
CAR TRACTION CONTROL SYSTEM

By

ADIBAH BINTI MOHD ISMAIL

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements

for the Degree

Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Universiti Teknologi Petronas

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

© Copyright 2007

by

Adibah Binti Mohd Ismail, 2007

Approved:

, 1/rf-

CERTIFICATION OF APPROVAL

CAR TRACTION CONTROL SYSTEM

by

Adibah Binti Mohd Ismail

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Dr. Nor Hisham Hamid

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2007

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

Adibah Binti Mohd Ismail

iii

ABSTRACT

This project explores the potential of implementing fuzzy logic algorithm for traction

control system using VHDL. Previously, the project on car traction control was done

by simulation using fuzzy logic approach. The Fuzzy Logic Toolbox in MATLAB

software is used to create simulation for fuzzy logic system. The challenge of the

project is to design the control system using hardware description language for future

implementation on hardware using FPGA. Fuzzy logic controller provides optimum

control according to the conditions specify. It is useful when the driving condition is

uncontrolled. The core programming language which will be used as the hardware

description language is VHSIC Hardware Description Language (VHDL). VHDL is

used in FPGA - based implementation. The methodology includes designing the

fuzzy logic controller, development of the algorithm and codes programming. After

that, the following phase includes testing and troubleshooting. Lastly, carry out the

documentation. In conclusion, it is possible to develop the algorithm for fuzzy - based

car traction control system using VHDL. The implementation of the control system

using VHDL is viable for future implementation onto FPGA. Thus the performance

of the car traction control would be enhanced

iv

ACKNOWLEDGEMENTS

"In the name of Allah, Most Gracious, Most MercifUl"

The project would not have been possible without the help of a number of people. I

would like to express my utmost gratitude to all of them.

My foremost gratitude goes to my Final Year Project supervisor, Dr. Nor Hisham

Hamid for his guidance and endless supports in accomplishing this project. The

experience of being supervised by him is priceless. He has continuously encouraged

and challenged me throughout this project. His critics and suggestions were valuable

in determining the final outcome of the project.

I would also like to express my gratitude to all UTP technicians for their guidance

and assistant while completing my project.

Last but not least, I would like to thanks to my beloved family for their love and

support which is the source of my strength and motivation. Not forgetting to all of my

friends who have directly or indirectly given their assistance in various aspects

throughout the development of the project, I thank them all.

v

TABLE OF CONTENTS

LIST OF TABLES __ viii

LIST OF FIGURES ___ ix

LIST OF ABBREVIATIONS __ x

CHAPTER 1 INTRODUCTION ___ !

1.1 Background ofStudY ... I

1.2 Problem Statement·····-----·--·-·---·-··-·--·-----·-·-·-----·----------------------------------1
1.3 Objectives ___ 4

1.4 Scope of Study _________ ···--·---·----·-·-----------4

CHAPTER 2 LITERATURE REVIEW ------------------------···---------------------------------------5

2.1 Car Traction Control System·--------------------------------------··--···----·--··------·5
2 .1.1 Traction _______________________________________ _ __ __ ... _. ___ .. ______________ 5

2.1.2 Traction Control System __ 5

2.2 Fuzzy Logic ___ 6

2 .2.1 Fuzzy Logic __ . _. _____ ____ ... ___________________ 6

2.2.2 Fuzzy Logic Controller __) 0

2.2.3 Fuzzy Logic on Hardware_·--······----··--10

2.3 Discussion ----·--·····----·----·--_11
CHAPTER 3: METHODOLOGY I PROJECT WORK 16

3.1 The Overall Fuzzy Logic Controller Simulation ____________________________ _l6

3.1.1 The FIS Editor 16

3.1.2 The Membership Function Editor __ l7

3.1.3 The Rule Editor__ __ I?

3.2 Architecture, Design Specification & Familiarize with

VHD L Coding_ ___ __ _________ 19

3.3 Development VHDL Coding for Individual Sub- Block _______________ 20

3.4 Integrating All Sub- Blocks __ .. _________________________ _20

3.5 Simulation & Design Verification __ 21

CHAPTER 4: RESULTS & DISCUSSION ___ 22

4.1 Simulation Using MATLAB .. ______________ 22

4.2 The Development ofVHDL Coding __ 29

vi

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS ___________________________________ 32

5.1 Conclusion ___ 32

5.2 Recommendations for Future Works __ _33

REFERENCES ___ 34

APPENDICES --36
APPENDIX A VHDL SOURCE CODES ___ 37

APPENDIX B TEST BENCH SOURCE CODES ________________________________ 42

vii

LIST OF TABLES

Table 1: Membership functions for input parameters (Load} ____________________________________ l2

Table 2: Membership functions for input parameters (Corner) -------------------------------..12

Table 3: Membership functions for input parameters (Speed).__ ______________________________ J2

Table 4: Membership functions for output parameters (Front Spring Rate) ___________ _13

Table 5: Membership functions for output parameters (Rear Spring Rate) ____________ _I3

Table 6: If- Then Rules 14

viii

LIST OF FIGURES

Figure 1: Car Traction ControL .. 6

Figure 2: Classical Logic versus Fuzzy Logic ... }

Figure 3: A Typical Membership Function ... 8

Figure 4: Fuzzy Logic Phases .. 8

Figure 5: Crisp Sets versus Fuzzy Sets ... 9

Figure 6: MA TLAB FIS Editor Main Screen 17

Figure 7: MATLAB Rule Editor Main Screen 18

Figure 8: The Block Diagram for a Fuzzy Logic Controllerl9

Figure 9: The Block Diagram for Fuzzification., ,. , 20

Figure 10: Aldec Active HDL 5.1 Main Screen ... 21

Figure II: Membership Function for Corner Input .. 22

Figure 12: Membership Function for Load InpuL ... 23

Figure 13: Membership Function for Speed Input... ... 23

Figure 14: Membership Function for Front Spring Rate Output. 23

Figure 15: Membership Function for Rear Spring Rate Output 24

Figure 16: Rule Viewer When Corner= -4, Load= 1.49 and Speed = 0 25

Figure 17: Rule Viewer When Corner= 3.5, Load= 1.49 and Speed= 0 27

Figure 18: Rule Viewer When Corner= 0, Load = 1.49 and Speed = 0 28

Figure 19: The Simulation Results for Subtractor .. 29

Figure 20: The Simulation Results for Multiplication .. 30

Figure 21: The Simulation Results for Comparator30

Figure 22: The Output Waveform of Verification for the Integrated Sub- Block_} I

ix

LIST OF ABBREVIATIONS

ASIC : Application Specific Integrated Circuit

EDA : Electronic Design Automation

FIS : Fuzzy Inference System

FPGA : Field Programmable Gate Array

GUI : Graphical User Interface

MF : Membership Functions

VHDL : VHSIC Hardware Description Language

VHSIC: Very High Speed Integrated Circuit

X

1.1 Background of Study

CHAPTER I

INTRODUCTION

The advancement in control system and technology has lead to an improved safety

feature in automotive industry. Currently, many modem vehicles are equipped with

the traction control system. This feature is very important in providing a better and

enhanced safety and performance of vehicles while on road.

Basically, the word of 'traction' in Oxford Advanced Leamer's Dictionary means the

capability of a wheel to grip the road without slipping [1]. Traction control system

will prevent the loss of grip on the wheels [2]. Traction control system is beneficial to

both road and race cars [3]. It enables a car to accelerate and also allows cars to

maintain the maximum traction in order to reduce wheel slip when the car is under

acceleration. As mentioned earlier, most modem car manufacturers have offered the

traction control system and the control system is part of the main component in the

suspension system of cars [4]. The suspension system enables the vehicle to move on

rough surface with minimum of bumpy ride and also reduces tendency of loosing

traction [4].

These control systems will ensure a smooth driving and also provide an improved

safety measures to the driver and also the passengers in the vehicle.

1.2 Problem Statement

Control system is typically design based on either conventional control method or

fuzzy logic method [5]. A conventional control method or design initially involves

understanding of the physical or the objectives of the system and its requirements.

Then, the control system designer has to develop the model of the system based on

the understanding from the previous step. The following step is to determine a

1

simplified version of the control system using the linear - control theory. This next

step involves the development of an algorithm for the simplified control system. The

final step is the simulation of the control system design. If the results or performance

from the observation of the simulation does not achieve the requirement, the system

has to be modified.

In fuzzy logic design, the designer has to initially understand and determine the

system behavior through knowledge and experience. This is followed by developing

the control algorithm using the fuzzy rules. Fuzzy rules explain the relationship

between inputs and outputs. The final step is to simulate and debug the control

system design [5].

From both types of designing approaches, fuzzy logic approach offers a more simple

method. The fuzzy rule - based feature is mainly focusing in application instead of

programming. Fuzzy logic is flexible and tolerant of imprecise data [6]. Fuzzy logic

controller can deal with complicated and imprecise nonlinear processes [7].

Following are the reasons why fuzzy control system is favorable among engineers

[8]:

l) Rule - based inference is powerful and easy

2) Fuzzy control offered efficient technology at low cost for automation in

industry

3) Fuzzy control was suitable for practicing engineers and people without

mathematical background

4) Fuzzy control could easily deal with nonlinear control problems with

langnage by introducing human- knowledge into controllers

5) Fuzzy technology was able to solve problems which had not been solved

Fuzzy logic plays the major role in the traction control system. Since the traction

control system needs to determine when the wheels are loosing the grip, fuzzy logic

2

will help the traction control system in decision making in order to take action so that

the vehicle will maintain at maximum traction.

The implementation of fuzzy logic controller on standard hardware such as general­

purpose microprocessors is very favorable. Hardware implementation of the fuzzy

logic controller can be divided into dedicated hardware and standard hardware. In

dedicated hardware, fuzzy chips are implemented on an Application Specific

Integrated Circuit (ASIC). The implementation of ASIC offers high speed.

Unfortunately, once chips are created, no changes can be done. Therefore, the

implementation of fuzzy logic - based car traction control system on Field

Programmable Gate Array (FPGA) is considered. The consideration is due to its

flexibility. FPGA is a semiconductor device that consists of programmable logic

components and programmable interconnects. FPGA can be reconfigured by user

and reprogram for many different designs. By using an appropriate electronic design

automation (EDA) tool, FPGA can produce the desired system design for quick

prototyping. FPGA can execute desired algorithm instead of a sequence of

instructions on predefined hardware resources. Designs for FPGA are defined in a

hardware language such as VHSIC hardware description language (VHDL) and are

verified by simulation. Many designs can be implemented due to reusability of the

FPGA. Hence, FPGA is suitable for fast implementation and quick hardware

verification.

In the electronic system, the hardware description languages that are most widely

used are VHDL and Verilog. However, VHDL promotes portable descriptions. This

is because VHDL is independent of design methodology. It describes the behavior of

an electronic system. Such description allows simulator to simulate the behavior of

the system without having to actually construct the system [9]. Therefore, the design

cycle could be reduced. Thus this project would utilize VHDL as the hardware

descriptive language.

In this project, the main concern is implementing traction control system using

VHDL for future implementation on FPGA. The traction control system will be

designed using the fuzzy logic approach. In other words, the traction control is an

implementation of a fuzzy logic controller.

3

1.3 Objectives

The main objective of this project is to develop the fuzzy logic based control system

using VHDL for future implementation on FPGA.

1.4 Scope of Study

This project only involves with the electronic part of the traction control system. The

scope of study will not deal with the mechanical part. By leaving the mechanical

portion out, the outcome of the project will not be affected. The scope of the study is

divided into the following sections:

I) Understanding on how fozzy logic based traction control system work

The understanding is done by using the existing design (previous work) [4]. Then,

based on the findings from the existing design, the simulation of the fuzzy logic is

done on MA TLAB.

2) Development of the fuzzy logic basic traction controller using VHDL for

hardware implementation

Upon developing the controller using VHDL, the main blocks for the structure of

the control system need to be determined. The construction of VHDL coding is

done using Aldec Active HDL 5.1.

4

CHAPTER2

LITERATURE REVIEW

This project is related to the traction control system, fuzzy logic and FPGA. Thus,

this section of the report provides the related literature reviews which have been

thoroughly reviewed. This section will increase the understanding and knowledge

related to the project.

2.1 Car Traction Control System

2.1.1 Traction

Traction is referring to the car's ability to maintain adhesive friction between the

vehicle and the surfuce [3].

2.1.2 Traction Control System

The system is consisted of springs and the shock absorbers. The purpose of the

springs is to sustain the weight and the load of the vehicle. The shock absorbers help

to reduce and control spring actions. The shock absorber will quickly remove the

unwanted bouncing when the vehicle travels over holes or bumpy roads. The shock

absorbers will only allow the necessary spring movement. Thus, the safety and

performance of the driving will be enhanced. Figure l shows the electronically

controlled air suspension that consists of the following components [4]:

I) Sensors

The sensors will receive the appropriate data and channel to the controller.

Basically these sensors are used in measuring acceleration and force.

5

II) Electronic Control Unit

The control unit will receive the data from the sensors. It will process them to

decide the appropriate actions to be taken according to the data received. In this

project the control unit will control the damper setting depending on the road

conditions.

!!)Dampers

The functions of the dampers are for controlling the springs. The dampers can be

medium, soft or super- soft. These dampers are controlled by solenoids valves.

Wheel Speed
Sensor

Figure 1: Car Traction Control [1 0]

Traction control system deals with the loss of friction during acceleration. The

control system is also deals with the suspension system which reduces the

possibility of losing the traction between tires and road surface during cornering

[4].

2.2 Fuzzy Logic

2.2.1 Fuzzy Logic

The concept of fuzzy logic was first introduced in 1960's by Professor Lofti Zadeh

from the University of California at Berkley. Fuzzy logic is a methodology for

describing operational laws of a system in linguistic terms instead of mathematical

equations [II]. Fuzzy logic begins with the theory of a fuzzy set. A fuzzy set is a set

with blurry boundaries. Fuzzy set expresses vague concepts [12]. Fuzzy logic allows

6

the programmer to deal with natural, "linguistic sets" of states, such as very hot,

warm, cool, cold, etc [5]. Fuzzy logic is able to estimate human decision - making

using natural - language terms instead of quantitative terms [5].1t is helpful in

formulating an extremely difficult algorithm solutions.

"No"

(a) Classical Logic: Elements are either

(b) Fuzzy Logic: Allowing elements to exist in between

Figure 2: Classical Logic versus Fuzzy Logic [13]

Fuzzy theory is a mathematical theory that describes ambiguities using quantitative

description [14]. Hence, fuzzy logic caters for elements that are existing in between

true or false unlike the classical logic. These elements are partially true and false as

shown in Figure 2.

The limits of a fuzzy set are governed by degree of membership in a fuzzy set.

Membership function is a curve that classifies how input is mapped to a degree of

membership. The degree of membership of an element to a fuzzy set is a

representation of the degree of the participation of the element to the set. Fuzzy set

allows each element of X to belong to the set with a membership degree characterized

by values that vary between 0 and I [14]. A typical membership function for a fuzzy

set is displayed in Figure 3.

7

Multiple
Crisp
Inputs

Figure 3: A Typical Membership Function

Figure 3 shows that the input for Comer can be classified to Very Smooth, Smooth,

Rather Sharp, Sharp and Very Sharp. The x- axis represent the input whereas the y­

axis represents the degree of the membership function.

Figure 4 show the application of fuzzy logic involves three steps: fuzzification, rule

evaluation, and defuzzification [4].

Fuzzification

!) Fuzzi.fication

Inference
(Rule Definition)

Figure 4: Fuzzy Logic Phases [II]

Defuzzification
Multiple

Crisp
Outputs

In this phase, the crisp inputs are converted into fuzzy membership functions. Crisp

inputs are non - fuzzy inputs. Figures 5 show the differences between crisp sets and

fuzzy membership sets.

8

Middle age Old age
I . \. , /-""'

-~ ',_I \

I ~ \

1

u-·--

0 ..
,;---

/ / '•. '

. /.../ I \

20 30 40 50 60 70 / I ~ -· \, --·~
~, -.';:c--;_.-.- " \1.

Middle age
(a)

Old age
(b)

Figure 5: Crisp Sets versus Fuzzy Sets; (a) Crisp sets of middle age and old age (b) Fuzzy
sets of middle age and old age (membership function) [8]

The development of the membership functions for the inputs is important. These

membership functions are defined by both a range of values and a degree of

membership. The variable must be clearly mapped in order to observe which

membership functions it belongs to and the relative degree to which it is a member.

This will determine the "weighted" membership in the membership function [13].

A variable is allowed to have a weighted membership in several membership

functions simultaneously. Fuzzy membership functions consist of a range of values

and can overlap.

II) Inference Rule Design

The function of the inference is to relate the outputs action of the controller to the

observed inputs. This is done after both inputs and outputs have been defmed by the

membership functions.

Example:

If comer is VERY SMOOm, then set front spring rate is VERY STIFF

If corner is SMOOm, then set front spring rate is STIFF

If corner is RATHER SHARP, then set front spring rate is ORDINARY

If corner is SHARP, then set front spring rate is SOFT

If corner is VERY SHARP, then set front spring rate is VERY SOFT

These If- Then rules can relate multiple input and output variables. Fuzzy logic

controller is capable of defining any relationship that can be described in linguistic

9

variables. This is due to the rules that are based on word descriptions instead of

mathematical expressions. The rules which composed of these variables are also

weighted since the variables have weighted memberships. Depending on the input

variable, different rules have different impacts on the controller.

There are two types of inference systems that can be implemented for any fuzzy

logic controller: Mamdani - type and Sugeno -type. Mamdani - type of inference

is most commonly used for a fuzzy logic controller [12]. This type of inference

expects the membership functions to be fuzzy sets. Thus each of the variable

outputs needs to be defuzzified. Sugeno - type does not deal with membership

functions. Hence, this type of inference does not require defuzzification. For this

project, the author implements Mamdani - type because the outputs of the fuzzy

logic controller are in the form of fuzzy sets.

III) Defozzification

This phase involves producing of crisp output. The fuzzy logic controller must

produce a meaningful output to the system involves. The meaningful output is

converted from the internal fuzzy output. The meaningful output is the output that

can be used by the controlled system.

2.2.2. Fuzzy Logic Controller

Fuzzy logic controllers have been widely used in both consumer products and

industrial process controls. Fuzzy logic controllers are suitable for complicated and

imprecise processes where mathematical model does not exist. Fuzzy logic controller

can approximate human mind's behavior which is able to work well under imprecise

conditions [II]

2.2.3 Fuzzy Logic Controller on Hardware

Fuzzy logic controller can be divided into:

• General purposed fuzzy processors with specialized fuzzy computations

• Dedicated fuzzy hardware for specific applications

10

The general purposed fuzzy processors offers a fast implementation and flexible

application but a lower performance. The dedicated fuzzy hardware requires a long

development time but provides an optimum performance. Recently, the

implementation on FPGA has been encouraging since FPGA provides a compromise

between special purpose ASIC hardware and general purposed processors. The

implementation of fuzzy logic controller on FPGA is attractive due to the greatly

reduced development time. [15]

2.3 Discussion

From the reading done in the existing design [4], the author had able to identity 3

inputs and two outputs for the car traction control system. Following are the lists of

the inputs and outputs along with their membership functions for the fuzzy logic

based car traction control system:

• First Input - Sharpness of the Corners

Membership Functions (MF):

a) VERY SMOOTH

b) SMOOTH

c) RATHERSHARP

d) SHARP

e) VERYSHARP

• Second Input- Vehicle Load

MF:

a) NOTHEAVY

b) HEAVY

• Third Input- Vehicle Speed

MF:

a) VERYSLOW

b) SLOW

c) RATHERFAST

d) FAST

11

e) VERYFAST

• Output- Spring Rate of Front and Rear Wheel

MF:

a) VERY STIFF

b) STIFF

c) ORDINARY

d) SOFT

e) VERYSOFT

Each of these membership functions is representing certain range of input and outputs

values. The representation of the values can be observed in Table I to Table 5.

Table 1: Membership functions for input parameters (Load)

MF MFValues
Equivalent weight of

passengers (kg)

NOT HEAVY 0-0.333 0-233.1

HEAVY 0.167-0.5 116.9-350

Table 2: Membership functions for input parameters (Corner)

MF MFValues
Equivalent steering angle

(0)

VERY SMOOTH 0-0.333 0-119.88

SMOOTH 0.167-0.5 60.12-180

RATHER SHARP 0.333 - 0.667 119.88-240.12

SHARP 0.5-0.833 180-299.88

VERY SHARP 0.667-1.0 240.12-360

Table 3: Membership functions for input parameters (Speed)

MF MFValues
Equivalent velocity

(km /h)

VERY SLOW 0-0.333 0-59.94

SLOW 0.167-0.5 30.06-90

12

RATHER FAST 0.333 - 0.667 59.94- 120.06

FAST 0.5-0.833 90-149.94

VERY FAST 0.667-1.0 120.06-180

Table 4: Membership functions for output parameters (Front Spring Rate)

MF MFValues
Equivalent percentage

(%)

VERY SOFT 0-0.333 0-33.3

SOFT 0.167-0.5 16.7-50.0

ORDINARY 0.333 - 0.667 33.3-66.7

STIFF 0.5-0.833 50.0-83.3

VERY STIFF 0.667-1.0 66.7- 100

Table 5: Membership functions for output parameters (Rear Spring Rate)

MF MFValues
Equivalent percentage

(%)

VERY SOFT 0-0.333 0-33.3

SOFT 0.167-0.5 16.7-50.0

ORDINARY 0.333- 0.667 33.3-66.7

STIFF 0.5-0.833 50.0-83.3

VERY STIFF 0.667-1.0 66.7- 100

These inputs and outputs of the control system are governed by a set of if - then

rules. For this project, Table 6 shows the rules which enable the control system to get

stabilized according to the given inputs.

13

Table 6: If- Then Rules

If Then

Corner Load Speed
Front Spring Rear Spring

Rate Rate

VERY
NOT HEAVY VERY FAST VERY STIFF VERY SOFT

SMOOTH

VERY RATHER
HEAVY VERY STIFF VERY SOFT

SMOOTH FAST

VERY
HEAVY FAST VERY STIFF VERY SOFT

SMOOTH

VERY
HEAVY VERY FAST VERY STIFF VERY SOFT

SMOOTH

SMOOTH NOT HEAVY VERY FAST STIFF SOFT

SMOOTH RATHER
HEAVY STIFF SOFT

FAST

SMOOTH HEAVY FAST STIFF SOFT

SMOOTH HEAVY VERY FAST STIFF SOFT

RATHER
NOT HEAVY VERY FAST ORDINARY ORDINARY

SHARP

RATHER RATHER
HEAVY ORDINARY ORDINARY

SHARP FAST

RATHER
HEAVY FAST ORDINARY ORDINARY

SHARP

RATHER
HEAVY VERY FAST ORDINARY ORDINARY

SHARP

SHARP NOT HEAVY VERY FAST SOFT STIFF

SHARP RATHER
HEAVY SOFT STIFF

FAST

SHARP HEAVY FAST SOFT STIFF

SHARP HEAVY VERY FAST SOFT STIFF

VERY
NOT HEAVY VERY FAST VERY SOFT VERY STIFF

SHARP

VERY HEAVY RATHER VERY SOFT VERY STIFF

14

SHARP FAST

VERY
HEAVY FAST VERY SOFT VERY STIFF

SHARP

VERY
HEAVY VERY FAST VERY SOFT VERY STIFF

SHARP

Based on these fmdings, the author will able to proceed to simulation of the control

system in MATLAB Eventually, the author could continue to develop algorithm for

the car traction control system.

15

CHAPTER3

METHODOLOGY/PROJECT

This chapter describes the methodology involved in order to achieve the objective.

The methodology begins with the simulation of the whole fuzzy logic controller in

MA TLAB. This is then followed by the development of the algorithms.

3.1 The Overall Fuzzy Logic Controller Simulation

Before developing the algorithms for the control system, the simulation of the fuzzy

logic controller design in MA TLAB is recommended. The simulation is to verizy that

the control design is practical to be implemented. It is unreasonable and wasting of

time to develop algorithms of an uncertain design.

The author utilized the MATLAB's Fuzzy Logic Toolbox to create and edit fuzzy

logic controller. The author conveniently made use of the graphical user interface

(GUI) tools that are user- friendly in simulating the fuzzy logic based control design.

The toolbox provides the Fuzzy Inference System (FIS) Editor, the Membership

Function Editor, the Rule Editor and the Rule Viewer [12].

Following are the editors in the Fuzzy Logic Toolbox used by the author to perform

specific functions for the simulation.

3.1.1 The FIS Editor

The FIS Editor deals with the high - level issues of a system (e.g. numbers of inputs

and outputs, the names for the inputs and outputs). Figure 6 show the main screen for

the FIS Editor. From this figure, the author defined the numbers of inputs and output,

the type of inference used. and the type of the defuzzification used. There were three

inputs which were highlighted in yellow and two outputs which were highlighted in

blue.

16

.....

lXX

lXX - ---·----
r;;;... . .::J --
~~----=-~=-= ::::_-_~=---:1 -

-,... ::: :::~:~ :_ . J

1-... :::=~~-~::J II

.... .. ,
...

Figure 6: MATLAB PIS Editor Main Screen

3.1.2 The Membership Function Editor

In this editor, the author defmed the shapes of all membership function related to

each variable and the number of the membership functions required for each input or

output.

3.1.3 The Rule Editor

The author edited the list of if - then rules that describe the characteristic of the

system in this editor. Figure 7 shows that the author had included the rules that as

shown in Table 6 from Chapter 2.

17

-00

If

corner Is

Dnct

Connection

0or

0•""

FJS Name: controner

and and

load Is.

!E'not_hea'"· ·~I
1
heevy
nona I

I

i vj
~------------'

Dnot Dnct

Welght:

speed, Is

Then

1ront:_springJele Is

[Very_soft -------- .:"'-!
l•oft -,
l

ordfnary
stiff

r
i i

L______ ____ ~··------~

Dnot

-- i ~ i

I 1 ___j
L-.

[Delete rule --l [Add rule I [Chonge rule I

•""'
rear _spring_rate Is:

:soft
ordln61ry
stiff
very_stlff
none

,A

I

L _______ _j
Dnot

I He~? -~~ Oose -~

Figure 7: MATLAB Rule Editor Main Screen

3.2 Architecture, Design Specification & Familiarize with VHDL Coding

Figure 8 shows the overall structure of the fuzzy logic controller that the author had

identified [15].

Knowledge
Base

Crisp Input

Crisp Output

Figure 8: The Block Diagram for a Fuzzy Logic Controller [15]

Each of these main blocks consists of multiple sub- blocks [15]. Then, the author

decided to begin developing the algorithms with fuzzification.

19

3.3 Development VHDL Coding for Individual Sub -Block

Slope
(memory)

Input a

Centr~
(mp_mnrv

Clock

Difference -----

r'
Multiplication

I
)

Subtraction
/

p

~ Comparator

Figure 9: The Block Diagram for Fuzzification [15]

The author's main focus was the fuzzification block. The author started by writing

the coding for the individual sub - blocks. In this project, the concerned sub - blocks

were subtraction, multiplication and comparator as shown in Figure 9. VHDL codes

were entered using the Aldec Active HDL 5.1. Each of the VHDL coding for each

sub - block were stored in separate source files. Different source files were then

saved in a common design or workspace. Figure I 0 shows that the individual source

codes were kept in the common workspace. This would allow author to recall these

codes easily. These codes were then compiled to check for syntax errors.

3.4 Integrating All Sub- Blocks

The completed individual sub - blocks were then combined to become one main

block. The written code for the main block was also compiled for syntax errors.

20

~ Act1ve HDL 5 1 (Testmg) c \My_DesJgn\Testmg\src\FuzzJflcatJon vhd (JUUT) * ~JI&)['XI
+!i- » X

-liiiiT-
..., ii:. Add New Fie

+ 111./sub.vhd
' ~ subtrad:a'.aonf

' 'o0.Jil S\btractor.lst

·l!l!J--·""
I .t COill)lll'ator. vhd

-~ C1Jill)a'ator

~-. ?Mu\der.vhd
i • .//tUtiplerl. ¥hd
'fl!.~l.M

:--il?top.vhd
i iG; comparator .<:NK
+ II? sub_test.vhd

'}!!. stm_test.awf

.. Ill Jf~U:der"l_tcst. vhd
~ '}!!. ~l_test.awf
+ II .t comparator _test. vhd

-m comparator_test.awt
+' IJFuzzftallon.vhd
-~ Fuzzfkation,awf

-t:M Tes6l!l lhary

4

0

' 6
7

• 8

9

10

Title Car Traction Covtrol
Design. Fuz.zi£icatiov
Author Adibah Binti Mohd Ismail
ID 4168

LIBRARY ieee;

USE ;l,~f!!~.:;~td_J,.ogio:;:_J,lf?'t.all;

11 USE ieee.std_logie_arith.all;
12

13 Entity fuzzification IS

14 PORT (a: IN DITEGER RANGE -256 TO 255

15 xl, X2, x3: OUT S!D_LO~lC;
16 reault: INOUT IIITEGER
17 prod: OUT IITBOBR } ;

18

19 End fuz~r.ification;

0

ARCHITECTURE signed of fuzzification IS

23 CONSTANT b: DITEGER :o=lO;

?4 CONSTANT x: IlfJEOER :=O;

5 CONSTANT c: DlfESER :=5;

7 BEGIN

'+:: ~:= i+l!! 1'«1 ~

~ : ' ~ ~ ~ ~ "{~ : t~ ~

• I I
&I fit~s -- ~~mC ... ,.':::JReso... . : ~ design fl~ ~fuzzification .. · r~fmiJJtipli-Br(.:·_- ~ -SUb~test.Yhd ~ comparat_or... ~Juzzifi_cation ...

. , # Deaion: 6:56 AH, !lond8y, Hay 0'7, 2007
"# Design: Opening design "c:\!y_Design\Testinq\Testing.adf"
· # ELBREAD: El8boration process •
. , # I:LBREAD: Elaboration time 0.1 [s].
" # Error: You do not have valid license to run TCL scripting.
· # Error: Contact A.ldec :for or:det:ing information- sales@aldec.com .

•
IJ ~ C~nSoi~-- _

-

J
v

Ln 9,c0176 ·- NLM 'INS ·

Figure 10: Aldec Active HDL 5.1 Main Screen

3.5 Simulation & Design Verification

The author used Aldec Active HDL 5.1 for simulation and design verification. A test

bench is used for testing VHDL designs in VHDL environment [16]. The design is

checked by applying signals or stimuli and monitoring the outcomes. The author

observed the response through output waveforms.

21

CHAPTER4

RESULTS & DISCUSSION

This chapter will discuss results from two main parts. The first part would be the

results from MATLAB. Then, this chapter will cover the outcome from the

construction of the VHDL coding. The main idea of this control system is to get the

system back to neutral or stable during cornering. All inputs and outputs were

governed by Table 6.

4.1 Simulation Using MATLAB

The simulation of the fuzzy logic controller had been done using MATLAB. After

defining each of the inputs together with its membership function, the following

graphs were obtained. Figure 11 to Figure 15 show the membership functions for

inputs and outputs correspondingly to Table 1 to Table 5.

plot~ :-__ ----~l
~-------.--- ·----~, -------,--------,------,------~----~-----,--- ------,---- ----,----
1 ~rery,m<>Oth ~ r~,heql sharp verv,ho!t'P I

_ _l ___________ L ______ L _______ _____l_ ___ l _______ ___j_______j

u.'! ,-,.s os rJ' co c1J

Figure 11 : Membership Function for Comer Input

22

very,low - ...

!
us

•i

-_t:=l ~-~--=-----~==;t=~~~--:::::::i-:
•J 1 J' •JA r" 1)& [,7 o:; oc' ---
Figure 12: Membership Function for Load Input

-, ___] _____ _

~~<>t,e~"Y

OS,-

I
-~:==:;;·~~-.~-:- -~-~ D ·;·

pitt poilU: I -­

-- ------,------~~fln:tkln--'-""-·~--~- l -

----"----
1)3 OJ OCJ '''1 I

Figure 13: Membership Function for Speed Input

----~---l,_, _ __________l_
,-, 2 o •: n ~

Wptt Y8llilble "trwt,pmg,ete•

Figure 14: Membership Function for Front Spring Rate Output

23

' I

plcipdrts: ,--· ~ -----~;l
_ _ [______ J

---,-- r··- -- --r---- ·

'Iliff very,tlf1

Figure 15: Membership Function for Rear Spring Rate Output

The if- then rules from Table 6 were then applied to the MA TLAB by defining these

rules using the Rule Editor as shown in Figure 7. Then the outcome was observed

from the Rule Viewer which displayed the overall of the fuzzy inference process. The

results were based on the defined inference rules. The Rule Viewer allows users to

observe how each membership function is affected accordingly to each inference rule

when the inputs are applied.

Several set of inputs were given to verilY the fuzzy logic controller. Figure 16 shows

the results for the first set of inputs. Firstly the comer input was maintained at the

very smooth condition (comer= -4), then the comer was made heavy (load= 1.49)

and the speed was given rather fast (speed= 0). Thus, according the rules in Table 6,

the rule no. 6 was in active. This could be observed from all three inputs were

highlighted in yellow in the 6th row. From Figure I 6, the front spring rate indicates

stiff and the rear spring rate indicates soft.

24

corner"' ~4 load= 1.49 speed .. 0 front_sprlngJate· = 0.00142 resr _sprlng_rate = 0.00142

... \ I <}! I'> I
2 '', I ~ I

3

4 ,,1

5

6

?

8

9

10

11

N I
12

v.
13 ,--~'"r""-, [-ZS:: 'I I <). I
14 _,.,.;-'""\...,, I I

15 // '~,

16

1? I <).1
18

19

20 ,-7

~

-10 10 10 -10 10

::5lr
-----------' ''

lrlpUI: t -------,~ -~ Plot poJnts: ~--~

1 :~-41491~--- ____ j
1
101 i 0GB up

Move:

Figure 16: Rule Viewer When Corner = -4, Load = 1.49 and Speed= 0

For the set of inputs, comer input was sharp (comer= 3.5), load is heavy (load =

1.49) and speed was rather fast (speed= 0). Referring to Table 6, the rule no. 14 was

in active (all inputs are highlighted). The result of the front spring rate show soft and

the rear spring rate shows stiff as displayed in Figure 17.

The last set of inputs shows that the comer input was rather sharp (comer = 0), load

was heavy (load=l.49) and speed is rather fast (speed= 0). Figure 18 shows that the

front spring rate is soft and the rear spring rate is stiff. This verified from the if- then

rules from Table 6.

26

File Edll: VIew Options

comer= 3.5 load .. 1.49 speed • o front_spring_rate = 0.00142 rear _sprlng_rate .. 0.00142

',, /.7 I /"-I IC> I
2 '··--..._

I I i..... I

3

4

5

6 ,/

7 ·,
8 /./"'"·,

9 // '•-

10 .. /'"·.

N I, 11

12

'

/ "'-...

13

14

15

16

17

18

19 ,-7

20
~

1/
-10 10 -10 10 -10 10 Jll"',._ ,..._"'lll

I [351491011
L --------··-··

-0: 0GB up
_j

,----
~I

-···-·J

Figure 17: Rule Viewer When Comer= 3.5, Load= 1.49 and Speed= 0

corner .. 0 load = 1.49 speed = 0

1 1 1 I I '-,I I I /

2

3

4

5

6

7

6

9

10

11

~ 1 12

13

14

15

16

17

18

19

20

-10 I 10 -10 I 10 -10 I 1:0

Input. I I ''Plot points· I I · 1~149~ I · lto~-~~J

front_sprlng_rate • 0.00142 rear _spring_rate ... 0.00142

!/""- I
I ::&:: I

00[~~) up

Figure 18: Rule Viewer When Comer = 0, Load = 1.49 and Speed = 0

4.2 The Development ofVHDL Coding

The fuzzy logic controller consists of the main blocks which are fuzzification,

inference and defuzzification. Due to the complexity of the project, the author would

only focus on the fuzzification block. From Figure 9, the fuzzification block is made

up of subtraction, comparator and multiplication sub blocks.

In Figure 9, the input that was given to the fuzzification block would be diverting to

two different routes. One would enter the comparator. The input would also enter the

subtractor. The purpose of the comparator is to determine whether the input given is

negative, positive or zero. The subtractor would subtract the input from the centre

point of affected fuzzy set [15]. The results from the subtractor would be multiplied

by the positive slope [15]. Finally, the output from both the multiplication sub- block

and the comparator would determine the output of the overall fuzzification block.

The project was implemented by using VHDL. VHDL can be used to describe the

behavior or structure of the digital system. By using the Aldec Active- HDL 5.1, the

outcomes from the simulation and design verification of the individual sub - blocks

were observed through the output waveforms.

Figure 19 shows the output waveform of the simulation for subtractor sub - block.

Since it is individual, thus the input (indicated by 'a') was subtracted from a constant.

The constant was set to I 0. The simulation lasted for 200 ns. The input was increased

by 2 for every l 0 ns. These specifications were defined in the source code. The

'result' indicates the results of the subtraction between 'a' and the constant.

Name

-o result
.. - ·-··-- - -

Figure 19: The Simulation Results for Subtractor

Figure 20 shows the output waveform of the design simulation for multiplication sub

- block. The sub - block is also individual designed. The block had two inputs. The

first input (indicated by 'a') was multiplied with the second input (indicated by 'b').

29

In this simulation, the duration was also 200 ns. The input 'a' was increased by 2 for

every I 0 ns. Whereas the 'b' input was increased by 6 for every 20 ns. These

specifications were defined in the source code. The 'prod' indicates the results of the

multiplication between 'a' and 'b'.

Figure 20: The Results for Multiplication

Figure 21 shows the output waveform of the design simulation for comparator sub -

block;. The sub - block was indeed individual designed. The block had also two

inputs. The first input (indicated by 'a') was compared to the second input (indicated

by 'b'). T duration for the simulation was 200 ns. The input 'a' was increased by 2

for every 10 ns. Whereas the 'b' input was decreased by 1 for every 10 ns. These

specifications are defined in the source code. The 'xl', 'x2' and 'x3' indicate the

results ofthe comparison between 'a' and 'b'. 'xl' is equal! when 'a' is larger than

'b'. 'x2' is equal to 1 when 'a' is the same as 'b'. Finally, 'x3' is equal to one when

'a' is smaller than 'b'.

Figure 21: The Simulation Results for Comparator

The VHDL coding for the individual sub- block; is included in Appendix A. The next

step is to proceed with the integration of all three sub blocks. Figure 22 shows the

waveform for design verification for the integrated sub- blocks.

30

Name
"a

I value

i-16

I I' 590. I ·1090· I' I5PO' I ·20.00· I ·25.00· I ·30.00~

~-5 o 5 XIO so X150 ,:1,.20 X210 X10o X-45 X:JO Xzso 550 450 130 X270 ss -

NiJ !1 I -----------.. ~---------'----'======!. __ !:==='.. --'========L--~
j

Figure 22: The Output Waveform of Verification for the Integrated Sub- Block

For Figure 22, 'a' was given the input according to defined input in the source code

for the test bench of the integrated sub - blocks. 'result' was the results of the

subtraction operation. 'a' was subtracted from a constant. The constant was set as I 0.

Then the difference is multiplied with another constant was set to 15. This is defined

in the test bench source code. The author assumed the value of the positive slop to be

15. The assumption was made to reduce the complexity. 'xl', 'x2' and 'x3' were the

results for the comparator. This time, the duration of the verification was 3500 ns.

The purpose was to observe the outcomes for various inputs given. In this project, the

author concentrated in constructing the structure of the fuzzification. Thus to reduce

the complexity, the author used integer for number representation.

31

CHAPTERS

CONCLUSION & RECOMMENDATIONS

This chapter reviews and concludes the project while highlighting some of the

difficulties encountered and how to overcome them. Some recommendations are

included to suggest for further improvement and for future progress

5.1 Conclusion

The main component of VHDL coding for the main structure of fuzziftcation is

successfully completed. From the successful simulation results obtained as well as the

output waveform from the design verification in Chapter 4, the objective set initially,

had already been achieved.

The project had been carried out for two semesters. The first semester was mainly

focus on the preliminary research work. The research work deals with a gist of

existing car traction control, fuzzy logic and fuzzy logic controller. The second

semester work mainly more on developing VHDL coding for specifically

fuzziftcation which to be used eventually for fuzzy logic based car traction control

system.

The main challenges faced by the author were familiarizing the concept of fuzzy

logic and learning new language VHDL. The course is not included in the syllabus in

the university. The author used examples of application of fuzzy logic controller so

that the author could understand how fuzzy logic works for car traction control

system. Besides that, VHDL is totally different from the programming courses such

as C and C++ which were taught in the university. Therefore, the author solely

depended on self- study and self- exploration.

32

Besides that, the author had some difficulties in developing the source code for

decimal number representation. Therefore, the author used integer in all source code

to reduce the complexity.

5.2 Recommendations for Future Works

Even though the VHDL coding for the main structure is completed, the coding could

be improved by modizying the completed coding, such that it can cater for decimal

numbers which gives more meaningful for the implementation of the control system.

The development ofVHDL coding for fuzzification can also be further improved by

developing other main blocks which also included in the fuzzy logic controlleL The

other two main blocks are inference and defuzzification. Each of these main blocks

consists of several other sub blocks.

Eventually, the three completed main blocks can be integrated to form a complete

form of fuzzy logic controller algorithm. The algorithm can be used to implement on

FPGA in future development.

33

REFERENCES

[1] "Oxford Advanced Leamer's Dictionary", Oxford University Press

[2] Scott Memmer, "Safety Tips- Traction Control,
http://www.edmunds.com/ownership/safety/articles/46352/article.html

[3] "Traction Control", Wikipedia- the Free Encyclopedia,
http:/ /en. wikipedia.org!wikiffraction _control

[4] Adlan Iqman Bin Suhaimi, "Simulation of Control System for Vehicle Traction
Control Using Fuzzy Logic Approach", Thesis, 2002

[5] Joseph Bih, "Paradigm Shift- An Introduction to Fuzzy Logic", IEEE
Potentials, Volume 25, Issue l, Jan.-Feb. 2006

[6] "What is Fuzzy Logic?- Getting Started (Fuzzy Logic Toolbox)", Online
tutorial,
http://Viww.mathworks.com/access!helpdesklbelp/toolbox/fuZZy/index.html?/ac
cess!helpdesk/belp/toolbox/fuzzy/fp754.html

[7] Daijin Kim, "An Implementation of Fuzzy Logic Controller on the
Reconfigurable FPGA System", IEEE Transactions on Volume 47, Issue 3,
June 2000

[8] Yasuhiko Dote, "Introduction to Fuzzy Logic", Industrial Electronics, Control,
and Instrumentation, 1995, Proceedings of the 1995 IEEE IE CON 21st
International Conference on Volume 1, 6-10 Nov. 1995

[9] Sudhakar Yalamanchili, "Introductory VHDL From Simulation to Synthesis",
Prentice Hall, 2001

[10] "ASR (Automatic Slip Control)", Bently Publishers Automotive Reference,
http://www.bentleypublishers.com/gallery.htm?code=GMOB&galleryid=618

[11] "Fuzzy Logic: An Overview of the Latest Control Methodology Application
Report", Texas Instrument, http://focus.ti.com/lit/an/spra028/spra028.pdf

[12] "Fuzzy Logic Toolbox for Use with MATLAB User's Guide", The Math Works
Inc, 2006

[13] George J. Klir, "Fuzzy Logic- Unearthing its meaning and significance",
Potentials, IEEE Volmne 14, Issue 4, Oct-Nov 1995

[14] Masao Mukaidono, "Fuzzy Logic For Beginners", World Scientific Publishing
Co. Pte. Ltd, 200 I

34

[15] Sameep Singh and Ku1dip S. Rattan, "Implementation of a Fuzzy Logic
Controller on an FPGA using VHDL", Fuzzy Information Processing Society,
2003

[16] J. Mirkowski, M. Kapustka, Z. Skowronski, A. Biniszkiewicz, "EVITA
Interactive VHDL Tutorial REV.2.0 Active- VHDL Series Book #2", ALDEC

35

APPENDICES

36

APPENDIX A

VHDL SOURCE CODES

37

-- VHDL Source Code For Subtractor --
-- Author: Adibah Mohd Ismail
-- ID: 4168

LffiRARY ieee;
USE ieee.std _logic _1164.ALL;
USE ieee.std _logic_ arith.AII;

ENTITY sub_ entity IS

PORT
(

);

a: IN INTEGER RANGE -256 TO 255;
result: OUT INTEGER RANGE -256 to 255

END sub_ entity;

ARCHITECTURE sub_entity OF sub_entity IS

CONSTANT b: INTEGER :=10;

BEGIN

result <= CONY _INTEGER(a-b);

END sub_ entity;

38

-· VHDL Source Code For Multiplication --
-- Author : Adibah Mohd Ismail
-- ID :4168

LIBRARY ieee;
USE ieee.std _logic _1164.all;
USE ieee.std _logic_ arith.all;

ENTITY multiplierl IS
PORT (a,b: IN INTEGER RANGE -256 TO 255;

prod: OUT INTEGER);
END multiplierl;

ARCIDTECTURE behavior OF multiplier! IS
BEGIN

prod <=a* b;
END behavior;

39

-· Source Code For Comparator
-- Author: Adibah Mohd Ismail
-- ID : 4168

LffiRARY ieee;
USE ieee.std_Iogic_1164.all;
USE ieee.std _logic_ arith.all;

Entity comparator IS
GENERIC (n: INTEGER);
PORT (a,b: IN INTEGER;

xl, x2, x3: OUT STD_LOGIC);
End comparator;

ARCHITECTURE signed of comparator IS

BEGIN

x1 <= '1' WHEN a>b ELSE '0';
x2 <= '1' WHEN a=b ELSE '0';
x3 <= '1' WHEN a<b ELSE '0';

END SIGNED;

40

--Source Code For Integrated Subtype- Blocks (Fuzzification)
--Author: Adibah Mohd Ismail
--ID :4168

LffiRARY ieee;
USE ieee.std _logic _l164.all;
USE ieee.std_logic_arith.all;

Entity fuzzification IS
PORT (a: IN INTEGER RANGE -256 TO 255 ;
xi, x2, x3: OUT STD _LOGIC;
result: INOUT INTEGER ;
prod: OUT INTEGER);

End fuzzification;

ARCHITECTURE signed offuzzification IS

CONSTANTb: INTEGER :~10;
CONSTANTx: INTEGER :=0;
CONSTANT c: INTEGER :=5;

BEGIN

xl <='l'WHEN a>xELSE '0';
x2 <= 'l' WHEN a=x ELSE '0';
x3 <= 'I' WHEN a<x ELSE '0';

result<= CONY _INTEGER(a-b);
prod <= c * result;

END signed;

41

APPENDIXB

TEST BENCH SOURCE CODES

42

-- Test Bench For Subtractor
-- Author: Adibah Mohd Ismail
-- ID: 4168

LffiRARY ieee;
USE ieee.std _logic _1164.ALL;
USE ieee.std_logic_arith.All;

ENTITY sub_ entity IS

PORT
(

a: IN INTEGER RANGE -256 TO 255;
result: OUT INTEGER RANGE -256 to 255

);

END sub_ entity;

ARCHITECTURE sub_ entity OF sub_ entity IS

CONSTANT b; INTEGER :=10;

BEGIN

result<= CONV INTEGER(a-b);

END sub_ entity;

entity test_ bench_ sub is
end test_ bench_ sub;

architecture test_ bench_ sub of test_ bench _sub is
component sub_ entity
port (
a:IN INTEGER RANGE -256 TO 255;
result: OUT INTEGER RANGE -256 to 255);

end component sub_ entity;

signal a; INTEGER range -30 TO 255 ;
signal result: INTEGER range -256 TO 255;
begin

UUT; sub_entity
port map(a=>a ,result=>result);

process
begin

43

a <= 5 ; wait for 50 ns;
a <= 0 ; wait for 50 ns;
a <=5 ;wait for 50 ns;
a <= lO;wait for 50 ns;
a <= 50;wait for 50 ns;
a <= I OO;wait for 50 ns;

wait;

end process;
end test_bench_sub;

44

-·Test Bench For Multiplication
•• Author: Adibah Mohd Ismail
•• ID: 4168

LIBRARY ieee;
USE ieee.std _logic _1164.all;
USE ieee.std _logic_ arith.all;

ENTITY multiplier1 IS
PORT (a,b: IN integer RANGE -256 TO 255;

prod: OUT integer);
END multiplier 1 ;

ARCHITECTURE behavior OF multiplier! IS
BEGIN

prod <=a* b;
END behavior;

entity test_ bench_ mult is
end test_ bench_ mult;

architecture test_ bench_ mult of test_ bench_ mult is

component multiplier!

port(
a,b:IN INTEGER RANGE -256 TO 255;
prod: OUT INTEGER);

end component multiplier!;

signal a: INTEGER ;
signal b: INTEGER ;
signal prod: INTEGER;

begin

UUT: multiplier]
port map(a=>a, b=>b, prod =>prod);

STIM1 :process

begin

a<= -5; wait for 50 ns;
a <= 0 ; wait for 50 ns;
a <=5;wait for 50 ns;
a <= 1 O;wait for 50 ns;

45

a<= 60;wait for 50 ns;
a <= 150;wait for 100 ns;
a <= 170;wait for 200 ns;
a<= 210;wait for 150 ns;
a <= 1 OO;wait for 200 ns;

wait;

end process;

STIM2:process

begin
b <= -10; wait for 50 ns;
b <= 8 ; wait for 50 ns;
b <=O;wait for 50 ns;
b <= -1 OO;wait for 50 ns;
b <= 60;wait for 50 ns;
b <= 2;wait for 50 ns;
b <= -20;wait for 100 ns;
b <= 190;wait for 200 ns;
b <= 500;wait for 150 ns;
b <= 760;wait for 200 ns;

wait;
end process;

end test_ bench_ mu1t;

46

-- Test Bench For Comparator --
--Author: Adibah Mohd Ismail --
--10 :4168

LIBRARY ieee;
USE ieee.std _logic _ll64.all;
USE ieee.std _logic_ arith.all;

Entity comparator IS

PORT (a,b: IN INTEGER;
xi, x2, x3: OUT STD _LOGIC);

End comparator;

ARCHITECTURE signed of comparator IS

BEGIN

xi <""'I' WHEN a>b ELSE '0';
x2 <"" 'l' WHEN a""b ELSE '0';
x3 <"" 'l' WHEN a<b ELSE '0';

END SIGNED;

LlliRARY ieee;
USE ieee.std_Iogic _1164.all;
USE ieee.std_logic_arith.all;

entity test_ bench_ comp is
end test_bench_comp;

architecture test_ bench_ comp of test_ bench_ comp is

comPQnent comparator

port(
a,b:IN INTEGER RANGE -256 TO 255;
xl, x2, x3: OUT STD _LOGIC);

end comPOnent comparator;

signal a: INTEGER ;
signal b: INTEGER ;
signal xl,x2,x3: STD _LOGIC;

begin

47

UUT: comparator
port map(a=>a, b=>b, x1=>x1, x2=>x2, x3=>x3);

STIM 1 :process

begin

a<= -5 ; wait for 100 ns;
a<= 8; wait for 100 ns;
a <=5;wait for 100 ns;
a <= 1 O;wait for 1 00 ns;
a <= 280;wait for 100 ns;
a<= 150;wait for 100 ns;
a<= 170;wait for 200 ns;
a <"' 21 O;wait for 150 ns;
a <= 1 OO;wait for 200 ns;

wait;

end process;

STIM2:process

begin
b <= -10; wait for 100 ns;
b <= 8; wait for 100 ns;
b <=O;wait for 100 ns;
b <= -1 OO;wait for 1 OOns;
b <= 60;wait for 100 ns;
b <= 2;wait for 100 ns;
b <= 150;wait for 100 ns;
b <= I 90;wait for 200 ns;
b <= 450;wait for 150 ns;
b <= 760;wait for 200 ns;

wait;
end process;

end test_bench_comp

48

--Test Bench For Integrated Sub~ Blocks (Fuzzification) --
--Author: Adibah Mohd Ismail
--ID :4168

LffiRARY ieee;
USE ieee.std ~logic ~1164.all;
USE ieee.std ~logic~ arith.all;

Entity fuzzification IS
PORT (a: IN INTEGER RANGE -256 TO 255 ;
x1, x2, x3: OUT STD~LOGIC;
result: INOUT INTEGER ;
prod: OUT INTEGER);

End fuzzification;

ARCHITECTURE signed offuzzification IS

CONSTANT b: INTEGER :~10;
CONSTANT x: INTEGER :=0;
CONSTANT c: INTEGER :~5;

BEGIN

xl <~ '1' WHEN a>x ELSE '0';
x2 <~ '1' WHEN a~ ELSE '0';
x3 <= '1' WHEN a<x ELSE '0';

result<= CONY~ INTEGER(a-b);
prod <= c * result;

END signed;

LIBRARY ieee;
USE ieee.std ~logic~ 1164 .all;
USE ieee.std ~logic~ arith.all;

entity test~ bench~ fuzzification is
end test~ bench~ fuzzification;

architecture test~ bench~ fuzzification of test~ bench_fuzzification is

component fuzzification

port(
a: IN INTEGER ;

49

prod: OUT INTEGER ;
result: IN OUT INTEGER ;
xl, :x2, x3: OUT SID_ LOGIC);

end component fuzzification;

signal a: INTEGER RANGE -50 TO 600 ;
signal prod: INTEGER;
signal result: INTEGER ;
signal xl,x2,x3: SID _LOGIC;

begin

UUT: fuzzification
port map(a=>a, prod=>prod, result=>result, xl =>xl, x2=>x2, x3=>x3);

STIMl :process

begin

a<= -5 ; wait for 150 ns;
a<= 0 ; wait for 150 ns;
a <=5 ;wait for 200 ns;
a <= 1 O;wait for 200 ns;
a <= 60;wait for 200 ns;
a<= 150;wait for 150 ns;
a <= "20;wait for 250 ns;
a <= 21 O;wait for 150 ns;
a <= 1 OO;wait for 200 ns;
a <= -45 ; wait for 150 ns;
a<= 30; wait for 150 ns;
a <=250;wait for 200 ns;
a <= 5 50;wait for 200 ns;
a <= 450;wait for 200 ns;
a <= 130;wait for 150 ns;
a<= 270;wait for 250 ns;
a <= 99;wait for 150 ns;
a<= -16;wait for 200 ns;

wait;

end process;

end test_ bench_ fuzzification;

50

