
ii

CONTROLLING AND MONITORING OF SERVO MOTOR THROUGH

EMBEDDED HTTP SERVER ON ARM BOARD

By

MOHD HARIZ BIN MOHD RIFAN

Submitted to the Department of Electrical & Electronic Engineering

in Partial Fulfillment of the Requirements

for the Degree

Bachelor of Engineering (Hons)

(Electrical and Electronics Engineering)

UniversitiTeknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

 Copyright 2013

by

 Mohd Hariz bin Mohd Rifan, 2013

iii

CERTIFICATION OF APPROVAL

Controlling and Monitoring of Servo Motor through Embedded HTTP Server on

ARM Board

by

Mohd Hariz bin Mohd Rifan

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical and Electronics Engineering)

Approved by,

(Dr. Mohd Zuki bin Yusoff)

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

May 2013

iv

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

(MOHD HARIZ BIN MOHD RIFAN)

v

ABSTRACT

The positioning of servo motor is controlled by sourcing the servo with PWM signal of

varying pulse width. The pulse width of the PWM signal can be manipulated through a

web interface hosted on ARM board programmed as an embedded HTTP server where

control application by an embedded system can be monitored and managed remotely.

Embedded HTTP server network stack is based on modified TCP/IP protocol suite

where only important features are used. A web server for user interface is created using

HTML and JavaScript is hosted together with the network stack. The ARM board is

equipped with RTOS to enable real time control response between the interface and the

servo motor. Two tasks namely PWM and TCP/IP task are configured to enable

execution from RTOS based on their priorities. Under executions, a slider inside web

interface controls the turning of servo motor with the degree of rotation is displayed on

the web interface.

vi

ACKNOWLEDGEMENTS

 I would like to dedicate this page in acknowledging the help, guidance, and

support, whether directly or indirectly, from project supervisors, family, and fellow

friends throughout the process of my dissertation.

 I would like to express my deepest gratitude to my project supervisor, Dr. Mohd

Zuki bin Yusoff for giving me the opportunity to work under his supervision and

providing me crucial guidelines and assistance for my project work. I would also like to

thank Mr. Mohd Azman bin Zakariya, my co-supervisor, for introducing me to the wide

possibilities of embedded systems with his knowledge and ideas. Not to forget, I would

like to thank Mr. Duc Ngoc Tran, a UTP postgraduate student for sharing his expertise

and knowledge in computer engineering besides being patient while assisting me

throughout my project work.

 Many thanks to Dr. Mohamad Naufal bin Mohamad Saad, Ms. Zazilah May, and

Ir. Azlin Aziz for their participation in my project viva besides giving me the essential

feedbacks and motivation to complete my project work. Special thanks to helpful forum

users from online forum such as Cytron, Stackoverflow, and FreeRTOS for their

kindness in helping me resolving problems I had encountered during project work.

 I would like to take this opportunity to thank my family for their support, and to

all of my friends who contributed to the project. Your support, assistance, and help are

duly acknowledged.

vii

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES .. x

LIST OF ABBREVIATIONS ... xi

CHAPTER 1: INTRODUCTION .. 1

1.1 Background .. 1

1.2 Problem Statement ... 2

1.3 Objectives ... 3

1.4 Scope of Study ... 3

1.5 Relevancy of the Project .. 4

1.6 Feasibility of the Project .. 4

CHAPTER 2: LITERATURE REVIEW AND THEORY 5

2.1 Real Time Operating System (RTOS) ... 5

2.2 Embedded Web Server ... 8

2.3 ARM board ... 10

2.4 Peripherals .. 13

2.4.1 Servo Motor ... 13

2.4.2 JTAG Debugger ... 13

2.5 Related Literatures ... 15

CHAPTER 3: METHODOLOGY ... 17

3.1 Research Methodology ... 17

3.2 Project Activities .. 18

3.2.1 Hardware Connections and Design 18

3.2.2 Integrated Development Environment (IDE) / Toolchains.... 19

3.2.3 LPC1768 Programming ... 20

3.2.4 LPC1768 Debugging ... 26

viii

3.3 Key Milestones ... 27

3.3.1 Background Study and Analysis .. 27

3.3.2 Project Design .. 27

3.3.3 Project Implementation .. 28

3.3.4 Documentation and Reporting ... 28

3.4 Gantt Chart ... 29

3.5 Tools ... 30

3.5.1 Software ... 30

3.5.2 Hardware .. 31

CHAPTER 4: RESULTS AND DISCUSSION .. 32

4.1 Pulse Width Modulation Output Signal ... 32

4.2 Servo Motor Response ... 34

4.3 Web User Interface ... 35

4.4 Constraints and Problems Encountered .. 36

CHAPTER 5: RECOMMENDATION AND CONCLUSION 39

5.1 Recommendations .. 39

5.2 Conclusion .. 40

REFERENCES .. 41

APPENDICES ... 43

APPENDIX A: OVERALL STRUCTURE OF ARM CHIP ... ERROR!

BOOKMARK NOT DEFINED.3

APPENDIX B: OVERALL PROGRAM EXECUTION

 IN FREERTOS .. 44

APPENDIX C: OVERALL PROJECT FLOWCHART 45

APPENDIX D: PWM PROGRAMMING AND

 TEST FLOWCHART ... 46

ix

LIST OF FIGURES

Figure 1: Embedded web server process …………………………….…..…………9

Figure 2: Simplified block diagram for LPC1768 …………………………….….11

Figure 3: JTAG connection for debugging …………………………………………14

Figure 4: Waterfall methodology development activities ……………..……………17

Figure 5: Hardware connections ………………………………………………….…..18

Figure 6: Phase Locked Loop overall system ..……………………………………..21

Figure 7: PWM output displayed by the oscilloscope …………….……..……….…32

Figure 8: PWM signal after initialization

 with web interface as input……………………....................………….…..33

Figure 9: Degree of rotation of servo in three different signals

 with different pulse width………………...…………………………….…..34

Figure 10: Graphical web interface for servo control displayed

 in web browser …………………………....…………………………….…..35

Figure 11: PWM signal (square wave pulse) and

 noise (sinusoidal) signal ………………...…………………………….…..37

Figure 12: Connections from the PWM pin to servos

 through 74HC14 ………………………...………………………….…..…38

x

LIST OF TABLES

Table 1: Related literatures with the project …………………................….…… 15

Table 2: Project Gantt chart ……………………………………….……….……. 29

Table 3: List of software for the project …………………………..…………….. 30

Table 4: List of hardware for the project …………………………..……………. 31

xi

LIST OF ABBREVIATIONS

ADC Analog-Digital Converter

ARM Advanced RISC Machines

CMSIS Cortex Microcontroller Software Interface Standard

CPU Central Processing Unit

FSM Finite State Machine

FYP Final Year Project

GUI Graphical User Interface

HMI Human-Machine Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IDE Integrated Development Environment

IP Internet Protocol

JTAG Joint Test Action Group

kB Kilobyte

LED Light Emitting Diode

MAC Media Access Control

PC Personal Computer

PLL Phase Locked Loop

PWM Pulse Width Modulation

RISC Reduced Instruction Set Computer

RTOS Real Time Operating System

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

SWD Serial Wire Debug

SWO Square Wave Output

TCP Transmission Control Protocol

UDP User Datagram Protocol

USB Universal Serial Bus

1

CHAPTER 1

INTRODUCTION

1.1 Background

In recent years, the thorough development of Advance RISC Machine (ARM)

architecture had make it possible for development of more complex but highly capable

and powerful ARM-based products. The manufacturing of development board with

ARM architecture chips on board together with on-chip memory and peripherals such as

Ethernet capability had enabled developers the power to produce something that is

impossible before. As a 32-bit Reduced Instruction Set Computing (RISC) architecture

with high clock speed, huge memory capacity, and competitive price to other standards

microcontrollers available in the market, the ARM architecture had been increasingly

popular in recent years, slowly overtaking the 8-bit and 16-bit microcontrollers’

popularity.

The large memory capacity of a 32-bit ARM chip enabled board had made it

possible for the implementation of embedded web server on Real Time Operating

System (RTOS) into a microcontroller, thus defining a new chapter in Human-Machine

Interface (HMI) design which enable operator to not only control the output of an ARM

board remotely from a different location, but also to gather data and information all

through a web server at ease [1].

By doing this project, author would like to show the possibility of using ARM

board as alternative to the conventional controller used in industrial sector such as

programmable logic controller (PLC), PC based control system, electronic continuous

control system, and others, in controlling, monitoring and automation for industry use.

2

1.2 Problem Statement

Embedded system can be used in control application where set of input and outputs are

running through the system to control, for instance, several servo motors over virtual

network. For real time applications, embedded systems need to be equipped with Real

Time Operating System (RTOS) to manage tasks in the microprocessor by scheduling

and to process data immediately upon receiving information, which is critical for critical

control systems, in which for this project, for accurate tuning of servo motors.

For remote control action of the servo motors, a web server with graphical user

interface (GUI) would provide input options, in form of slider bars, to the ARM

microcontroller as implemented on a Hypertext Transfer Protocol (HTTP) web server in

the ARM board, before a PWM signal is produced at the output pin of the ARM board to

adjust the servo arm position, as a result of moving the slider bar.

Web server software packages are normally made available as free open source,

such as micro IP (µIP) network stack, which enables developers to modify the readily

made TCP/IP network stack by other web server developers to suits application need

depending on respective manufacturers’ peripheral chip configuration and toolchain

used in developing the program. This is also applicable to RTOS such as µOS-II and

FreeRTOS, which would be used to manage different tasks processed in the

microcontroller efficiently by managing the amount of memory used and the interrupt

action of the microcontroller.

3

1.3 Objectives

The main objective for this project is to control the positioning of several servo motors,

horizontally and vertically through embedded HTTP server on ARM board. The

positioning of the servos can be used for tuning and controlling the position of antenna

mounted on the servo motor. The ARM board used in this project is Hy-LandTiger

LPC1768 equipped with 32-bit ARM Cortex-M3 microcontroller, 512 kB flash memory

with 64 kB SRAM data memory with Ethernet Media Access Control (MAC) capability.

The board will also have several Pulse Width Modulation (PWM) output to control the

positioning of the servo motors. For further development, the project would harness the

board capability to monitor the degree of rotation of the antenna through a web server.

Overall, the objectives are:

 To remotely control peripherals and/or monitor processes by using ARM board

 To implement RTOS into ARM board to manage and control all the processes in

the ARM board

 To implement an embedded web server on ARM board, specifically the Hy-

LandTiger LPC1768

1.4 Scope of Study

In this project, there are several main subjects under investigation which would later be

discussed in Chapter 3: Methodology. The scopes of study in this project are:

i. Implementation of fully functioning HTTP web server running on ARM board

ii. Controlling peripheral (servo motors) through an embedded web server on ARM

board to control the vertical and horizontal positioning of an antenna

iii. Data monitoring, i.e.: degree of servo motors rotation on their respective axis,

and display the data on an user interface

iv. Implementation of RTOS in Cortex-M3 ARM device

4

1.5 Relevancy of the Project

In these modern days, multitasking and ability to conduct work through the tips of your

finger are very important to keep up with fast working environment besides increasing

the effectiveness in work. By having remotely controlled peripherals besides the ability

to monitor processes, one will able to do monitoring and control in a comfort of a room,

or from far away. With the capability of Ethernet connection, more importantly it vast

region coverage, this project would purpose a new dimension to human-machine

interface where operators can work far away from machines.

1.6 Feasibility of the Project

In today’s industrial sector, there are a lot of new technological advances and

improvements taking places daily to cope with industry demands. One of it is in control

and automation section which is important in running and controlling machineries with a

little intervention from operators.

By doing this project, the author would show the possibility of using ARM board

as a control system in industrial area on top of introducing new kind of human-machine

interface using embedded web server that would enables remote control and monitoring

to the system concerned.

On top of that, with current advancement of today’s ARM processors, combined

with lower cost compared to current industrial control systems, the ARM board would

be a great choice in reducing costs without compromising the quality or the ability to get

the automation done by the system.

With the remote controlling of servo motor, one would be able to control servos

located in hard-to-reach areas such as inside vessels, piping, or high areas. This would

eliminate job risks to human operator such as hazard from falling from high areas or

hazard from confined spaces.

5

CHAPTER 2

LITERATURE REVIEW AND THEORY

2.1 Real Time Operating System (RTOS)

The major reason of using RTOS is to enable multitasking. Few years back, only one

task is executed at a time. With recent years of development of multicore processor, for

example LPC4300, had enable multiple task execution at a time, but what about single

core processor? By using RTOS, we can manage all tasks to imitate multitask whilst in

reality only one task is executed at a time.

RTOS is used in embedded application as an operating system dealing with real-time

applications where tasks to be done are highly critical, deterministic, and timely.

Examples of popular RTOS include µCOS, Windows CE, RTLinux, and FreeRTOS.

Two notable key features of RTOS includes short thread switching latency where

switching process between tasks should be done in short time and short interrupt latency

where the execution of interrupt instruction should also be short. There are generally

divided into three classifications [2].

i. Hard RTOS – This type of RTOS is where task execution had to strictly obey

given deadline where missing deadline could lead to disaster. Usually used in

critical systems such as machine emergency shutdown system.

ii. Firm RTOS – same to the hard RTOS, executions of tasks need to be done in

time for firm RTOS, but missing a deadline would not lead to disastrous event

but only undesirable outputs.

iii. Soft RTOS – Missing a dateline is not a problem for soft RTOS.

6

RTOS should be efficiently programmed and implemented in a way that supports

both real time applications and time based scheduling which is the key to RTOS. The

main player in RTOS is kernel. In a period of time, the kernel in RTOS forward CPU

attention to specific task besides continuously checks for task priority and arranges

requests from schedules and tasks.

On top of that, the kernel should be able to do multitasking and kernel preemption, in

which task currently being processed by the kernel can be interrupted and resumed later.

Basically, the kernel is responsible in creating, deleting, changing the priority and state

of a task, besides managing resources and hardware monitoring. Task with higher

priority would be able to take over the CPU attention for execution, interrupting

execution of lower priority task in its way.

There are three basic functions of a RTOS taken into design consideration. They are

listed as below [3]:

1. Scheduler

With RTOS scheduler, the processor would able to give impression that all tasks

programmed into a program are running at a time while actually the scheduler

would switch between each tasks execution to make it appear as if everything is

running at once. The secret to timely and deterministic feature on RTOS lies on

its advanced scheduling algorithm. Scheduler decides the switching operation of

tasks which exists in three states:

i. Ready to run – a state before a task is running. Task should have all the

resources to run in this state.

ii. Running – Task running on the CPU is in running state.

iii. Blocked – A task is in blocked state when it does not have enough

resources to run. For example, waiting for I/O action.

7

Scheduler schedules task based on three algorithms scheme:

i. Cooperative scheduling – task will be running in cooperative scheduling

until execution is complete.

ii. Preemptive scheduling – Each tasks are given distinctive priority level for

execution.

iii. Round Robin scheduling – Every tasks are given respective fixed time for

execution where missing dateline would have a task to wait for next turn.

2. RTOS Services

Services are provided by the kernel to support task in having CPU attention.

Some of the RTOS services are interrupt handling, process management and

inter-process communication services.

3. Messaging

Messaging services are used as a way of communication between tasks and with

other systems. Some of the messaging services and their usage are as following:

i. Semaphores – synchronize access to shared resources

ii. Event flags – synchronize inter-task operations

iii. Mailboxes, pipes, and message queues – send messages to tasks

Overall, the main reasons of developer using RTOS is:

a) The capabilities to prioritize tasks in ensuring real-time constraints of the

application are met. On top of that, RTOS would assists in programming

events based on applications in which excessive use of pooling routines are

avoided, thus reducing the number of cycles of CPU needed and improves

the efficiency of the system with reduction in power consumption [4].

b) RTOS programming is well-structured, thus it would make it easier for

developer to code, debug, and maintain the program.

8

2.2 Embedded Web Server

An embedded web server is a microcontroller with Internet software suite and

application code implemented into it for monitoring and controlling systems [5]. With an

embedded web server, a microcontroller can be accessed remotely from a web browser.

The embedded system is also able to host static and dynamic web documents to web

browsers.

 When talking about internet communication, the most significant thing would be

TCP/IP, also known as the Internet Protocol Suite, which had been a standard protocol

used in web page transfers, e-mail communication, and peer-to-peer networking [6]. The

most common protocol in the suite is the Transmission Control Protocol (TCP) which

establishes connection and enables data exchange between two machines.

 In an established TCP connection, data is transferred between machines in form

of raw bytes send in a group called packets. In this project, the web server loaded into

the ARM board was given specified IP address. It then waits for connection on a port,

also known as listening. Since the programming language we used is able to open TCP

connections, there is no higher protocol than TCP in the system.

 In a network, connected machines are identified by IP addresses, usually in form

of 4 numbers separated by periods in between. On top of that, machines establish

connection on number of ports which provide services to incoming data in which on

modern computer systems, the ports are usually standardized. For instance, port 80 is

always used for web server application.

With recent development where code size and memory requirement are more

optimized [6], TCP/IP stack are now able to be ported into embedded systems, giving

the ability for connection with other hosts in intranet or internet network. TCP/IP stack

now can be minimized to important set of features only such as TCP, IP, ICMP and

UDP protocols with ability to handle single network interface.

9

 As a finite state machine (FSM), embedded web server processes HTTP request as a

sequence of discrete flow. Fig. 1 below shows FSM flow.

Initial state

setup

Listening to

connection

Parse header request, IP

Address

Direct the URL

to HTML file

Create response

Send HTML

page

Wait for new

request

Close connection

Generate error

message

Figure 1: Embedded web server process

flow

10

2.3 ARM board

Powerful microcontroller board are required to handle not only heavy task of controlling

servo motor positioning but also to handle large processing load involving networking

and embedded web server without distracting microcontroller primary application. The

LPC1768 board not only are equipped with powerful 32-bit ARM Cortex-M3

microcontroller, but also the Ethernet media access controller to suit up for remote

application requirements which could be achieved by connecting to a network through

RJ45 jack.

In addition, the Cortex-M3 had advantages of improved code density and

program execution efficiency by 25% over other 32-bit RISC, allowing more

performance while using less memory [7]. With the high ratio of 64 kB SRAM data

memory to 512 kB flash memory, the LPC1768 should be able to handle various

complex networking and data-processing routines. The 68 kB SRAM is further divided

into 32 kB of SRAM on the CPU equipped with local code for fast CPU access and two

16 kB SRAM for general purpose storage and Ethernet use [8].

On top of that, the LPC1768 is also equipped with several channels of pulse-

width modulators (PWM) with timer synchronization for accurate edges positioning and

quadrature encoder inputs to read precise positioning of motor together with integrated

fault protection for safety of operation in low latency conditions.

11

The performance of the LPC1768 is highly attributed to the architecture features

that is mostly can be found in RISC microprocessors. Fig. 2 below shows what are there

in the Cortex-M3 based LPC1768 board.

Figure 2: Simplified block diagram for LPC1768

12

First and foremost, the LPC1768 heart is the Cortex-M3 microprocessor which is

of Harvard architecture, meaning that the instruction and data bus are separated, thus

allowing instructions and data access to take place at the same time from separate

memories. However, the two buses share the same memory space, meaning that there

are now two separate 32-bit buses that allow 8GB of memory space.

The separation of these two buses promotes improvement on bandwidth

comparing to the traditional von Neumann architecture where program and data are

fetched from the same memory through same bus. Besides separating instruction and

data bus allow instructions to be sized differently than the 8-bit wide data word.

13

2.4 Peripherals

2.4.1 Servo Motor

Servomotors integrate motor with dedicated rotary encoder. Industrial servomotors are

more focused into servomechanism using feedback from encoder, usually a PID

controller that determines the position or rotation of the electrical motor component. The

closed-loop control is the sector that differentiates between servomotors and stepper

motors, which uses open-loop configuration although both motors embrace

servomechanisms.

For this project, the author is more focused into lower end servomotors type

called the radio-controlled servo motor, which has an electrical motor that is connected

to a potentiometer, which acts as the position sensor for the motor. A microcontroller

provides the servo with PWM signal. Electronic components inside the servo then

converts the pulse width of the signal into a position, which is fed to the potentiometer

that responded by adjusting its value to the input accordingly. The electrical motor

moves as it is powered by the potentiometer until the desired value in the potentiometer

is reached.

2.4.2 JTAG Debugger

Standard Test Access Port and Boundary-Scan Architecture, or commonly known as

Joint Test Action Group (JTAG) is developed to test printed circuit boards using

boundary scan [9] where pins-out of ICs soldered on multi layered boards can be viewed

to scan board for solder joint fault on the ICs.

14

In debugging, JTAG is used due to ability to access sub-blocks of integrated

circuits on embedded systems which has limited options of other communications

channel with debug capability. With JTAG, a direct connection from host-based

debugger software to debug logic inside CPU is established, enabling software

debugging of an embedded system to be targeted directly at the machine instruction

level when needed, where assertions of debug exception retargets the processor to fetch

instruction from logic registers instead of the program counter [10]. The connection is

shown as in Fig. 3.

Figure 3: [10] JTAG connection for debugging

The significance of using a JTAG debugger is more obvious when involving

projects with complex structures. One example is in tracing fault in occurrence of chip

halting in HardFauld handler, where with a debugger, ‘breakpoints’ can be inserted into

code to temporarily halt code execution until instructed to run again, in single-step, to

trace the source of fault. When used with GNU tools, or IDE, or any commercial

toolchain, the J-Link JTAG debugger can reset a device, start program execution and

halting the program on main() for user to run, with just a click to a button. This

eliminates the inconvenience of using UART or USB bootloader programmed to the

device for debugging [11]

15

2.5 Related Literatures

No. Title Author & Year Summary

1. Design and

Development of ARM

Processor Based Web

Server [5]

Roy, B.R., Dessai, S.,

and Shiva Prasad

Yaday, S.G., 2009.

- A project to develop an

embedded web server using

ARM9 processor and µC/OS-II

as RTOS.

- µC/OS-II is used to monitor

all the tasks of the web server.

- The embedded web server is

tested for its working, using a

data acquisition web application

hosted over a network of PC's.

2. High Speed Data

Acquisition and

Processing System

Design of Power

Transformer [12]

Xing-tao, S., Wen-rui,

Z., 2009.

- Project on gathering

transformer body and power

system data.

- Used NXP LPC1768 for data

acquisition and Ethernet to send

data to PC.

3. Design and

Implementation of

Software Architecture

Behavioral-Based

Robot Control System

Using Active Object

Computing Model [13]

Berry Perdana, P.,

Kusprasapta, M.,

Widyawardana, A.,

2011.

- Developed a software using

Active Object Computing

Model which is successfully

tested on an autonomous

mobile robot running on NXP

LPC1768 demonstrating

obstacle avoidance and object

following.

16

4. The Design of

Embedded Web Server

For Remote

Laboratories

Microcontroller

System Experiment

[14]

F. Yudi, L., Harry, S.,

AnakAgungPutri, R.,

AjibSetyo, A., 2009.

- Design of embedded web

server using 8-bit

microcontroller AT89S52.

- System consists of a computer

server, experiment module

microcontroller system.

- Embedded web server serves

as the user interface to control

the lab module microcontroller

via the internet.

5. Industrial Process

Parameter Control

using Ethernet [15]

N. U. Chipde, V.R.

Raut, 2013.

- Implementation of industrial

automation using ARM

processor with Ethernet

controller to provide network

interface capability.

- Configuring the ARM board

register and memory, with

design consists of SPI

communication, processor and

Ethernet interface module to

access the ENC 28J60.

- Provide high performance

solution compared to

conventional industrial

monitoring and control system.

Table 1: Related literatures with the project

17

CHAPTER 3: METHODOLOGY

3.1 Research Methodology

As this project is a prototype-based project, the author is adapting waterfall development

and prototyping method at the same time to achieve the objective of producing a

working prototype from the project. Both of this method had emphasized on breaking

the project into smaller tasks with waterfall method suggests on sequential flow of

project work, solving one task to another depending on criticality. Finally, the author

would finalize the configuration of RTOS incorporated with configured embedded web

server together with of servo motors controlling task for antenna positioning. Fig. 4

below shows project activities:

Figure 4: Waterfall methodology development activities

Commence project

Background study and analysis

Project design

Assembling hardware

Functional testing and modification

Troubleshooting and modification

Complete documentation

18

3.2 Project Activities

The project is started with the author reviewing related literatures on the concerned

topics such as RTOS, and embedded internet network. The author had also discussed

with his supervisor and project assistant on the hardware, software, project

implementation strategy, and expected result from a working prototype from this project.

3.2.1 Hardware Connections and Design

A user graphical interface would be displayed from any web browsers accessing the web

server. The input from the interface will be sent to the ARM board through Ethernet.

The data would be processed and output in form of PWM signal is produced at two

output pins named P2.0 and P2.1. Each of the output pins are assigned to two different

servo motors which are responsible for horizontal and vertical positioning respectively.

Fig. 5 below shows the overall hardware connections:

Servo motors ARM board

Host device / Hostspot User web interface

Figure 5: Hardware connections

Connected devices

19

3.2.2 Integrated Development Environment (IDE) / Toolchains

For the project development, the author used IAR Embedded Workbench for ARM

version 6.40.2.3992. This IDE provides the author with comprehensive software

encompassing source code editor, build automation tools, and debugger for project

development. To create a project, go to Project > Create New Project and a window will

pop up. The author then selects C++ as basic project template.

 After that, the author had to setup for types of processor target, in which for this

project is the LPC1768 processor. This is important as wrongly set target would render

an error named Fatal Error[Pe1696] where the IDE are unable to open source files

during compiling due to clashes of the loaded setup files which is intended to the

LPC1768 with the configured setting. After that, the IDE is ready to be used.

 In addition to IAR, the author also used KEIL µVision and Rowley CrossWorks

for ARM as an alternative to IAR. The reason is that the downloaded µIP network stack

and FreeRTOS kernel are configured to work on development board with different

peripheral and port design (refer to Appendix A) although they share the same ARM

core (LPC1768). So as the work over to this problem, the author had to use these

toolchains to configure the µIP and FreeRTOS to work on LandTiger LPC1768 board

before porting the whole program into IAR systems

20

3.2.3 LPC1768 Programming

The author uses C and C++ programming language for the project. In addition, the

author utilizes CMSIS function or Cortex Microcontroller Software Interface Standard

library for the programming part which is regarded as standardization attempt by ARM

with the distribution of startup code, linker script, and low-level initialization details for

used with LPC17XX series microprocessor.

There are few important initializations and declarations that have to be included in

the program. They are:

 core_cm3.c– CMSIS Cortex-M3 Core Peripheral Access Layer Source File

 core_cm3.h– CMSIS Cortex-M3 Core Peripheral Access Layer Header File

 core_cmFunc.h– CMSIS Cortex-M Core Function Access Header File

 core_cmInstr.h– Cortex-M Core Instruction Access Header File

 system_LPC17xx.c– CMSIS Cortex-M3 Device Peripheral Access Layer

Source File for the NXP LPC17xx Device Series

 system_LPC17xx.h– CMSIS Cortex-M3 Device Peripheral Access Layer

Header File for the NXP LPC17xx Device Series

 LPC17xx.h–Needed for function device struct and interrupt function

 startup_LPC17xx.s – Startup assembly bootstrap

 ldscript_rom_gnu.ld – Linker script

 main.c– Main project program

 Makefile – To compile projects

To use CMSIS function, the author has to enable the function from the program

options (General Options > Library Configuration tab > CMSIS > Tick Use CMSIS) or

else compiling the project would result in Fatal Error[Pe1696] where the IDE are unable

to open source files for CMSIS.

http://github.com/vsergeev/mbed-cmsis/raw/master/main_LPC17xx.c
http://github.com/vsergeev/mbed-cmsis/raw/master/Makefile

21

 Before starting with the PWM setting, the author had to identify the correct CPU

frequency clock setting for the microcontroller. Inside the LPC1768 is a peripheral

named Phase Locked Loop (PLL) that outputs multiple frequencies from reference

frequency sources available [16]. As stated earlier, LPC1768 is capable to work up to

100MHz of frequency which is the output as the result of calculations through PLL as it

is fed with a reference frequency sourced by a low frequency crystal oscillator, in which

in LPC1768 has a frequency of 12MHz. The overall PLL system is shown in Fig. 6.

Figure 6: Phase Locked Loop overall system

 The author decided to use the maximum 100MHz for processing clock (CCLK)

for fast computation. To obtain this the author had to determine the current controlled

oscillator frequency (FCCO) which has to be in range between 275 to 550MHz. The

author multiplied 100MHz with divide override value increasing from 1, until the value

of FCCO is in required range. For this project, the divide override is 4 as 100MHz

multiplied by 4 gives 400MHz which satisfies the requirement.

 Next, the author used the LPC17xx Main PLL Parameter Calculator from NXP

to determine the value of N divider and M multiplier. Entering the value of Maximum

CPU Frequency to 100MHz (this is the maximum frequency for LPC1768), target FCCO

to 400MHz, FIN which is the crystal oscillator frequency to 12MHz, and divide override

to 4, the author choose M value to 50 and N to 3 as these settings produce lowest

frequency error.

CCLK

PLL

Fin

Low

frequency

crystal

oscilaltor Fref

Pre-Divider

(N) FCCO

Post Divider

(CCLKSEL)

M

Multiplier

(Mx2)

22

 To determine the CCLK resulting from parameters obtained, a calculation is

done from Equation (1) which output 100MHz from parameters obtained:

To apply all of the parameters into program, the value of N, M and divide

override are subtracted with 1, giving values 2, 49, and 7 respectively. All of these

values are then converted into hexadecimal. Inside main.c, the parameters are entered

under hardware initialization where M and N are put into PLL0CFG, valued

0x00020031 (the first four digit in the right is the value of M-1 and next four digit is the

value of N-1), and divide override is set in CCLKCFG, which is 0x00000003.

 By determining the CCLK value, the author now can set the PWM and ADC

peripheral clock (PCLK) input directly from CCLK. The author set the prescaling for the

PCLK to 1MHz to obtain PWM with time base of 1µs (period the reciprocal of

frequency). This is important in determining the MRx register value to obtain PWM of

20ms with varying frequency ranging from 0.5 to 2.5ms. Value of MRx is determined by

dividing prescaled PCLK with desired output frequency.

23

 For the PWM part, the author had done the following:

1. Enabling power to PWM (PCONP register)

2. Enabling peripheral clock to PWM peripheral

3. Selecting and configuring output pins for the PWM signal. There are two channel

outputs that have been selected. Pull-up or pull-down resistors are disabled.

4. Setting the rising and falling edge of the signal. This function however is

controlled by ADC input but with limitations such that to control pulse not to

exceed the minimum and maximum duty cycle that can be handled by servo

motor.

For the ADC part, the author had done the following:

1. Setting up interrupt in which it reads the value from the potentiometer and

interrupt the program cycle with reading that has been obtained from the end of

A/D conversion cycle.

2. Configuring the input part for the ADC. Selecting the potentiometer included on

the board as input, which is of port 1 and numbered under pin number 31. No

pull-up, pull-down and open drain mode are enabled.

3. Configuring the ADC channel 5 and conversion rate to 200kHz

24

For the Ethernet part, the author used a preconfigured µIP Ethernet library targeted

for LPC1768 development board. The author had done the following [17]:

1. Include all the related .h files and libraries in main c file.

2. Altered the IP address located in FreeRTOSconfig.h file by changing the values

of configIP_ADDRx. Note that the µIP is incorporated with FreeRTOS.

3. Modify the HTML code of the demo website located in webserver>httpd-fs

folder. The author use HTML5 to produce slider GUI as most web browser

nowadays supports HTML5. The author had to make sure that the whole website

does not exceed the limitation of the library to 512Kbyte only.

4. HTML file is set to .shtml file to enable access to hardware. After modification,

makefsdata.pl Perl script had to be executed for the HTML code modification to

take place.

5. Add PWM function to the httpd-cgi to allow communication between input from

web brower to hardware to manipulate the PWM duty cycle execution code.

6. Configured target computer network configuration. The steps are:

1. Go to: Start > Control Panel > Network and Internet > Network Adapters

2. Right click LAN network adapter > Properties

3. Select Internet Protocol Version 4 (TCP/IPv4) > Properties > Select “Use the

following IP-address”

4. Insert parameters as the configured value in FreeRTOSconfig.h

25

The author had done configuring FreeRTOS in which all of the previously

configured tasks are combined and set up to work in RTOS environment. The overall

task structure flowchart is attached in Appendix B. Overall program would start by

looking at the input interface, in our case is the TCP/IP, before processing the updated

input parameters set by operator through web browser. The kernel is then set to wait

until next control cycle, set in milliseconds resolution cycle, to enable periodic task

execution by using FreeRTOS Application Programming Interface (API) named

xTaskDelayUntil.

Another important API is xQueueRecieve used in blocking specified task

execution in order to give way for other task to be executed. In this project, we can said

that if the TCP/IP is not sending any updated value, then other task such as PWM can

still be executed. When an input is sent, an interrupt would unblock the task. The task

then would wait until all the parameters are updated. The kernel would then execute the

outer loop model and update the MR1 and/or MR2 register of the PWM responsible for

setting the PWM duty cycle in the interrupt service routine (ISR), before returning to the

starting point.

A flowchart is designed to guide the author in the coding and the flow of the

program. The overall work flowchart is attached in Appendix C and Appendix D is the

flowchart for PWM configuration and test using potentiometer (ADC) input. Note that

the ADC part is only temporary, only to simulate on how the HTTP input should work

as an input to the PWM port.

26

3.2.4 LPC1768 Debugging

The LandTiger LPC1768 development board has onboard support for JTAG debugging

and program download through the debugging port (CN4) for the access to the on-board

J-LINK emulator (U3). For this project, the author used J-LINK which is a JTAG

emulator for ARM microprocessors that has built in 20-pin JTAG connector (CN1) to

communicate with PC via USB (CN4) channel.

To use the JTAG debugging and JLINK emulator, the host PC has to be installed

with J-LINK for ARM Version 4.54c software to provide IAR development program

with JTAG/SWD interface and JLINK emulator. To download and debug program using

JLINK emulator, the author had to configure the debugger options in project program.

The steps are:

1. Right click on project folder > Select Options.

2. Select Debugger > Setup tab > Driver > Select J-Link / J-Trace

3. Select Download tab > tick Verify download and Use flash loader(s)

4. Select J-Link / J-Trace under Category window > Tick Auto under SWO

clock.

During debugging and compiling process, there are some error encountered such

as Error[Li005]: no definition which is solved by linking latest and related library files

to the project. This is usually occurs when a library function is called in header files but

the library files are not linked to the project. Other error encountered are

Warning[Pe177] mainly due to unused function that has been declared in the program.

These errors might be nothing, but would cause the program failed to be compiled and

run.

27

3.3 Key Milestones

To achieve the objectives of the project, there are several key milestones had been

underlined to meet the project requirements accordingly. Listed below are the key

milestones:

3.3.1 Background Study and Analysis

Identifying the objective of the project and recognizing the purpose of FYP2 as

continuity to the work done in FYP1 beside as requirement for a degree collectively. The

author had gathered related information regarding project from journals, forums, and

online resources with the help of a postgraduate student assigned by the supervisor to

guide the author on keeping track with relevant topic in FYP1. For FYP2, the author

would spend most of part in studying the composition and configuration of RTOS and

embedded web server stacks through developers’ manuals.

3.3.2 Project Design

In addition to outlined procedures, hardware, software, and tools required by the project

in FYP1, the author had added several more into the project design as an alternative to

previously underlined design or to solve problems encountered during project work. In

FYP1, the author had configured two ouput pins on LPC1768 board to produce PWM

signals with 50Hz frequency, together with configured on-board potentiometer (analog

to digital (ADC) input) to control the duty cycle of the PWM to control servo arm

position before testing with servo during debugging, in which the author had

encountered several problems and had to introduce new tools, hardware and software, to

solve the problem.

Later, the ADC was replaced with a slider input from a website hosted on

configured µIP network stack to work on LPC1768. To manage both of the µIP task and

PWM task, the author had to configure FreeRTOS to work in preemptive mode to assign

task priorities to each tasks together with interrupt calls so that each tasks would run

whenever an interrupt is made as decided by the configured FreeRTOS kernel.

28

3.3.3 Project Implementation

Toolchains such as Keil µVision and Rowley CrossWorks for ARM are used to modify

preconfigured network stack and RTOS kernel before porting into IAR Embedded

Workbench. Ethernet cable is connected from LPC1768 board to a computer. Loaded

code will configure the LPC1768 over the network to work as embedded web server, but

the user had to manually configure the IP address, subnet mask, and default gateway of

the local area connection in target device to enable communication with the embedded

web server.

Connection between two devices are then confirmed by using command prompt

(cmd) where LPC1768 will be pinged through the cmd to test it for network connection.

Using web browser, the IP configured in network stack is entered to request for server

connection to the LPC1768 [5], where a graphical user interface, configured using

HTML5, would be loaded on the web browser as the input to control servo motor on the

PWM output part at the LPC1768 output pins.

Any progress and problem on the work done shall be reported to project assistant

to keep track on job done beside underline the possible solutions to problems

encountered.

3.3.4 Documentation and Reporting

Every related manuals and references are compiled in a folder. Detailed documentation

is updated weekly following project progress. Problem encountered during progress

should be underlined for future references. Findings and project work shall be analyzed

and discussed thoroughly to nurture ideas on how to improve the project

implementation. Lesson learned should be highlighted for future notations. All of the

project work such as the source code are saved into a CD-ROM and submitted to the

supervisor.

29

Table 2: Project Gantt chart

● Suggested milestone Process

No Detail 1 2 3 4 5 6 7

M
id

-S
em

es
te

r
B

re
ak

8 9 10 11 12 13 14 15

1 Project Work Continues

2 Submission of Progress Report ●

3 Project Work Continues

4 Pre-SEDEX ●

5 Submission of Draft Report ●

6 Submission of Dissertation (soft bound) ●

7 Submission of Technical Paper ●

8 Oral Presentation ●

9 Submission of Project Dissertation (hard bound)

 ●

Week

3.4 Gantt Chart

30

3.5 Tools

3.5.1 Software

No. Name Description

1. Microsoft Office

Professional Plus 2007

 Word for documentation, e.g; writing

report

 Excel for Gantt chart

2. ActivePerl 5.16.3 To execute script when changes are made to

HTML code
3. Strawberry Perl 5.16.3

4. IAR Embedded

Workbench

 Proprietary tools for compiling,

programming and porting program into

ARM board [18]

 As tools to learn on embedded system

programming based on example projects

 To monitor and debug program

5. KEIL µVision v4.03q

RealView MDK-ARM

6. Rowley CrossWorks for

ARM v2.3.2

Table 3: List of software for the project

31

3.5.2 Hardware

No. Name Description

1. LPC1768 ARM Board Receive input from input unit, executes the

stored user program, and send out appropriate

output command to control devices

2. Point-to-pint crossover

Ethernet cable

To connect ARM board to the network

3. Power supplies 240VAC adapter to supply 5VDC

power to the board

 6VDC power supply for servo motor (4

AA batteries)

4. 74HC14N Hex inverting

Schmitt trigger IC

To reproduce PWM signal to a stable 6V

square wave signal for servo input

5. Servo motor Final element in this control project

6. J-TAG Debugger with

USB cable

To load and debug hardware. Also as an

alternative power source to the board

Table 4: List of hardware for the project

32

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Pulse Width Modulation Output Signal

The PWM signals, named PWM1.1 and PWM1.2 are configured to be channeled to

output pin P2.0 and P2.1 respectively. For the PWM testing part, the ARM processor

would process A/D input, named AD0.5 from potentiometer onboard LPC1768

development board labeled as P1.23 to control the duty cycle of the PWM. The PWM is

set for single edge application where one point of the match register, used to set the duty

cycle of the signal, is fixed while the other register is set to trigger the signal.

The frequency of the PWM is determined at the MR0 match register where it is

set to 50Hz for servo application. On the other hand match register MR1 is controlled by

potentiometer to produce 0.528ms (for servo position at 0˚) to 2.5ms (for servo position

at 180˚) of duty cycle PWM which is the operating range of the servo (0˚ to 180˚).

The PWM signal is verified working by channeling the PWM to two LED output

onboard that is by manipulating the brightness of the LED using PWM signal. By using

oscilloscope with w vertical setting is set to 2V/div and 5ms/div for horizontal setting,

we could see PWM signal changing as we turn the on board potentiometer as shown in

Fig. 7.

Figure 7: PWM output displayed by the oscilloscope

33

 The ADC input was replaced with web interface slider input to provide the input

to the PWM section after initial testing had been done. The author used the “measure”

function from the oscilloscope to measure the frequency. In initialization state, the PWM

is set to produce pulse width of 1.5ms with PWM period of 20ms, as instructed in servo

manual. The 1.5ms pulse width is translated to 90° position, which is a neutral state as

the range for servo rotation is 0°-180°, while the period 20ms is translated to 50Hz

frequency of the signal. The result obtained was as shown in Fig. 8 below where the

pulse width and signal frequency are confirmed to work in correct order:

Figure 8: PWM signal after initialization with web interface as input

 The pulse width and PWM period was the main concern since over-rating of

pulse width from specified requirement in servo manual would cause damages to servo

motor on top of undesired rotation and servo jittering as the result of wrong setting.

34

4.2 Servo Motor Response

Initial sign that shows whether PWM signal is working is through LED LD11 and LD10

on the board since both LEDs shares the output with the PWM output pin. The author

had tested the PWM to the servo motors and the servos responded as expected to the

input signal as the author changed the slider in web interface to desired degree of

rotation.

 According to the servo manual, 0°-180° of rotation is translated from pulse width

valued between 0.582ms to 2.5ms. Therefore, the author tested the servo with three point

pulse width test, 0.582ms, 1.5ms, and 2.5ms to determine the correctness of servo

rotation and had results agreed with the theory from the user manual as shown in Fig. 9

below:

Figure 9: Degree of rotation of servo in three different signals with different pulse width

35

4.3 Web User Interface

User interface can be accessed by entering IP address: http://192.168.0.201/pwm.shtml.

The IP address set for this project corresponds to the defined IP address set in

FreeRTOSConfig.h file under definition “configIP_ADDR0 - configIP_ADDR3”.

Figure 10: Graphical web interface for servo control displayed on web browser

 The web interface shown in Fig. 10 would not be able to be accessed if the IP

address entered in browsers does not agree with the address set in program code. Other

than that, user has to ensure that parameters of the IPv4 for host network adapters are

correct. For this project, the parameters used are as below (note that IP-address is +1

from address to be used in browser):

a. IP-address = 192.168.0.202

b. Subnet mask = 255.255.255.0

c. Default gateway = 192.168.0.254

http://192.168.0.201/pwm.shtml

36

4.4 Constraints and Problems Encountered

Designing and developing a system from scratch is very challenging especially when

working individually. The only experience that the author had related with his project

was developing a blinking LED in structured programming course using C and

developing a basketball scoreboard in Microprocessor course, which is almost different

with the ARM environment. The author had to learn about ARM programming, the

ARM board, RTOS, and embedded web server from the beginning. However, the author

had managed to learn by referring to example projects and reading related literature and

online forums as references.

 The first problem is to find suitable software for developing and debugging the

program. There are several readily available software for ARM platform such as Kiel

MDK-ARM. However for this project, the author needs IAR Embedded Workbench

which has different environment to Kiel especially in its Library and Filing system. The

author also had to upgrade his IAR software from 6.30 to version 6.40 to be able to load

example projects which use upgraded library files.

 However, not all example projects could be run properly where some of them

require the author to modify the code. This is because some of the example codes are

programmed for board build by specific manufacturer, for instance the IAR LPC1768-

SK development board by IAR and Keil MCB1768 Eval Board 72R6098 by NXP.

Although these board shared the same LPC1768 system, the pin and on-board

configurations are somewhat differs to each other as chip manufacturers decide on the

pin configuration for their product board as shown in Appendix A. The author had to

refer to LPC17xx manual to modify the code, in which by doing that, the author had not

only able to understand the example project, but also to learn on how to configure the

board through programming.

 Another problem faced by the author is in understanding numbered error

messages during compiling and debugging process. With the assistance of a

postgraduate student, the author managed to understand the proper initialization and

setting to his projects as discussed in Chapter 4.

37

 There are also some hardware issues during project execution. One of them is

that all output pins on LandTiger board giving out sinusoidal noise even when there is

no program are running as shown in Fig. 11. This had resulted in PWM signal disturbed

by noise signal thus the servos are unable to run. Initially the author had changed the

CMSIS library to mbed library and using example code from mbed LPC1768 to check if

the coding was the culprit for the noise.

Figure 11: PWM signal (square wave pulse) and noise (sinusoidal) signal

 Later it was discovered that the 240VAC power adapter is giving out more than

5VDC output. It was stated in LandTiger manual that the input voltage must not exceed

5V ±5% deviation [19]. The problem is solved by using USB power supply to the board

(input source can be changed by adjusting the position of power supply jumper JP3 on

the board). Another benefit of this solution is that the author had also encountered faulty

J-Link debugger during debugging. The same USB supply can also be used to load

program into the board by removing JTAG_SEL (JP4) jumper on the board to enable

onboard J-Link emulator.

38

 The next problem encountered by the author was the servos are not moving even

though correct PWM signal had been obtained. From the oscilloscope, the voltage

amplitude for the PWM was only at 3.3V. The author then uses 74HC14 Hex inverting

Schmitt trigger to reproduce the PWM signal to perfect square wave with 6V amplitude

as shown in Fig. 12. The 6VDC is the result of using 6V battery input shared with servos

as power source. With this, the servos are able to run.

Figure 12: Connections from the PWM pin to servos through 74HC14

On top of that, due to complexity of coding a TCP/IP and RTOS stack for a

microcontroller, the author resorted on using a pre-configured open source stack

programmed specifically for embedded application namely the µIP and FreeRTOS

respectively. By doing this, the author would be more focused on porting both stacks to

work in microcontroller used through IAR toolchain.

The µIP network stack requires a driver for any Ethernet interface being used.

The well documented µIP provides better solution for the author to concentrate on

application level coding specifically on controlling the PWM duty cycle through web

server for control of the servo motors. With examples of applications such as on how

application level protocol like HTTP is coded, the author are able to learn on how to

produce similar results based on established examples.

39

CHAPTER 5: RECOMMENDATION AND CONCLUSION

5.1 Recommendations

For future improvement of the project, the author would like to propose changes in web

interface in terms of user friendliness with improved adaptations regardless of web

browser used to access the interface. Current interface is coded using HTML5 which

may be unsupported to old browsers. This can be solved by using elements or styles

combining HTML, CSS, and JavaScript to produce interface that is supported by wide

range of browser.

 On top of that, the author suggests on direct submission of input from slider to

the servo whenever the slider is moved. In this project, the author uses ‘submit’ option in

HTML form, where data from slider input are only submitted to the processor after

mouse click is released from the slider (as the author use JavaScript’s ‘onmouseup’ and

‘ontouchup’ event). An upgrade in this section would provide a more smooth operation

of the program.

 In terms of peripheral use, the author recommends upgrading the RC servo to

servos that can rotates continuously or provide 360° rotation. Example of this type of

servo is the one used in model yacht sail winches such as the G15 cube servo by Cytron.

Small modification is needed in program code to increase pulse width of the output

signal to enable rotation more than 180° compared to normal RC servo. This would

provide the project with more capable output.

 In addition, the author would like to purpose an expansion to this project that is

to produce a working prototype of Ethernet controlled robot. The robot actions and

movement would be controlled remotely through web interface or smartphone apps

while maintaining the essence of the project that is controlling and monitoring through

the means of embedded HTTP server on ARM board.

40

 For use in mission critical application or where security is the main concern,

suggestion of adding password into website by using HTML form is highly

recommended. On top of that, security can be added by replacing FreeRTOS with

SafeRTOS which is mainly use in industrial, medical, aerospace, and nuclear sector with

added cost compared to FreeRTOS.

5.2 Conclusion

The author had successfully produce a working prototype showing peripheral control

and monitoring through embedded web server sourced from ARM board, in which in

this project, a web interface enables user to control servo motor by adjusting input

sliders which also shows the degree of servo rotation. This project had also successfully

simulate the usage of RTOS in managing different tasks by the microcontroller which

can be confirmed by using FreeRTOS web example that shows running tasks besides

detecting error in tasks execution. Overall, all of the objectives in this project had been

successfully achieved with recommendations underlined by the author for future

improvements.

41

REFERENCES

1. Booth, J.A, and Cozart, S., 2010. Access Your Embedded Controller with Ease

through a Web Server. Texas Instruments Corporation, Dallas, Texas, USA.

2. Arora, H. (2012, February 6). What is RTOS? – Real Time Operating Systems

Basics. [online]. Retrieved from: http://www.thegeekstuff.com/2012/02/rtos-

basics/

3. Rakesh, (2012, April 12). What is Real Time Operating System (RTOS)- How it

works?[online] Available: http://www.circuitstoday.com/what-is-real-time-

operating-system-rtos

4. Prado, Sergio. (2012, May 27). Mbed – Integrating FreeRTOS on a Cortex-M,

[online] Available: http://sergioprado.org/mbed-integrando-o-freertos-em-um-

cortex-m3/

5. Roy, B.R., Dessai, S., and Shiva Prasad Yaday, S.G., 2009, “Design and

Development of ARM Processor Based Web Server,” International Journal of

Recent Trends in Engineering,Vol. 1, No. 4, May 2009.

6. Dunkels, A. “The µIP Embedded TCP/IP Stack: The µIP 1.0 Reference Manual”,

Swedish Institue of Computer Science, June 2006.

7. ARM University Relations. ARM Cortex-M3 Introduction (2012, December).

Retrieved from: http://www.arm.com/support/university/

8. NXP B.V. UM10360: LPC17xx User Manual (2010, August) Document No.

UM10360, Rev. 2. Retrieved from: http://www.nxp.com/

9. Wikipedia contributors. (2013, August). Joint Test Action Group. [Online].

Available: http://en.wikipedia.org/wiki/Joint_Test_Action_Group

10. Pittroff, L. “Tutorial: The Role of JTAG in system debug & test throughout the

embedded system development lifecycle,” [online] 22 October 2008,

http://www.embedded.com/design/prototyping-and-

development/4008137/2/Tutorial-The-Role-of-JTAG-in-system-debug--test-

throughout-the-embedded-system-development-lifecycle (Accessed 16 August

2013).

http://www.thegeekstuff.com/2012/02/rtos-basics/
http://www.thegeekstuff.com/2012/02/rtos-basics/
http://www.circuitstoday.com/what-is-real-time-operating-system-rtos
http://www.circuitstoday.com/what-is-real-time-operating-system-rtos
http://sergioprado.org/mbed-integrando-o-freertos-em-um-cortex-m3/
http://sergioprado.org/mbed-integrando-o-freertos-em-um-cortex-m3/
http://www.arm.com/support/university/
http://www.nxp.com/
http://en.wikipedia.org/wiki/Joint_Test_Action_Group
http://www.embedded.com/design/prototyping-and-development/4008137/2/Tutorial-The-Role-of-JTAG-in-system-debug--test-throughout-the-embedded-system-development-lifecycle
http://www.embedded.com/design/prototyping-and-development/4008137/2/Tutorial-The-Role-of-JTAG-in-system-debug--test-throughout-the-embedded-system-development-lifecycle
http://www.embedded.com/design/prototyping-and-development/4008137/2/Tutorial-The-Role-of-JTAG-in-system-debug--test-throughout-the-embedded-system-development-lifecycle

42

11. New Product – SEGGER J-Link EDU – JTAG/SWD Debugger, adafruit

industries blog, [online] 2013, http://www.adafruit.com/blog/2013/05/16/new-

product-segger-j-link-edu-jtagswd-debugger/ (Accessed: 17 August 2013).

12. Xing-tao, S., Wen-rui, Z., 2009, “High Speed Data Acquisition and Processing

System Design of Power Transformer” Sch. of Electr. & Autom. Eng., Tianjin

Polytech. Univ., Tianjin, China. 978-1-4577-0860-2/11/$26.00, 2011.

13. Putra, B. P., Mutijarsa, K., & Adiprawita, W. (2011, July). Design and

implementation of software architecture behavioral-based robot control system

using Active Object Computing Model. In Electrical Engineering and

Informatics (ICEEI), 2011 International Conference on (pp. 1-6). IEEE.

14. Limpraptono, F. Y., Sudibyo, H., Ratna, A. A. P., & Arifin, A. S. (2011,

November). The design of embedded web server for remote laboratories

microcontroller system experiment. In TENCON 2011-2011 IEEE Region 10

Conference (pp. 1198-1202). IEEE.

15. N. U. Chipde; V. R. Raut, 2013, “Industrial Process Parameter Control using

Ethernet,” Dept. Elec. Telecommunication, P.R.M.I.T, Badnera, Amravati,

Maharashtra, India. International Journal of Science and Research, Vol.2, No. 5,

May 2013.

16. Sagar. (2010, November 25). Using the PLL on LPC17xx [online] Available:

http://gvworks.blogspot.com/2010/11/using-pll-on-lpc17xx.html

17. Getting Started with the Simplecortex, BRC-Electronics, March, 19. 2012.

18. EmbeddedCraft. ARM Microprocessor Basics: Introduction to ARM

Processor(2012, December). Retrieved from: http://www.embeddedcraft.org/

19. Landtiger V2.0 LPC17XX Development Board: User Manual, version V1.1,

PowerMCU, 2012.

http://www.adafruit.com/blog/2013/05/16/new-product-segger-j-link-edu-jtagswd-debugger/
http://www.adafruit.com/blog/2013/05/16/new-product-segger-j-link-edu-jtagswd-debugger/
http://gvworks.blogspot.com/2010/11/using-pll-on-lpc17xx.html
http://www.embeddedcraft.org/

43

APPENDICES

APPENDIX A

OVERALL STRUCTURE OF ARM CHIP

44

APPENDIX B

OVERALL PROGRAM EXECUTION IN FREERTOS

Process updated

parameters from user

interface

Wait for next control cycle

(xTaskDelayUntil execution)

Wait to receive input to

blocked task

(xQueueRecieve execution

Execute Model

Update PWM

parameters

Start

All parameters

received?

YES

NO

45

APPENDIX C

OVERALL PROJECT FLOWCHART

46

APPENDIX D

PWM PROGRAMMING AND TEST FLOWCHART

