0171 -94.812965 -.94812E-3 .054 83876.5142 83876.5142 83876.5142 -83.877353 -.83877E-3 54000 .0545 74202.2989 74202 2989 74202 2989 -74.203041 - 74202E-3 54500 .055 65643,8958 65643,8958 65643,8958 -65.644552 -.65644E-3 55000 55500 .0555 58072.6086 58072.6086 58072.6086 -58.073189 -.58073E-3 .056 51374.5844 51374.5844 51374.5844 -51.375098 -.51375E-3 56000 .0565 45449.1022 45449.1022 45449.1022 -45.449557 - 45449E-3 56500 % % % % % Suspended simulation; plot data space exhausted; SPY SPACE is required. LIMBUF = 340000. % % % % % % Suspended simulation; plot data space exhausted; SPY SPACE is required. LIMBUF = 340000. +++ Time-sharing disabled. Send user-keyed interrupt to silence alarm. Current values. INDBUF INDBEG LIMBUF MFLUSH NUMDCD KCARD1 KCARD2 339998 50 340000 1000 75 1 76 .114 -24195.9 -24195.9 -24195.9 169.666613 .241959E-3 114000 .1145 -2528.4598 -2528.4598 -2528.4598 174.458425 .252846E-4 114500 115000 .115 19228.6963 19228.6963 19228.6963 173.069744 -.19229E-3 115500 .1155 40304.7865 40304.7865 40304.7865 165.5498 -.40305E-3 .116 59953.1597 59953.1597 59953.1597 152.165022 -.59953E-3 116000 .1165 77477.7458 77477.7458 77477.7458 133.389596 -.77478E-3 116500 117000 .117 92257.7137 92257.7137 92257.7137 109.888673 -.92258E-3 117500 .1175 103769.464 103769.464 103769.464 82.4948022 -.00103769 118000 .118 111605.178 111605.178 111605.178 52.178439 -.00111605 118500 .1185 115487.263 115487.263 115487.263 20.013568 -.00115487 119000 .119 115278.187 115278.187 115278.187 -12.860344 -.00115278 119500 .1195 110985.353 110985.353 110985.353 -45.278714 -.00110985 120000 .12 102760.83 102760.83 102760.83 -76.093098 -.00102761 .1205 90895.9731 90895.9731 90895.9731 -104.21187 -.90896E-3 120500 121000 .121 75811.0971 75811.0971 75811.0971 -128.63892 -.75811E-3 .1215 58040.5887 58040.5887 58040.5887 -148.50888 - 58041E-3 121500 .122. 38213,9748 38213,9748 38213,9748 -163.11787 -.38214E-3 122000 .1225 17033.6212 17033.6212 17033.6212 -171.94833 -.17034E-3 122500 .123 -4750.1492 -4750.1492 -4750.1492 -174.68745 .475015E-4 123000 123500 .1235 -26365.637 -26365.637 -26365.637 -171.23819 .263656E-3 .124 -47047.103 -47047.103 -47047.103 -161.72274 .470471E-3 124000 124500 .1245 -66061.897 -66061.897 -66061.897 -146.47819 .660619E-3 125000 .125 -82736.413 -82736.413 -82736.413 -126.04458 .827364E-3 125500 .1255 -96479.946 -96479.946 -96479.946 -101.14578 .964799E-3 .126 -106805.63 -106805.63 -106805.63 -72.663852 .001068056 126000 126500 .1265 -113347.66 -113347.66 -113347.66 -41.60777 .001133477 127000 .127 -115874.3 -115874.3 -115874.3 -9.0777142 .001158743 .1275 -114296.03 -114296.03 -114296.03 23.7739217 .00114296 127500 .128 -108668.76 -108668.76 -108668.76 55.7833526 .001086688 128000 128500 .1285 -99191.853 -99191.853 -99191.853 85.8166289 .991919E-3 .129 -86201.021 -86201.021 -86201.021 112.809807 .86201E-3 129000 129500 .1295 -70156.473 -70156.473 -70156.473 135.80664 .701565E-3 130000 .13 -51626.597 -51626.597 -51626.597 153.992455 .516266E-3 130500 .1305 -31267.822 -31267.822 -31267.822 166.723009 .312678E-3 131000 .131 -9801.3686 -9801.3686 -9801.3686 173.547317 .980137E-4 131500 .1315 12012.3034 12012.3034 12012.3034 174.223624 -.12012E-3 .132 33400.4339 33400.4339 33400.4339 168.727972 -.334E-3 .1325 53605.3377 53605.3377 53605.3377 157.255047 -.53605E-3 132000 132500 .133 71911.2458 71911.2458 71911.2458 140.211283 -.71911E-3 133000 1335 87669.6623 87669.6623 87669.6623 118.200465 - 8767E-3 133500 .134 100322.338 100322.338 100322.338 92.0023357 -.00100322 134000 .1345 109421.044 109421.044 109421.044 62.5449778 -.00109421 134500 135 114643.456 114643.456 114643.456 30.8719326 -.00114643 135000 ,1355 115804.566 115804.566 115804.566 -1.8947662 -.00115805 135500 .136 112863.241 112863.241 112863.241 -34.594342 -.00112863 136000 .1365 105923.68 105923.68 105923.68 -66.068396 -.00105924 136500 137000 .137 95231.7204 95231.7204 95231.7204 -95.201945 -.95232E-3 137500 .1375 81166.1293 81166.1293 81166.1293 -120.96292 -.81166E-3 138000 .138 64225.1876 64225.1876 64225.1876 -142.43872 -.64225E-3 .1385 45009.0366 45009.0366 45009.0366 -158.86856 -.45009E-3 .139 24198.4181 24198.4181 24198.4181 -169.6704 -.24198E-3 138500 139000 .1395 2530.55862 2530.55862 2530.55862 -174.46158 -.25306E-4 139500 140000 .14 -19226.947 -19226.947 -19226.947 -173.07237 .192269E-3 140500 .1405 -40303.329 -40303.329 -40303.329 -165.55199 .403033E-3 .141 -59951.945 -59951.945 -59951.945 -152.16685 .599519E-3 141000 .1415 -77476.733 -77476.733 -77476.733 -133.39112 .774767E-3 141500 .142 -92256.87 -92256.87 -92256.87 -109.88994 .922569E-3 142000 .1425 -103768.76 -103768.76 -103768.76 -82.495858 .001037688 142500 .143 -111604.59 -111604.59 -111604.59 -52.179319 .001116046 143000 143500 .1435 -115486.77 -115486.77 -115486.77 -20.014301 .001154868 144000 .144 -115277.78 -115277.78 -115277.78 12.8597327 .001152778 144500 .1445 -110985.01 -110985.01 -110985.01 45.2782044 .00110985 145000 .145 -102760.55 -102760.55 -102760.55 76.0926731 .001027605 145500 .1455 -90895.737 -90895.737 -90895.737 104.211521 .908957E-3

146000	.146 -75810.901 -75810.901 -75810.901 128.638624 .758109E-3
146500	.1465 -58040.425 -58040.425 -58040.425 148,508639 .580404E-3
147000	.147 -38213.838 -38213.838 -38213.838 163.117662 .382138E-3
147500	.1475 -17033.508 -17033.508 -17033.508 171.94816 .170335E-3
148000	.148 4750.24392 4750.24392 4750.24392 174.68730947502E-4
148500	.1485 26365.7156 26365.7156 26365.7156 171.23807326366E-3
149000	.149 47047.1687 47047.1687 47047.1687 161,72264347047E-3
149500	.1495 66061.9523 66061.9523 66061.9523 146,47810866062E-3
150000	.15 82736.4584 82736.4584 82736.4584 126.04451282736E-3
150500	.1505 96479.9841 96479.9841 96479.9841 101.1457279648E-3
151000	.151 106805,658 106805,658 106805,658 72,663804400106806
151500	.1515 113347,689 113347,689 113347,689 41,6077300113348

Plot timespan now in memory (in sec) = 1.13314003E-01 1.69972000E-01 ++++ Begin plot-data copy from memory to disk. MFLUSH, INDBUF, N4, Tbeg, Tend = 1003 339998 1 -1.00000E+00 1.00000E+19 SPY: 170000 .17 102760.547 102760.547 102760.547 -76.092673 -.00102761

170500 .1705 90895,7375 90895,7375 90895,7375 -104,21152 -.90896E-3 .171 75810,9008 75810,9008 75810,9008 -128,63862 -.75811E-3 171000 171500 1715 58040 4251 58040 4251 58040 4251 -148 50864 - 5804E-3 172000 .172 38213.8385 38213.8385 38213.8385 -163.11766 -.38214E-3 172500 1725 17033 5075 17033 5075 17033 5075 -171 94816 - 17034E-3 173000 .173 -4750.2439 -4750.2439 -4750.2439 -174.68731 .475024E-4 173500 .1735 -26365,716 -26365.716 -26365,716 -171.23807 .263657E-3 174000 .174 -47047.169 -47047.169 -47047.169 -161.72264 .470472E-3 174500 .1745 -66061,952 -66061,952 -66061,952 -146,47811 .66062E-3 175000 .175 -82736.458 -82736.458 -82736.458 -126.04451 .827365E-3 175500 .1755 -96479.984 -96479.984 -96479.984 -101.14573 .9648E-3 .176 -106805.66 -106805.66 -106805.66 -72.663804 .001068057 176000 .1765 -113347.69 -113347.69 -113347.69 -41.60773 .001133477 176500 .177 -115874.32 -115874.32 -115874.32 -9.0776811 .001158743 177000 177500 .1775 -114296.05 -114296.05 -114296.05 23.7739493 .00114296 178000 .178 -108668.78 -108668.78 -108668,78 55.7833756 .001086688 178500 .1785 -99191.866 -99191.866 -99191.866 85.8166481 .991919E-3 179000 .179 -86201.031 -86201.031 -86201.031 112.809823 .86201E-3 179500 .1795 -70156.482 -70156.482 -70156.482 135.806654 .701565E-3 180000 .18 -51626,604 -51626.604 -51626,604 153.992466 .516266E-3 180500 .1805 -31267.828 -31267.828 -31267.828 166.723018 .312678E-3 .181 -9801.3737 -9801.3737 -9801.3737 173.547325 .980137E-4 181000 .1815 12012.2992 12012.2992 12012.2992 174.223631 -.12012E-3 181500 182000 .182 33400.4304 33400.4304 33400.4304 168.727977 -.334E-3 182500 1825 53605 3347 53605 3347 53605 3347 157 255052 - 53605E-3 183000 .183 71911.2433 71911.2433 71911.2433 140.211287 -.71911E-3 183500 .1835 87669.6603 87669.6603 87669.6603 118.200468 -.8767E-3 184000 .184 100322,336 100322.336 100322,336 92,0023383 -.00100322 .1845 109421.043 109421.043 109421.043 62.5449799 -.00109421 184500 185000 .185 114643.454 114643.454 114643.454 30.8719344 - .00114643 .1855 115804.565 115804.565 115804.565 -1.8947647 -.00115805 185500 186000 .186 112863.24 112863.24 112863.24 -34.594341 -.00112863 186500 .1865 105923.68 105923.68 105923.68 -66.068395 -.00105924 187000 .187 95231.7199 95231.7199 95231.7199 -95.201944 -.95232E-3 187500 .1875 81166.1288 81166.1288 81166.1288 -120.96292 -.81166E-3 188000 .188 64225.1872 64225.1872 64225.1872 -142.43872 -.64225E-3 188500 .1885 45009.0363 45009.0363 45009.0363 -158.86855 -.45009E-3 189000 .189 24198.4179 24198.4179 24198.4179 -169.6704 -.24198E-3 .1895 2530.55839 2530.55839 2530.55839 -174.46158 -.25306E-4 189500 190000 .19 -19226.947 -19226.947 -19226.947 -173.07237 .192269E-3 190500 .1905 -40303.329 -40303.329 -40303.329 -165.55199 .403033E-3 191000 .191 -59951.945 -59951.945 -59951.945 -152.16685 .599519E-3 .1915 -77476,733 -77476.733 -77476,733 -133.39112 .774767E-3 191500 .192 -92256.87 -92256.87 -92256.87 -109.88994 .922569E-3 192000 192500 .1925 -103768.76 -103768.76 -103768.76 -82.495858 .001037688 .193 -111604.59 -111604.59 -111604.59 -52.179319 .001116046 193000 193500 .1935 -115486.77 -115486.77 -115486.77 -20.014301 .001154868 194000 .194 -115277.78 -115277.78 -115277.78 12.8597327 .001152778 194500 .1945 -110985.01 -110985.01 -110985.01 45.2782044 .00110985 195000 .195 -102760.55 -102760.55 -102760.55 76.0926732 .001027605 195500 1955 -90895 738 -90895.738 -90895.738 104,211521 .908957E-3 .196 -75810.901 -75810.901 -75810.901 128.638624 .758109E-3 196000 .1965 -58040.425 -58040.425 -58040.425 148.508639 .580404E-3 196500 197000 .197 -38213,838 -38213.838 -38213.838 163.117662 .382138E-3 .1975 -17033,508 -17033.508 -17033,508 171.94816 .170335E-3 197500 .198 4750.24391 4750.24391 4750.24391 174.687309 - .47502E-4 198000 198500 .1985 26365,7156 26365,7156 26365,7156 171.238073 -.26366E-3 .199 47047.1687 47047.1687 47047.1687 161.722643 -.47047E-3 199000 .1995 66061.9523 66061.9523 66061.9523 146.478108 -.66062E-3 199500 % % % % % % Final time step, PLTFIL dumps plot data to ".PL4" disk file Done dumping plot points to C-like disk file. 200000 0.2 82736.4584 82736.4584 82736.4584 126.044512 - .82736E-3

Extrema of output variables follow. Order and column positioning are the same as for the preceding time-step loop output. Variable maxima: 375013.98 375013.98 375013.98 753.64385 916.895959 Times of maxima : .048083 .048083 .048083 .045913 .047442 Variable minima : -500000. -500000. -500000. -19292.424 -19531.439 .041667 .041667 .041667 .040002 .040002 Times of minima : Blank card terminating all plot cards. BLANK PLOT ----- Present Program Memory storage figures for the preceding, now-completed data case. ------07-May-07 18:42:58 figure limit (name) A value of "-9999" indicates that no figure is available. Size List 1. Number of electric network nodes. 6 6000 (LBUS) Size List 2. Number of electric network branches. 3 10000 (LBRNCH) 192000 (LDATA) Size List 3. Number of data values in R, L, C tables. 3 900 (LEXCT) Size List 4. Number of electric network sources. 1 Size List 5. Storage for [Y] and triangularized [Y]. No. times = 4 2 8 420000 (LYMAT) Factors = Size List 6. Number of entries in switch table. No. flops = 74 1200 (LSWTCH) Size List 7. Number of distinct ALPHANUMERIC data names plus program SPY variables. 5 15000 (LSIZE7) 0 120000 (LPAST) Size List 8. History points of distributed lines. Size List 9. Number of nonlinear elements. 0 2250 (LNONL) Size List 10. Points of nonlinear characteristics. 3800 (LCHAR) 0 Size List 11. Number of Type-59 S.M. outputs. 0 720 (LSMOUT) Size List 12. Total number of EMTP output variables. Size List 13. Working space for batch/SPY plotting. 5 1200 (LSIZ12) -9999 72800 (LSIZ13) Size List 14. S.M./U.M. connections to TACS -9999 510 (LBSTAC) Size List 15. Character storage in bytes for MODELS. 1877 90000 (LCTACS) Size List 16. Total number of Type-59 S.M. masses. 800 (LIMASS) 0 Size List 17. Number of Type-59 Synchronous machines. 0 90 (LSYN) Size List 18. Branch and switch power/energy outputs. 0 254 (MAXPE) Size List 19. Total floating-point TACS table space. 23 120000 (LTACST) 100000 (LFSEM) Size List 20. Non-copied recursive convolution data. 0 Size List 21. Total modal/phase [T] matrix storage. Û 3000 (LFD) Size List 22. Total recursive convolution history. 0 15000 (LHIST) Size List 23. Giant vectors for renumbering, phasors. 8 192000 (LSIZ23) Size List 24. Peak phases of compensation for data. Λ 120 (LCOMP) Size List 25. Total table space for all U.M usage. -9999 30000 (LSPCUM) 160000 (LSIZ26) Size List 26. Square of max number of coupled phases. 1 Size List 28. MODELS. Total work space is divided into INTEGER and REAL. 1st, REAL: 1700 210000 (LRTACS) Second and last, statistics for INTEGER work space. 3602 0 (1) Size List 29. RAM disk used by "TAPSAV" table saving (limit is "LABCOM" size LTLABL). 0 (LITACS) -9999 300 (LSIZ29) Size List 30. Taku Noda frequency-dependent circuits. 0 19 (LSIZ30) ----- CP sec Wait sec Real sec Timing figures characterizing central processor (CP) solution speed. -----Data input time (through blank card ending branches) .... 0.016 0.000 0.016 0.000 0.000 0.000 Node renumbering and phasor solution .... After phasor solution, but before time-step loop .... 0.000 0.000 0.000 Integration of equations (time-step loop) .... 3,891 0.000 3.891 0.000 0.000 0.000 Plotting or STATISTICS termination overlays ....

Totals 3.906 0.000 3.906

### **APPENDIX E**

### **ATP FILE FOR SCENARIO 3**

Alternative Transients Program (ATP), GNU Linux or DOS. All rights reserved by Can/Am user group of Portland, Oregon, USA. Date (dd-mth-yy) and time of day (hh.mm.ss) = 07-May-07 18:52:36 Name of disk plot file is projecttemplate.pl4 Consult the 860-page ATP Rule Book of the Can/Am EMTP User Group in Portland, Oregon, USA. Source code date is 19 December 2003.

Total size of LABCOM tables = 9872109 INTEGER words. 31 VARDIM List Sizes follow: 6002 10K 192K 900 420K 1200 15K

120K 2250 3800 720 1200 72800 510 90K 800 90 254 120K 100K 3K 15K 192K 120 30K 160K 600 210K 300 19 200

Descriptive interpretation of input data carde	Input data card images are shown below all 80 columns, character by character					
Descriptive interpretation of input data cards. Input data card images are shown below, all so commiss, character by character $0$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$						
01234567890123	45678901234567890123456789012345678901234567890123456789012345678901234567890					
Comment card. NUMDCD = 1.	C data:PROJECTTEMPLATE.ATP					
Marker card preceding new EMTP data case.	BEGIN NEW DATA CASE					
Comment card. NUMDCD = 3.						
Comment card. NUMDCD = 4. $[0]$	C Generated by A1PDRAW May, Monday 7, 2007					
Comment card, NUMDCD = 5. $[Comment aard, NUMDCD = 6]$	A Bonnevine Power Administration program Programmed by H. K. Haidalen at SEFAS - NORWAY 1004-2003					
Comment card. NUMDCD = 0. $p$						
Comment card NUMDCD = 8	C dT >< Tmax >< Xont >< Cont >					
Misc. data. 5.000E-04 1.000E-01 0.000E+0	0 .0005 .1					
Misc. data. 500 1 1 1 1 0 0 1 0 0 50	0 1 1 1 1 0 0 1 0					
No TACS data, but MODELS data begins (next	). [MODELS					
Another ordinary MODELS data card.	INPUT					
Another ordinary MODELS data card.	IX0001 {v(XX0116)}					
Another ordinary MODELS data card.	[IX0002 {v(XX0007)}					
Another ordinary MODELS data card.	1X0003 {v(XX0014)}					
Another ordinary MODELS data card.	1XU004 {V(XXU110)}					
Another ordinary MODELS data card.						
Another ordinary MODELS data card.	A   B					
Another ordinary MODELS data card.						
Another ordinary MODELS data card.						
Another ordinary MODELS data card.	MODEL relay f					
Another ordinary MODELS data card.	INPUT V1 Voltage measured at first node [V]					
Another ordinary MODELS data card.	V2 Voltage mesaured at second node [V]					
Another ordinary MODELS data card.	V3 Voltage measured at third node [V]					
Another ordinary MODELS data card.	V4 Voltage measured at fourth node [V]					
Another ordinary MODELS data card.	DATA Vset Voltage threshold [V]					
Another ordinary MODELS data card.	Vset2 Voltage threshold [V]					
Another ordinary MODELS data card.	Vset3 Voltage threshold [V]					
Another ordinary MODELS data card.	VSet4 Voltage threshold [V]					
Another ordinary MODELS data card.	UAD trip A relevicentrolled signal [0 or 1]					
Another ordinary MODELS data card.	trip B relay controlled signal [0 or 1]					
Another ordinary MODELS data card.	trin C relay controlled signal [0 or 1]					
Another ordinary MODELS data card.	trip D relay controlled signal [0 or 1]					
Another ordinary MODELS data card.	OUTPUT trip A					
Another ordinary MODELS data card.	trip_B					
Another ordinary MODELS data card.	trip_C					
Another ordinary MODELS data card.	trip_D					
Another ordinary MODELS data card.	INIT trip_A:=1 close circuit breaker					
Another ordinary MODELS data card.	trip_B:=1 close circuit breaker					
Another ordinary MODELS data card.	trip_C:=1 close circuit breaker					
Another ordinary MODELS data card.	mp_D.~1 close circuit oreaker					
Another ordinary MODELS data card.						
Another ordinary MODELS data card.						
Another ordinary MODELS data card.	IF V1 <vset (threshold)<="" less="" measured="" relay="" setting="" td="" the="" voltage=""></vset>					
Another ordinary MODELS data card.	AND trip_A>0					
Another ordinary MODELS data card.	THEN					
Another ordinary MODELS data card.	trip_A:=1 circuit breaker remain closed					
Another ordinary MODELS data card.	ENDIF					
Another ordinary MODELS data card.						
Another ordinary MODELS data card.	11 V2 <v (threshold)<="" less="" measured="" relay="" set2="" setting="" td="" the="" voltage=""></v>					
Another ordinary MODELS data card.	THEN					
Another ordinary MODELS data card.	trip B =1 circuit breaker remain closed					
Another ordinary MODELS data card	ENDIF					
Another ordinary MODELS data card.						
Another ordinary MODELS data card.	IF V3 <vset3 (threshold)<="" less="" measured="" relay="" setting="" td="" the="" voltage=""></vset3>					
Another ordinary MODELS data card	AND trip_C>0					
Another ordinary MODELS data card.	THEN					
Another ordinary MODELS data card.	trip_C:=1 - circuit breaker remain closed					
Another ordinary MODELS data card.	ENDIF					
Another ordinary MODELS data card.	TEVA eVanta Manmund 1 1 1 1 1 1 1 1 1 1 1- 1					
Another ordinary MODELS data card.	IF V4 <vset4 (threshold)<="" less="" measured="" relay="" setting="" td="" the="" voltage=""></vset4>					

Another ordinary MODELS data card. Another ordinary MODELS data card.

AND trip_D>0 THEN trip_D:=1 -- circuit breaker remain closed ENDIF IF V1>Vset -- Measured voltage more than the relay voltage setting AND trip_A>0 THEN trip A:=0 -- relay send signal open circuit breaker ENDIF IF V2>Vset2 -- Measured voltage more than the relay voltage setting AND trip B>0 THEN trip B:=0 -- relay send signal open circuit breaker ENDIF IF V3>Vset3 -- Measured voltage more than the relay voltage setting AND trip C>0 THEN trip_C:=0 -- relay send signal open circuit breaker ENDIF IF V4>Vset4 -- lightning voltage more than the relay voltage setting AND trip D>0 THEN trip D:=0 -- relay send signal open circuit breaker ENDIF IF trip_A=0 -- circuit breaker open AND t>tset -- fault cleared THEN -- relay send signal to reclose circuit breaker trip A:=1 ENDIF IF trip B=0 -- circuit breaker open AND t>tset -- fault cleared THEN trip_B:=1 -- relay send signal to reclose circuit breaker ENDIF IF trip C=0 -- circuit breaker open AND t>tset -- fault cleared THEN trip C:=1 -- relay send signal to reclose circuit breaker ENDIF IF trip_D=0 -- circuit breaker open AND t>tset -- fault cleared THEN trip D:=1 -- relay send signal to reclose circuit breaker ENDIF ENDEXEC ENDMODEL USE relay_f AS relay_f INPUT V1:= 1X0001 V2:= IX0002 V3:= IX0003 V4:= IX0004 DATA Vset:= 4.6E5 Vset2:= 1.6E5 Vset3:= 1.111E15 Vset4:= 1.111E16 | tset:= 0.08 OUTPUT :=trip_A Α B :=trip_B

Another ordinary MODELS data card. I C :=trip C I D Another ordinary MODELS data card. :=trip_D Another ordinary MODELS data card, ENDUSE **ENDMODELS** Termination of data for Laurent Dube's MODELS. Comment card. NUMDCD = 140. 5 7 8 IC 1 2 3 Δ 6 Comment card. NUMDCD = 141. ÍC 3456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 Optional blank card follows last of MODELS data. |BLANK MODELS Comment card. NUMDCD = 143. |C < n | > < n | > < refl > < refl > < R > < L > < C >|C < n | > < n | > < refl > < refl > < R > < A > < B > < Leng > <> 0Comment card. NUMDCD = 144. 1.000E+00 1.000E-02 1.000E-07 II XX0174XX0003 1st of PI-ekt 1. 10. .1 1st of PI-ckt. 1.000E+00 1.000E-02 1.000E-07 |1 XX0003XX0116 1. 10. .1 2.000E+01 1.000E-06 0.000E+00 | XX0007XX0008 20. .001 Series R-L-C. 0 1st of PI-ckt. 1.000E+00 1.000E-02 1.000E-07 |1 XX0140XX0011 1. 10. .1 Series R-L-C. 1.000E+03 0.000E+00 0.000E+00 | XX0003 1.E3 0 2,000E+01 1.000E-06 0.000E+00 Series R-L-C. XX0014XX0015 20. .001 0 Series R-L-C. 2.000E+01 1.000E-06 0.000E+00 XX0110 20. .001 0 2,000E+01 1.000E-06 0.000E+00 XX0110XX0021 Series R-L-C. 20. .001 0 2.000E+01 1.000E-06 0.000E+00 20. .001 0 Series R-L-C. XX0110 1.000E+00 1.000E-02 1.000E-07 |1 XX0116XX0027 1st of PI-ckt. 1. 10. 1st of PI-ckt. 1.000E+00 1.000E-02 1.000E-07 1 XX0027XX0164 1. 10. .1 1st of PI-ckt. 1.000E+00 1.000E-02 1.000E-07 1 XX0030XX0031 1. 10, .1 Series R-L-C. 2.000E+01 1.000E-06 0.000E+00 XX0007 20. .001 0 Series R-L-C. 2.000E+01 1.000E-06 0.000E+00 XX0007 20. .001 û Series R-L-C. 1.000E+03 0.000E+00 0.000E+00 XX0011 1.E3 0 1st of PI-ckt. 1.000E+00 1.000E-02 1.000E-07 |1 XX0134XX0030 1. 10. .1 1.E3 1.000E+03 0.000E+00 0.000E+00 n Series R-L-C XX0027 1.000E+03 0.000E+00 0.000E+00 Series R-L-C XX0044 1 E3A 1.000E+00 1.000E-02 1.000E-07 |1 XX0044XX0166 1, 10. 1st of PI-ckt. 1 1.000E+00 1.000E-02 1.000E-07 |1 XX0011XX0156 1.000E+00 1.000E-02 1.000E-07 |1 XX0011XX0156 1.000E+00 1.000E-02 1.000E-07 |1 XX0156XX0049 1st of PI-ckt. 1. 10 .1 1st of PI-ckt 1. 10 .1 1.000E+00 1.000E-02 1.000E-07 |1 XX0049XX0138 1st of PI-ckt. 10 1. 1 1.000E+00 1.000E-02 1.000E-07 |1 XX0138XX0044 1st of PI-ckt. 1. 10. .1 1.000E+03 0.000E+00 0.000E+00 XX0030 1.E3 0 Series R-L-C. 2.000E+01 1.000E-06 0.000E+00 Series R-L-C. XX0014 20, .001 0 Series R-L-C. 2.000E+01 1.000E-06 0.000E+00 XX0014 20, .001 0 Series R-L-C. 1.000E+03 0.000E+00 0.000E+00 XX0049 1.E3 0 Blank card ending branches. IBR, NTOT = 27 22 |BLANK BRANCH Comment card. NUMDCD = 173. |C < n l>< n 2>< Tclose ><Top/Tde >< Ie ><Vf/CLOP >< type > Permanently-closed switch used for metering. X0164AX0019A MEASURING Permanently-closed switch used for metering. X0164BX0019B MEASURING Permanently-closed switch used for metering. X0164CX0019C MEASURING XX0024XX0106 Permanently-closed switch used for metering. MEASURING Permanently-closed switch used for metering. XX0075XX0140 MEASURING 1 Switch. TACS control = "D Switch. TACS control = "A 13XX0021XX0075 CLOSED D 0 .... 13XX0106XX0174 CLOSED A 0 X0019AX0166A MEASURING Permanently-closed switch used for metering. 1 X0019BX0166B MEASURING Permanently-closed switch used for metering. X0019CX0166C MEASURING Permanently-closed switch used for metering. XX0075XX0134 Permanently-closed switch used for metering. MEASURING X0031AXX0024 MEASURING Permanently-closed switch used for metering. X0031BXX0024 MEASURING Permanently-closed switch used for metering. Permanently-closed switch used for metering. X0031CXX0024 MEASURING 13XX0008XX0116 Switch. TACS control = "B CLOSED в 0 Switch. TACS control = "C 13XX0015XX0138 CLOSED С 0 Switch. 4.00E-02 8.00E-02 0.00E+00 0.00E+00 | XX0007XX0008 .04 .08 0 |BLANK SWITCH |C < n 1><>< Ampl. > Blank card ending switches. KSWTCH = 17. >< Freq. >< Phase/T0>< A1 >< T1 Comment card. NUMDCD = 192. >< TSTART >< TSTOP > Source. 5.00E+05 6.00E+01 0.00E+00 -1.00E+00 |14XX0024 0 5.E5 60. -1. 1. Source. 5.00E+05 6.00E+01 0.00E+00 -1.00E+00 |14X0019A 0 Source. 5.00E+05 6.00E+01 0.00E+00 -1.00E+00 |14XX0156 0 5.E5 60. -1 1. 5.E5 60. -ł 1 BLANK SOURCE Blank card ends electric sources. KCONST = 3

List of input elements that are connected to each node. Only the physical connections of multi-phase lines are shown (capacitive and inductive coupling are ignored). Repeated entries indicate parallel connections. Switches are included, although sources (including rotating machinery) are omitted -- except that U.M. usage produces extra, internally-defined nodes "UMXXXX".

From bus name | Names of all adjacent busses.

XX0174 |XX0003*XX0106* XX0003 |TERRA *XX0174*XX0116* XX0116 |XX0003*XX0008*XX0027* XX0007 |TERRA *TERRA *XX0008*XX0008* XX0008 |XX0116*XX007*XX0007* XX0140 |XX0011*XX0075* XX0014 |XX0011*XX0175* XX0014 |TERRA *XX0140*XX0156* XX0014 |TERRA *TERRA *XX0015* XX0015 |XX0014*XX0138* XX0110 |TERRA *TERRA *XX0021*

XX0021 |XX0110*XX0075* XX0027 TERRA *XX0116*XX0164* XX0164 XX0027* XX0030 |TERRA *XX0031*XX0134* XX0031 XX0030* XX0134 XX0030*XX0075* XX0044 |TERRA *XX0166*XX0138* XX0166 XX0044* XX0156 XX0011*XX0049* XX0130 JAA0011 AA00497 XX0049 [TERRA *XX0156*XX0138* XX0138 JXX0015*XX0044*XX0049* X0164A X0019A* X0019A X0164A*X0166A* X0164B X0019B* X0019B X0164B*X0166B* X0164C X0019C* X0019C X0164C*X0166C* XX0024 XX0106*X0031A*X0031B*X0031C* XX0106 XX0174*XX0024* XX0075 XX0140*XX0021*XX0134* X0166A X0019A* X0166B X0019B* X0166C X0019C* X0031A XX0024* X0031B XX0024* X0031C IXX0024* TERRA |XX0003*XX0007*XX0007*XX0011*XX0014*XX0014*XX0110*XX0110*XX0027*XX0030*XX0044*XX0049* Sinusoidal steady-state phasor solution, branch by branch. All flows are away from a bus, and the real part, magnitude, or "P" is printed above the imaginary part, the angle, or "Q". The first solution frequency = 6.0000000E+01 Hertz, Bus K Phasor node voltage Phasor branch current Power flow Power loss P and Q P and Q Bus M Rectangular Polar Rectangular Polar . 500000. 15631.144621674 16067.448379222 .39077861554E10 .129116542927E9 0.0 -3718.899734502 -13.3827799 .929724933625E9 82288276.4968863 XX0174 500000. 0.0 -15630.1041318 16070.67957831 XX0003 470313.40310007 473541.66055676 -.3778669612E10 -6.6940607 3737.1897112548 166.5529241 -.44743665713E9 -55199.70242032 XX0003 470313.40310007 473541.66055676 15159.790728696 15600.522599036 .36665487604E10 .121705060483E9 -55199.70242032 -6.6940607 -3681.990008834 -13.6515846 .447436657129E9 54757630.7134733 XX0116 441240,45653435 454421.90141834 -15156.70212167 15601.586317031 -.35448437E10 -108655.9892781 -13.8339098 3699.1723942871 166.2844199 .732097358496E7 147080.15217812 151473.96713945 -14707.94694201 15147.396711254 -.1147218136E10 .22944362713E10 XX0007 -13.8339098 3622.1435475398 166.1650102 -21624.55240199 43249,1048039 -36218.66309271 XX0008 441240,45653435 454421.90141834 14707.946942014 15147.396711254 .34416544069E10 -108655.9892781 -13.8339098 -3622.14354754 -13.8349898 64873.657205902 441240.45653435 454421.90141834 -15156.70212167 15601.586317031 XX0140 - 35448437E10 121705060483E9 -108655.9892781 -13.8339098 3699.1723942871 166.2844199 .732097358496E7 54757630.7134735 XX0011 470313,40310007 473541.66055676 15159.790728696 15600.522599036 .36665487604E10 -3681.990008834 -13.6515846 .447436657129E9 -55199.70242032 -6.6940607 TERRA 0.0 -470.3134031001 473.54166055676 0.0 .112120852141E9 0.0 0.0 0.0 55.199702420318 173.3059393 0.0 0.0000000 XX0003 470313.40310007 473541.66055676 470.31340310007 473.54166055676 .112120852141E9 -55.19970242032 -55199.70242032 -6.6940607 -6.6940607 -.5193214747E-9 147080.15217812 151473.96713945 -14707.94694201 15147.396711254 -.1147218136E10 .22944362713E10 XX0014 -36218.66309271 -13.8339098 3622.1435475398 166.1650102 -21624.55240199 43249.1048039 XX0015 441240,45653435 454421.90141834 14707.946942014 15147.396711254 34416544069E10 -108655.9892781 -13.8339098 -3622.14354754 -13.8349898 64873.657205902 TERRA 0.0 -7353,973471007 7573.6983556268 0.0 .57360906782E9 0.0 1811.0717737699 166.1650102 0.0 10812.2762010 0.0 XX0110 147080.15217812 151473.96713945 7353.9734710072 7573.6983556268 .57360906782E9 -36218.66309271 -13.8339098 -1811.07177377 -13.8349898 10812.276200976 147080.15217812 151473.96713945 -14707.94694201 15147.396711254 -.1147218136E10 .22944362713E10 XX0110 -13,8339098 3622,1435475398 -36218.66309271 166,1650102 -21624,55240195 43249,1048039 XX0021 441240,45653435 454421.90141834 14707.946942014 15147.396711254 .34416544069E10

-108655.9892781 -13.8339098 -3622.14354754 -13.8349898 64873.657205855

 TERRA
 0.0
 0.0
 -7353.973471007
 7573.6983556268
 0.0
 .57360906782E9

 0.0
 0.0
 1811.0717737699
 166.1650102
 0.0
 10812.2762010

XX0110 147080.15217812 151473.96713945 7353.9734710072 7573.6983556268 .57360906782E9 -36218.66309271 -13.8339098 -1811.07177377 -13.8349898 10812.276200976

XX0116 441240.45653435 454421.90141834 448.75517965811 455.3181903913 .103189292945E9 103415.57255826 -108655.9892781 -13.8339098 -77.02884674733 -9.7399053 -.73858472422E7 -3499464.5130083

XX0027 440472.00250596 454061.31907626 -444.6288105824 454.38404987028 -.10308587737E9 -110254.6891958 -14.0529765 93.648735050727 168.1060769 .388638272916E7

XX0027 440472.00250596 454061.31907626 4.1568080764324 17.118316694451 36.63219885161 36.632198883101 -110254.6891958 -14.0529765 16.605954145042 75.9464834 -.38863827292E7 -3886382.7291512

XX0164 440501.22647429 454093.58740888 .9982878239E-13 .1991890605E-12 .31490894607E-7 -110270.8284204 -14.0540566 -.172367329E-12 -59.9221640 .3245990859E-7

XX0030 440472.00250596 454061.31907626 4.1568080764324 17.118316694451 36.632198851351 36.632198883265 -110254.6891958 -14.0529765 16.605954145042 75.9464834 -.38863827292E7 -3886382.7291512

XX0031 440501.22647429 454093.58740888 .102846117E-12 .1969621613E-12 .31913483329E-7 -110270.8284204 -14.0540566 -.167978478E-12 -58.5226271 .31326899604E-7

 TERRA
 0.0
 0.0
 -7353.973471007
 7573.6983556268
 0.0
 .57360906782E9

 0.0
 0.0
 1811.0717737699
 166.1650102
 0.0
 10812.2762010

XX0007 147080.15217812 151473.96713945 7353.9734710072 7573.6983556268 .57360906782E9 -36218.66309271 -13.8339098 -1811.07177377 -13.8349898 10812.276200993

 TERRA
 0.0
 0.0
 -7353.973471007
 7573.6983556268
 0.0
 .57360906782E9

 0.0
 0.0
 1811.0717737699
 166.1650102
 0.0
 10812.2762010

XX0007 147080.15217812 151473.96713945 7353.9734710072 7573.6983556268 57360906782E9 -36218.66309271 -13.8339098 -1811.07177377 -13.8349898 10812.276200993

 TERRA
 0.0
 0.0
 -470.3134031001
 473.54166055676
 0.0
 .112120852141E9

 0.0
 0.0
 55.199702420318
 173.3059393
 0.0
 0.0000000

XX0011 470313.40310007 473541.66055676 470.31340310007 473,54166055676 .112120852141E9 -55199.70242032 -6.6940607 -55.19970242032 -6.6940607 -.8858478395E-9

XX0134 441240.45653435 454421.90141834 448.75517965811 455.3181903913 .103189292945E9 103415.57255826 -108655.9892781 -13.8339098 -77.02884674733 -9.7399053 -.73858472422E7 -3499464.5130083

XX0030 440472.00250596 454061.31907626 -444.6288105824 454.38404987028 -.10308587737E9 -110254.6891958 -14.0529765 93.648735050727 168.1060769 .388638272916E7

 TERRA
 0.0
 0.0
 -440.472002506
 454.06131907626
 0.0
 .103085840741E9

 0.0
 0.0
 110.25468919581
 165.9470235
 0.0
 0.0000000

XX0027 440472.00250596 454061.31907626 440.47200250596 454.06131907626 .103085840741E9 -110254.6891958 -14.0529765 -110.2546891958 -14.0529765 .29831426218E-9

 TERRA
 0.0
 0.0
 -440.472002506
 454.06131907626
 0.0
 .103085840741E9

 0.0
 0.0
 110.25468919581
 165.9470235
 0.0
 0.0000000

XX0044 440472.00250596 454061.31907626 440.47200250596 454.06131907626 .103085840741E9 -110254.6891958 -14.0529765 -110.2546891958 -14.0529765 .29831426218E-9

XX0044 440472.00250596 454061.31907626 4.1568080764324 17.118316694451 36.63219885161 36.632198883101 -110254.6891958 -14.0529765 16.605954145042 75.9464834 -.38863827292E7 -3886382.7291512

XX0166 440501,22647429 454093,58740888 .9982878239E-13 .1991890605E-12 .31490894607E-7 -110270.8284204 -14.0540566 -,172367329E-12 -59.9221640 .3245990859E-7

XX0011 470313,40310007 473541.66055676 -15630.1041318 16070.67957831 -.3778669612E10 .129116542927E9 -55199.70242032 -6.6940607 3737.1897112547 166.5529241 -.44743665713E9 82288276.4968865

XX0156 500000, 500000. 15631.144621674 16067.448379222 .39077861554E10 0.0 0.0 -3718,899734502 -13.3827799 .929724933625E9

XX0156 500000. 500000. 15631.144621674 16067.448379222 .39077861554E10 .129116542927E9 0.0 0.0 -3718.899734502 -13.3827799 .929724933625E9 82288276.4968863

XX0049 470313.40310007 473541.66055676 -15630.1041318 16070.67957831 -.3778669612E10 -55199.70242032 -6.6940607 3737.1897112548 166.5529241 -.44743665713E9

XX0049 470313.40310007 473541.66055676 15159.790728696 15600.522599036 .36665487604E10 .121705060483E9

-55199.70242032 -6.6940607 -3681.990008834 -13.6515846 .447436657129E9 54757630.7134733

XX0138 441240.45653435 454421.90141834 -15156.70212167 15601.586317031 -.35448437E10 -108655.9892781 -13.8339098 3699.1723942871 166.2844199 .732097358496E7

XX0138 441240.45653435 454421.90141834 448.75517965811 455.3181903913 .103189292945E9 103415.57255826 -108655.9892781 -13.8339098 -77.02884674733 -9.7399053 -.73858472422E7 -3499464.5130083

XX0044 440472.00250596 454061.31907626 -444.6288105824 454.38404987028 -.10308587737E9 -110254.6891958 -14.0529765 93.648735050727 168.1060769 .388638272916E7

 TERRA
 0.0
 0.0
 -440.472002506
 454.06131907626
 0.0
 .103085840741E9

 0.0
 0.0
 110.25468919581
 165.9470235
 0.0
 0.0000000

XX0030 440472.00250596 454061.31907626 440.47200250596 454.06131907626 .103085840741E9 -110254.6891958 -14.0529765 -110.2546891958 -14.0529765 -.225554686E-9

 TERRA
 0.0
 0.0
 -7353.973471007
 7573.6983556268
 0.0
 .57360906782E9

 0.0
 0.0
 1811.0717737699
 166.1650102
 0.0
 10812.2762010

XX0014 147080.15217812 151473.96713945 7353.9734710072 7573.6983556268 .57360906782E9 -36218.66309271 -13.8339098 -1811.07177377 -13.8349898 10812.276200993

 TERRA
 0.0
 0.0
 -7353.973471007
 7573.6983556268
 0.0
 .57360906782E9

 0.0
 0.0
 1811.0717737699
 166.1650102
 0.0
 10812.2762010

XX0014 147080.15217812 151473.96713945 7353.9734710072 7573.6983556268 .57360906782E9 -36218.66309271 -13.8339098 -1811.07177377 -13.8349898 10812.276200993

 TERRA
 0.0
 0.0
 -470.3134031001
 473.54166055676
 0.0
 .112120852141E9

 0.0
 0.0
 55.199702420318
 173.3059393
 0.0
 0.0000000

XX0049 470313,40310007 473541,66055676 470.31340310007 473.54166055676 .112120852141E9 -55199.70242032 -6.6940607 -55.19970242032 -6.6940607 -.5193214747E-9 Total network loss P-loss by summing injections = 1.172335846626E+10

Output for steady-state phasor switch currents.

Julput tot six	cauy-siaic pi	14301 SWHCH CHITC	uis.					
Node-K	Node-M	I-real	I-imag	I-magn	Degrees	Power	Reactive	
X0164A	X0019A	0.00000000E+	00 0.000	00000E+00	0.0000000E+	00 0.0000	0.00000000E+00	0.00000000E+00
X0164B	X0019B	0.00000000E+0	0.0000 00	00000E+00	0.00000000E+	0000,0 00	0.00000000E+00	0.00000000E+00
X0164C	X0019C	0.00000000E+(	0.0000	00000E+00	0.00000000E+	0000,0 00	0.00000000E+00	0.0000000E+00
XX0024	XX0106	1.56311446E+	04 -3.718	89973E+03	1.60674484E+	-04 -13,3828	3.90778616E+09	9.29724934E+08
XX0075	XX0140	-1.51567021E+	04 3.699	17239E+03	1.56015863E+	-04 166.284	4 -3.54484370E+09	7.32097358E+06
XX0021	XX0075	-1.47079469E+	04 3,622	14355E+03	1.51473967E+	-04 166.165	0 -3,44165441E+09	-6.48736572E+04
XX0106	XX0174	1.56311446E+	04 -3,718	89973E+03	1.60674484E+	-04 -13.3828	3.90778616E+09	9,29724934E+08
X0019A	X0166A	0.00000000E+	00 0.000	00000E+00	0.00000000E+	00 0.0000	0,00000000E+00	0.00000000E+00
X0019B	X0166B	0.00000000E+0	0000.0 00	00000E+00	0.00000000E+	0000.0000	0.00000000E+00	0.00000000E+00
X0019C	X0166C	0.00000000E+0	0.0000	00000E+00	0.0000000E+	0000.0000	0.00000000E+00	0.0000000E+00
XX0075	XX0134	4.48755180E+	02 -7,702	88467E+01	4.55318190E+	-02 -9.7399	1.03189293E+08	-7.38584724E+06
X0031A	XX0024	0.00000000E+	00 0.000	00000E+00	0.00000000E+	00 0.0000	0,00000000E+00	0.00000000E+00
X0031B	XX0024	0.00000000E+4	00 0.0000	00000E+00	0.00000000E+	00 0.0000	0.00000000E+00	0.00000000E+00
X0031C	XX0024	0.00000000E+	00 0.0000	00000E+00	0.00000000E+	0000.0 00	0.00000000E+00	0,0000000E+00
XX0008	XX0116	-1.47079469E+	04 3,622	14355E+03	1.51473967E+	-04 166.165	0 -3.44165441E+09	-6.48736572E+04
XX0015	XX0138	-1.47079469E+	04 3,622	14355E+03	1.51473967E+	-04 166.165	0 -3.44165441E+09	-6.48736572E+04
XX0007	XX0008	Open	Open	Open	Open	Open	Open	

Solution at nodes with known voltage. Nodes that are shorted together by switches are shown as a group of names, with the printed result applying to the composite group. The entry "MVA" is SQRT( $P^{**2} + Q^{**2}$ ) in units of power, while "P.F." is the associated power factor.

Node name	Source no Rectangular	de voltage Polar	Injected sourc Rectangular	e current Polar	Injecte P and Q	d source power MVA and P.F.	
XX0156	500000, 0.0 0.	500000. 0 -7437.7	31262.289243348 99469003 -13.38	32134.8967: 27799 .18	58444 .78 594498673E	3155723108E10 10 0,972845	.80337241896E10 5
X0019A X0166A X0164A	500000.	500000.	0.0	0.0	0.0	0.0	
XX0024	0.0 0.	0 0	0.0 0.0	0.0	0.0		
X0031C X0031B X0031A							
XX0174 XX0106	500000.	500000.	15631.144621674 99734502 •13 38	16067,4483° 27799 924	79222 .39	)077861554E10	.40168620948E10
	v.u U.	0 5710.0	-10,50				~

Card of names for time-step loop output.

XX0014XX0156XX0027XX0027XX0027XX0031XX0030XX0075XX0044XX0138XX0116X0019AXX0024

Card of names for time-step loop output. | XX0007XX0007XX0110 Blank card ending requests for output variables. |BLANK OUTPUT Column headings for the 22 EMTP output variables follow. These are divided among the 5 possible classes as follows .... First 16 output variables are electric-network voltage differences (upper voltage minus lower voltage); Next 6 output variables are branch currents (flowing from the upper node to the lower node); XX0075 XX0044 XX0138 Time XX0014 XX0156 XX0027 XX0027 XX0027 XX0031 XX0030 Step XX0116 X0019A XX0024 XX0007 XX0007 XX0110 X0164A XX0024 XX0075 X0019A X0019A XX0106 XX0140 X0166A XX0075 X0031A XX0134 XX0024 500000. 440472.003 440472.003 440472.003 440501.226 440472.003 441240.457 440472.003 441240.457 147080.152 0 0.0 441240.457 500000. 500000. 147080.152 147080.152 147080.152 0.0 15631.1446 -15156.702 0.0 448.75518 0.0 Done dumping plot points to C-like disk file. 0.1 147031.082 500000, 504091.685 504091.685 504091.685 440352.462 440323.073 441093.224 440323.095 200 441093.246 423716.305 500000. 500000. 141287.441 141287.441 147031.075 .005 -.005 15015.7393 -15151.696 448.652837 - 005 Extrema of output variables follow. Order and column positioning are the same as for the preceding time-step loop output. Variable maxima: 151442.859 500000. 1901582E7 1901582E7 1901582E7 454013.767 453981.268 454328.561 453981.283 454328.576 2011455E7 500000. 500000. 206529.472 206529.472 151442.854 .005 21123.4598 15598.0573 .005 455.222787 .005 .0495 .084 0495 084 084 0.0 .0495 034 084 084 Times of maxima : .0495 0.0 .049 .084 .025 .049 .009 .05 0.0 .049 5E-3 025 Variable minima : -151442.86 -500000. -604231.18 -604231.18 -604231.18 -454013.77 -453981.27 -454328.56 -453981.28 -454328.58 -467443.78 -500000. -500000. -341270.52 -341270.52 -151442.85 -.005 -34809.863 -15598.057 -.005 -.005 -455.17799 .009 .025 .0925 .0925 .0925 .059 .059 .009 .059 .009 Times of minima : .05 .0435 084 025 .092 .025 .025 .0435 .0435 .009 .0255 .05 BLANK PLOT Blank card terminating all plot cards. ----- Present Program Memory storage figures for the preceding, now-completed data case. -----A value of "-9999" indicates that no figure is available. 07-May-07 18:52:37 figure limit (name) 6000 (LBUS) Size List 1. Number of electric network nodes. 37 10000 (LBRNCH) Size List 2. Number of electric network branches. 27 Size List 3. Number of data values in R, L, C tables. 27 192000 (LDATA) Size List 4. Number of electric network sources. 3 900 (LEXCT) 108 420000 (LYMAT) Size List 5. Storage for [Y] and triangularized [Y]. No. times = 6 Factors = 44 1200 (LSWTCH) Size List 6. Number of entries in switch table. No. flops = 2217 Size List 7. Number of distinct ALPHANUMERIC data names plus program SPY variables. 15000 (LSIZE7) 11 Size List 8. History points of distributed lines. 0 120000 (LPAST) Size List 9. Number of nonlinear elements. 2250 (LNONL) 0 Size List 10. Points of nonlinear characteristics. 0 3800 (LCHAR) Size List 11. Number of Type-59 S.M. outputs. 720 (LSMOUT) 0 Size List 12. Total number of EMTP output variables. 2.2. 1200 (LSIZ12) -9999 72800 (LSIZ13) Size List 13. Working space for batch/SPY plotting. Size List 14. S.M./U.M. connections to TACS. -9999 510 (LBSTAC) 2583 90000 (LCTACS) Size List 15. Character storage in bytes for MODELS. Size List 16. Total number of Type-59 S.M. masses. 0 800 (LIMASS) Size List 17. Number of Type-59 Synchronous machines. 90 (LSYN) Û Size List 18. Branch and switch power/energy outputs. 0 254 (MAXPE) Size List 19. Total floating-point TACS table space. 23 120000 (LTACST) Size List 20. Non-copied recursive convolution data. 0 100000 (LFSEM) Size List 21, Total modal/phase [T] matrix storage. 3000 (LFD) 0 15000 (LHIST) Size List 22. Total recursive convolution history. 0 Size List 23. Giant vectors for renumbering, phasors. 192000 (LSIZ23) 66 120 (LCOMP) Size List 24. Peak phases of compensation for data. 0 Size List 25. Total table space for all U.M usage. -9999 30000 (LSPCUM) Size List 26. Square of max number of coupled phases. 160000 (LSIZ26) 1 Size List 28. MODELS. Total work space is divided into INTEGER and REAL. 1st, REAL: 1748 210000 (LRTACS)

Second and last, statistics for INTEGER work space	ce. 5594 0 (LITACS)
Size List 29. RAM disk used by "TAPSAV" table saving (limit is	"LABCOM" size LTLABL)9999 300 (LSIZ29)
Size List 30. Taku Noda frequency-dependent circuits.	0 19 (LSIZ30)
Timing figures characterizing central processor (CP) solution speed	CP sec Wait sec Real sec
Data input time (through blank card ending branches)	0.016 0.000 0.016
Node renumbering and phasor solution	0.000 0.000 0.000
After phasor solution, but before time-step loop	0.000 0.000 0.000
Integration of equations (time-step loop)	0.016 0.000 0.016
Plotting or STATISTICS termination overlays	0.000 0.000 0.000

Totals 0.031 0.000 0.031