To Design a Bipedal Robet

By

Hamdi bin Mohd Daud

A project dissertation submitted in partial fulfillment of
the requirements for the
Bachelor of Engineering (Hons)
(Electrical & Electronics Enginceting)

December 2007

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

it

CERTIFICATION OF APPROVAL

To Design a
Bipedal Robot

by

Hamdi Bin Mohd Daud

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Approved:

Ms 1l Bt Mohd Nawi

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOIH, PERAK

December 2007

il

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

==

Hansd Bin Mohd Daud

iv

ABSTRACT

The design of a bipedal robot literally involves walking gait and control of balance.
Controlling the direction of balance for a two legged walking robot typically means
mimicking the human form and its walking locomotion. The ultimate aim is to
maintain an upright torso while advancing one leg in front of the other continuously
without falling. The bipedal structure forces the writer to consider a combination of
factors such as weight balancing, mechanism and degrees of freedom before
designing the robot prototype. The writer has to apply fundamental knowledge about
servo motor actuator, pulse width modulation, and PIC programming in
accomplishing the project. Independent work through self-discipline, self-
management and job co-ordination also needed to be exercise while undertaking the
project. This report consists of five important chapters that cover the project
introduction, review of related literature, project methodology, discussion of result,
and finally the conclusion. The introductory part briefly discusses the background
study of the project and the existing studies on designing a bipedal robot, more focus
on the problem statement that covers problem identification and the significant of
the projects, as well as the objectives of the project are stated and it describes more
on the relevance and the feasibility of the project within the scope and time frame
given. The review of related literature on the project is enclosed in chapter two while
the project methodology is covered in chapter three of the report. Findings related to
the project along with its discussions are stated in chapter four of the report together

with the conclusion and references used during the research works.

ACKNOWLEDGEMENTS

In The name of Allah the Beneficent, the Merciful

An utmost gratitude to Ms Iilani Bt Mohd Nawi for allowing the writer to do a Final
Year Project under her supervisions. Even with a tight time schedule, support and
good advices were always given which is the key factor of finishing the project in
time. Without her relentless effort to guide and supervise, the project will not have
been successful.

Also thanks to Dr Taj Mohammad Baloch as the student advisor for this project. His
advice and recommendation for this project helped the writer to conduct this project

smoothly.

Special thanks to Mr. Muhamad Aidil Jazmi for the references of his project as a
guideline for the writer to understand and meet this project requirement. He has
given numerous inspirations for the writer to carry on the project and been very

helpful in assisting the writer in a lot of difficult time.

Last but not least, an utmost gratitude to father Hj Mohd Daud Bin Hj Yaakob and
mother Hjh Hamidah Bt Mohamad which has brought the writer up and be good role
models throughout these years.

Also the writer is very grateful to friends who have been supportive during the
period of this project were held. Not to forget to all others who have help in the

project directly and indirectly and might not be mentioned here.

Thank you for all the supports given and only god may repay them

vi

TABLE OF CONTENTS

LIST OF FIGURES ... oteteitvesseisssasssescssnesessnsastssssassassseensas e sssssassassnssenassssssiasssisess ix
LIST OF ABBREVIATIONS.....coeenresisimsresinsiensssnssssssssssssssansnsssmessssusssssasasssssasess X
CHAPTER 1 INTRODUCTIONcoovtiiirnintnisrmmessscnsssssesissrssns s ssncasssasssissesasasanes 1
1.1 Background of STUAYcccovenruseesemssctsissssmssmssssansssscsasscsssnssssssessenes 1

1.2 Problem StAEIMENLcccrrecerreseriermeresmsnmressssssssssensssniansssansssasseses 1

1.2.1 Problem Identification ... erirererninn s I

1.2.2 Significance 0f the PIOJECT wv.eeveruiiinnianianmsernncsiasrnsinennaaens 2

1.3 ODJECHVE c-voevervesmsrerrnnssissnsssmcsmssasnsssessssassn s sttt 2

1.4 Scope 0f STUAY covvcieetrirnsreremssiseansssiniessssssescasssiasinns JU— 2

CHAPTER 2 LITERATURE REVIEW ...ttt 3
2.1 Biped Walkingcc.coccuieuinicons eeesarosessesesertrieseseeirinsssrean T artsasatas 3

2.1.1 S1Atic WAlKINE c..vorececeiacmrsnransnsrssnecssasssssstansssssscssnisarascassssns 3

2.1.2 Dynamic Walking......... reerraennas evberesessaeeeansssnasas e tsansenerebss 5

2.2 Degree of FIEEAOM cucevusvreuernrssmmmssssssmsissensssesessiassssassesss s cise 5

9 3 Mechanical ACTUBLOTvvieerurietsmissrarsesssemstemsismransnssssessasasisansasenaes 7

D.3.1 SEIVO MOLOT .evrerreraesecssesssrassamssensssesssssssansssaresssssossssassscesne 7

4 4 Pulse Width MOAUIGONcvevevireiniarrmnirsisnirnissesssessssssisnssnss 1

CHAPTER 3 METHODOLOGY ..cvvuirrierinmrssssninasmnnasisssssnsrssssssssssssss i 12
3.1 Project PrOCEAUIE ...ouuvrrimsrmnsisessssimssissssassrasnesssnssstsnisssiscsusassesess 13

3.2 MALETIAL o.vnvrvevercserescasssnsssircstsmsessarassssssstasarrstsss s saass st s ssusainsstees 13

3.3 T0ols and SOTIWATE ..ceevveerrerisriririssmsesesessasiris s sase it nsasanaes 14

CHAPTER 4 RESULT AND DISCUSSION ..ottt s 15
4.1 Bipedal Model Description ... iersmssmsosrscnsssssssmsssssssssssasciees 15

4.1.1 Robot Design and Degree of Freedomoovimeconnsneccen. 15

4.1.2 MEChAMCAL .ccvrviereceveeaearemesireserssssensrsssssinsnansasesnssssssstsns 17

4.1.3 ELECHICAL...nverevcreierereesseseesessssesensnsassseessessasamenssnanassnasssasinis 19

4.2 System DESCIAPLION .veurrvscrssirarsmseressssssimasersessasssaassssssssinssssisssesses 21

4.2.1 Servo Controler ...t ineerissssesesnssisssn s 21

4.2.2 Walking COnIOIET . c.mevveeeenr s raiannssasnsssencnsssrsassasece 25

4.3 DASCUSSION 1.vereeirerersreeaseresarercsssismssssarsssssesssasssnsasmnssssssacabsssnsnssasss 26

4.3.1 Servo Controller C Program......ocoeirimeesninssnnsnsnsssssnsceasas 26

vil

4.3.2 Walking Controller C Programcccviriissisnncencinn. 28

4.3.3 Computer Instruction C Programc...cccceeveue reresesnearenens 29
CHAPTER 5 CONCLUSION AND RECOMENDATIONcoocoviienincsniisinnenss 31
REFERENCES ..oooeeeeeueueseitssssoesesssssessassrassstasssssesiorssssassssssssssastonssmasnasssssasesssese 32
APPENDICES ..o.oooeeeeceereseiassesasasssescressscnsaerstassssssasssssssssbemsasasssasasmesstsssssbriasscasasiss 34
Appendix A PROJECT GANTT CHART .occevicnciiennnns rerveseenarinns 35
Appendix B BIPEDAL ROBOT SCHEMATIC BOARD.......cccouvenne 36
Appendix C FUTABA $3001 STANDARD SERVO
SPECIFICATION ...couitiovvireersesserescrisssnssesnsesscasssssssssissnassssssossssssaness 37
Appendix D PIC 16F877 DATA SHEET oo 38
Appendix E MAX232] DUAL DRIVERS/RECEIVERS DATA
QHEET oo eeeeemereaasesssassssaessssssaenamssssseshensssnans g s sasosssisnssssnssnsass 39
Appendix F SERVO CONTROLLER C PROGRAM......ccomnrrrenn 40
Appendix G WALKING CONTROLLER C PROGRAM......ccoeven 44
Appendix H COMPUTER INSTRUCTION C PROGRAM.............. 50

viii

LIST OF FIGURES

Figure 1 : Static walking and condition to be in stable POSION.cuerrvrmreemaerrorsrncens 4
Figure 2 : The projection of center of gravity in static walkingccccoemvvevnsrmsarsearenns 4
Figure 3 : The center of gravity in static walking (FrONE VIEW) «rorivcrcrcsesnnsvarsnsssnsns 5

Figure 4 : Types of planar mechanical linkage & relation with Degree of Freedom 6

Figure 5 : COMMON SEIVO MIOTOT...ccvuucuusnrrsesnrssasnsssrsssssssssssssssmonsssssasssssassisssiissessassors 7
Figure 6 : Input pulse signal and servo motor output LSS 110 DO 8
Figure 7 : Effect of duty cycle in pulse width modulationceeereeeeescecssnennnen 11
Figure 8 : Flowchart of procedures done 12
Figure 9 : Obtained Futaba S3001 Servos..........ccovsvevn. erieesaasesearesesessiesnsrssbestaneas 13
Figare 10 : Obtained PIC 16F877 TNICTOCOTEIOHET .ot evereecreerreresnersesessnrnnsresessonasns 14
Figure 11 : Joints and links of the robot legoowmercsssecncsene. revaesenranenetesneressarnires 15
Figure 12 : Degree of freedom in X-y-z PIANE .ovcenicranec et 16
Figure 13 : 1mm L-shape stainless StEe] TTAIME 1rvvveemecivrinccnineaessnsnrsess e scsnessennsnanse 17
Figure 14 : 10 obtained Futaba S3001 SEIVOS...couuuusermmsusscsinsssssmmsssenemisssesssesssisesss 17
Figure 15 : Bipedal Leg Prototype (Front VIEW) 1vreranrcesansansnsranssmiasssssasssssssessasnannes 18
Figure 16 : Bipedal Leg Prototype (Rear VIBW) carervsorarseraresisssnmssamassssasasiassssasessssnass 18
Figure 17 : Schematic board for controller with 2 PIC 16F877ocviveviiiinccininnes 19
Figure 18 ; Circuit testing for PCB IMPIEMENAtON.......orrerererssrrorasesssssnmsesssrasasnsens 20
Figure 19 : Printed Circuit Board layout for the circuit Schematicoierearesisenn. 20
Figure 20 : Walking Controller and Servo Controller assoCIationoevessssscesrosss 21
Figure 21 : PWM output from servo controller.............. eereereesenseeneetsasenssransraberhtenenes 22
Figure 22 : Servo controlier program FLOWCHATT «.eeeeeeveevrereesnerereanesisssssnssmrasnnensesnasses 24
Figure 23 : Flowchart for walking CONLIOller Program ... vuremssensseresseneess eenerinene .25
Figure 24 : Servo Controller pulse width modulation generatorceceveveiiarananes 27
Figure 25 : Servo variable representation on the bipedal TObOL....c.eevevrreeemiinecsianenns 28

ix

LIST OF ABBREVIATIONS

AC - Alternate Current

DC - Direct Current

DOF - Degree Of Freedom

EEPROM - Electrically Erasable Programmable Read-Only
EIA - Energy Information Administration
MHz -Megabhertz

ms - milliseconds

us - microseconds

PWM - Pulse Width Modulation

PIC - Programmable Intelligent Computer
PCB - Printed Circuit Board

RAM - Random Access Memory

+ve - Positive

-ve - Negative

CHAPTER 1
INTRODUCTION

1.1 Background of study

This project is about designing a biped robot that can walk. By definition, bipedal is
standing or moving for example by walking, running, or hopping, with only two
appendages which are typically legs. An animal or machine that usually moves in a
bipedal manner is known as a biped, meaning "two feet" [12]. As for walking, one
of the robot feet should be in front of another, with at least one foot on the ground at
any time. This walking exercise usually is an active process, requiring consiant

adjustment of balance.

For nearly the whole of the 20th century, bipedal robots were very difficult to
construct [12]. Robots which could move usually did so using wheels, treads, or
multiple legs. Increasingly cheap and compact computing power, however, has made
two-legged robois more feasible. The introduction of ASIMO [9], developed by
Honda and Kondo Robot [10] by Kondo made us realize what we arc capable of.

1.2 Problem Statement

1.2.1 Problem Identification

In recent years the interest to study the bipedal walking has grown and the
demand for build bipedal robots has increase. Bipedal robots are more versatile
than conventional quadruped or wheeled robots, but they tend to tip over easily.
To solve this problem, the stability of a biped robot needs to be maintained

during walking.

1.2.2 Significance of the Project

This project contributes to a lot variety of purposes, from the investigation of the
theories on bipedal walking to the design of humanoid robot. Nowadays a lot of
robots were design to help with human live. With an advance bipedal walking,
robots can surpass the limitation faced before by walking steadily, climbing
steps, become more versatile and reach further more by evolving to humanoid
robot. The design also can be used for disable person that lost their freedom to

move freely and improve their living.

1.3 Objective

Generally the main objective of this project is to design a prototype of a bipedal
robot using a PIC microcontroller. The robot should be able to walk, tilt and bend
the two legs given. The bipedal robot must be controlled using suitable PIC
microcontroller to achieve the objective mentioned. The specifications of the
prototype are that it shall be around 0.5 meter in height covered from feet to waist,
mounted microcontroller circuit programmed to perform the task tequired by the
robot to walk without falling. In addition the PIC microcontroller can also be
programmed to read any sensor that is required to accomplish the goal. The fully
working prototype can be reconfigured to follow certain order, such as avoiding any

blockage or even dancing.

1.4 Scope of Study

After consideration of all the necessary procedure and problems that might occurs,
this project has been divided into two categories, which are hardware development
and software development. The hardware covers the entire prototype mechanical and
electrical component while the software mainly focuses on the system architecture
or microcontroller programming. In the first semester, the author will be involved
mainly in hardware research. For the second semester, the author will continue on
the hardware and software development. Experimentation and testing is necessary to
avoid any project setback. Good project management technique and usage of time

constraint efficiently must be adopted in order to complete the project.

CHAPTER 2
LITERATURE REVIEW

In order to obtain relevant and beneficial information regarding this project, the
author carried out some relevant literature review, such as by referring journals,
websites and etc. The information is very important for the development of the
system as it provides theories, concepts as well as techniques that be utilized

throughout this project.

2.1 Biped Walking

In order to understand the mechanical bipedal robots mechanics design, is necessary
first to understand the biped walking process or biped locomotion. This area has
been studied for a long time, but until this past few years, new generation of robots
that walk on two legs were introduced thanks to the fast development of computers

and microcontroller.

First, there were robots that used static walking. The control architecture had to
make sure that the projection of the center of gravity on the ground was always
inside the foot support arca. This approach is the basic and the first step throughout
bipedal development.

2.1.1 Static Walking

Static walking assumes that the robot is statically stable [8]. This mean that, at
any time, if all motion is stopped the robot will stay indefinitely in a stable
position. It is necessary that the projection of the center of gravity of the robot on
the ground must be contained within the foot support area (see Fig. 1, 2 and 3).

This condition can be achieved by widening the support area of the foot surface

to support the whole body weight or increasing the foot weight to support the
balance of the upper body. Also, walking speed must be low so that the inertia

5

forces are negligible.

L1
Single support phase Double support phase Unstable position
Stable position Stable position

Figure 1 : Static walking and condition to be in stable position [8]

Biped with static walking requires large feet, strong ankle joints and can achieve
only slow walking speeds. The technique adopted is based on the principle that
the important aspect in the static walking locomotion is not the perfect respect of
a given trajectory, but the displacement of the body from one point to another

without falling.

MOVEMENT OF
CENTRE OF
GRAVITY

ROBOT
MOVEMENT

Figure 2 : The projection of center of gravity in static walking {7]

]

[= (U
kel

Double support Single support
stance stance

Figure3 : The center of gravity in static walking (front view).

2.1.2 Dynamic Walking

Dynamic walking of a biped allows the center of gravity of the robot to be
outside the support region for limited amounts of time. There is no absolute
criterion that determines whether the dynamic walking is stable or not. Indeed a
biped can be designed to recover from different kinds of instabilities, depending
on the walking surfaces. However, dynamic walking condition can only be
achieved if the robot has active ankle or knee joints that are used to stabilize the
robot body along with a stabilizer sensor [8}, which required a lot of funding in
research. To keep this research in adequate budget, the student will only limit the
study on static walking.

2.2 Degree of Freedom

A system with several body parts would have a combined Degree Of Freedom
(DOF) that is the sum of the DOFs of the bodies, less the internal constraints they
may have on relative motion. The term degree of freedom is used to describe the

number of parameters needed to specify the spatial pose of a linkage [13].

Mechanical linkages are a series of rigid links connected with joints to form a closed
chain, or a series of closed chains. Each link has two or more joints, and the joints
have various degrees of freedom to allow motion between the links. A linkage is
called a mechanism if two or more links are movable with respect to a fixed link.
Mechanical linkages are usually designed to take an input and produce a different
output, altering the motion, velocity, acceleration, and applying mechanical

advantage.

The most common linkages have one degree of freedom, meaning that there is one
input that produces one output motion. Most linkages are also planar, meaning all
the motion takes place in one plane. Spatial linkages {(non-planar) are more difficult

to design and therefore not as common.

Kutzbach-Gruebler's equation is used to calculate the degrees of freedom of
linkages. The number of degrees of freedom in a linkage is also called mobility.
Figure 4 shows a simplified version of the Kutzbach-Gruebler's equation for planar

linkages:

m=3n-1)-2j
m = mobility = degrees of freedom

7t = number of links (including a single ground link)

J = number of mechanical joints (pin or slider joint)

—p
J
Truss Four-bar iinkage Crank-slider Five-bar linkage
n=3, {=3, m=0 n=4, f=4, m=1 n=4, =4, m=1 n=5, =5, m=2

Figure4 : Types of planar mechanical linkage and relation with
Degree of Freedom [13]

2.3 Mechanieal Actuator

Electrical actuators are required in any bipedal robot design for body part
movements. Electrical actuators are electro-mechanical hardware such as solenoids
and servo motors. Depending on the mode of powering and controlling, they can be
controlled directly by a computer platform attached to a servo controller board or
autonomously by a dedicated PIC. The main principle behind every electrical
actuator is that motion is induced by the application of an electrically created
magnetic field to a ferrous core. The strength and direction of the magnetic field

determines the speed and direction of rotation or motion.

2.3.1 Servo Motor

Servo motors are geared dc motors with positional control feedback and are used
for position control. The shaft of the motor can be positioned or rotated through
180 degrees. They are commonly used in the hobby market for controlling model

cars, airplanes, boats, and helicopters.

FARALLAZ

Figure 5 : Common servo motor [11]

Servo motors are available in a number of stock sizes. Standard servo typically
has 3 wire outlets, which is differentiate by 3 different colors varies to particular
manufacturers. Ideally two of them are for power, ranging from 4 to 6 volts and
ground. The third wire feeds a position control signal to the motor, and the

conirol signal is a variable-width pulse.

Servo Motor Control

The servo motor has some control circuits and a potentiometer that is
connected to the output shaft [14]. The amount of power applied to the motor
| is proportional to the distance it needs to travel. So, if the shaft needs to turn
a large distance, the motor will run at full speed. If it needs to turn only a
small amount, the motor will run at a slower speed. This is called
proportional control. The angle is determined by the duration of a pulse that
is applied to the control wire. This is called Pulse Coded Modulation. A
neutral, midrange positional pulse is a 1.5ms pulse, which is sent 50 times a
second (20 ms period) to the motor. This pulse signal will cause the shaft to
locate itself at the midway position of 90 degrees. The shaft rotation on a
servo motor is limited to approximately 180 degrees (+/-90 degrees from
center position). A 1ms pulse will rotate the shaft all the way to the left,
while a 2ms pulse will turn the shaft all the way fo the right. By varying the
pulse width between 1 and 2 ms, the servo motor shaft can be rotated to any

degree position within its range.

Pulse Width 1-2 m$

fL-—“-\::-‘—-

[
[

Hﬂ.i‘L_rL_Jl_
—f

Period 20ms

1 ms Pulge Train

1 ms Pulsa __H__”___”___ﬂ @ Sarvo Motor Position

Left

1.5 ms Pulse Train

| E I] %] I f ' Servo Motor Pasition
1.5 ms Pulae Midlange

Zms Pulge Train

2 ms Pulse ,ﬂ_ﬂ.ﬂ_ﬂ @ Searya Mator Position

Right

Figure 6 : Input pulse signal and servo motor output position

Servo Motor Selection

In choosing a suitable servo motor for this project, various servo motor
specifications were researched. Servos are distinguished by a number of

aspects and performance features that should be considered.

Price

In this project, at least 10 servos for 10 degree of freedom are needed
to make the robot walk. To avoid short in budget, it is suggested that
the price of each servo is lower than RM50 so that the total cost of
the servos will not exceed RM500.

Torque

Torque delivered by the servo depends on the size and weight of the
robot. The servo needs to have enough power to do the job that is
needed. With the earlier robot design, it is predetermine that servo
with 3.5kg/cm torque should be able to lift a 500gram leg. Lighter
material is needed to reduce the weight of the robot to minimize the

torque required including the weight of the servo motor and circuits.

Weight

More powerful motors tend to be heavier and larger. To keep the
robot light, the servos needed to be light but delivered enough power
to move the joints of the robot. To minimize the mass of the robot,
total weight of all 10 servo needed is less than 500 gram, which is

less than 50 gram each.

Speed

The speed of the servo refers to the maximum speed at which it can

turn. This is usually measured in seconds per 60°. If it is 0.5 seconds

per 60°, then it will take 1.5 seconds to turn 180°. This feature is very
important in static walking as the robot needed to be balanced all the
time and operate in specific speed. However the speed of the servo

can be adjusted in controller programmer

Voltage

A number of servos and other controller-compatible devices operate
at different voltages, such as 4.8, 6.0 or 7.2 volts. To avoid
complication in power supply circuit, it is very useful to obtain servos

that run at the same voltage, which is possibly at 6V.

Gear Type

There are plastic, metal, and titanium gear types available. The nylon
gear is adequate for lower torgue. It is very important not to force the

servo to overrun its limitation as it can damage the gear of the servo.

Size

The servo to act as the wrist or knee of a legged robot, then its size
may be an issue. If the servo is small indeed, it is possible to install it
directly to the knee joint and if the servo is too big, mounting it at the
trunk of the robot is most likely and using something along the lines

of tendon-like wires to transmit its motion.

The scope of this project is to use PIC microcontroller and the student will
limit the electronic controllers for the electrical actuators to those that use
pulse width modulation, which can be generate easily by microcontroller.
The pulse width modulation technique enables a capable electrical motor to

adjust speed and direction of rotation based on the width of pulses received

10

2.4 Pulse Width Modulation

Pulse width modulation (PWM) of a signal or power source involves the modulation
of its duty cycle, at constant frequency. The pulse duration can be varies by
changing the duty cycle as shown in Figure 7 below. This type of modulation can be

used to control such servo since it will respond to desired pulse duration.

S UIuILn

ov .
20% Duty Cycle

MEpEpEpEREN

60% Duty Cycle
8v - , -

d U U Ul

80% Duty Cycle

Figure 7 : Effect of duty cycle in pulse width modulation

11

CHAPTER 3
METHODOLOGY

START

b4

Preliminary Research

- Bipedat walking gait
- Robot designing and approach
- Research on suitable material

'

Development of the robot hardware

- Obtain required component
- Prototype modeling and assembly
- Circuit design

'

Development of circuit and algorithms

- Circuit fabrication
- Microcontroller Programming
-Software implementation on hardware

Testing and results

Yes

(Analysis of results)

h

END

Figure 8 : Flowchart of procedures done

12

3.1 Project Procedure

Researches on walking gait and suitable hardware to be implemented on the biped
robot were done as a preliminary step before making any decision toward robot
development and construction. The structure of the robot, including the leg, foot,
actuator, controller and electrical circuit are identified as hardware while the
programming language to control the robot movement is known as software. After
all the required hardware components were obtained and assembled together to
construct the bipedal robot prototype, the next step is to design the controtller circuit
using suitable PIC microcontrotler. Once the controller is designed and fabricated,
software development was continued with the controller programming. The next
step is to implement the programming into the controller by connecting all the inputs
and outputs connection and a few configurations were verified. Then experiment
shall be performed to test the prototype functionality and to identify any occurring
problem. If the prototype is not operational, modification on programming and
circuit test have to be done. Finally the result of the functional prototype will be

analyzed to maximize the performance.

3.2 Material

Ten Futaba S3001 servos were successfully obtained for the project as shown in
figure 9. All the servos were ordered from Singapore though a Kyosho Toykar
hobby shop located at Berjaya Times Square, Kuala Lumpur.

Figure 9 : Obtained Futaba S3001 servos

13

Imm L-shape stainless steel frames were obtained from local hardware store. Two
PIC 16F877 microcontrollers were obtained from State Electronic Trading, a local
electronic store at Ipoh, Perak. Other electronic parts required for the project such as
capacitors, crystal oscillator, wires, male connector and circuit board were obtained

from the Electronic Storage Room in the Electrical Department.

Figure 10 : Obtained PIC 16F877 microcontroller

3.3 'Tools and Software

This project required the student to build the working prototype of the bipedal robot.
To achieve this, several workshop tools are required to build the body of the robot
such as measurement tapes, screwdriver, pliers, saw, cutting tool and drill. The
printed circuit board (PCB) for the controller circuit of the robot was fabricated in
the PCB fabrication Lab and Electronic Lab was used to access several tools such as
multimeter, oscillator, power supply, welding tool and etc. The circuit PCB layout
was drawn using EAGLE layout editor version 4.13 and the program was compile
into the controller using Microchip MPLAB IDE version 7.40 software which is

available in the Microprocessor Lab.

14

CHAPTER 4
RESULT AND DISCUSSION

4.1 Bipedal Model Description

4.1.1 Robot Design and Degree of Freedom

After considering all the movement needed from the biped locomotion and static
walking, the robot leg can be design and structured. There will be 10 main joints
connecting the whole robot leg at the torso, hip, knee and ankle as shown in
figure 11. The torso will link both torso joint for sideway movement. There
would be 2 separate links connecting to each hip joint. In each leg, the hip joint
will be connected to the knee joint by a link at the thigh. The shank will link the
knee joint to the ankle joint. Notice that there will be 2 joints in each ankle
which can be linked by a small body part. These 2 joints acts in different
direction, one for displacement to the front and the other is to the side to redirect

the center of gravity of the upper body.

-

Ba=

Figure 11 : Joints and links of the robot leg

15

Referring to figure 11 the robot leg shall have 10 mechanical joints that will be
actuated by 10 servos and linked by 11 body part which are the torso, 2 thighs, 2
shanks, 2 ankles and also the foot. To find the degrees of freedom of the bipedal
robot, Kutzbach-Gruebler's equation of a planar mechanical linkage was used to

calculate the DOF, where total joints are 10 and links are 11;

m = mobility = Degree of Freedom

n = 11 = number of links (including a single ground link)
j= 10 = number of mechanical joints (pin or slider joint)
m=3(n-1)-2

m= 10 DOFs

The robot legs shall be able to move in 5 degrees of freedom in each leg, as
shown in figure 12. Each leg must have 3 DOFs respectively to the x-y plane at
the hip, knee and ankle joints. These 3 joint in each leg will mostly used to shift
the displacement of the body forward. Meanwhile 2 DOFs in y-z plane in each
Jeg at the torso and knee joint are use to shift the body sideway for balancing
purpose. As conclusion, the bipedal robot shall have total of 10 DOFs in x-y-z

¥i
Z

Xy v J

plane respectively.

Figure 12 : Degree of freedom in x-y-z plane

16

4,1.2 Mechanical

Ten servos and 1mm L-shape stainless steel frame were used to construct the
bipedal robot leg. The stainless steel was measured and divided into 11 parts
before it were cut, bended and shaped to fit accordingly to all the servos, links

and joints. The stainless steal frames that were formed were shown in figure 13.

Figure 13 : 1mm L-shape stainless steel frame

Figure 14 : 10 obtained Futaba S3001 servos

The entire stainless steal frame was then linked together with the obtained
Futaba servos as shown in figure 14 using screws, nuts and washers. All the
body parts was then assembled together to produce the bipedal robot prototype

as shown in figure 15 and 16.

17

Figure 16 : Bipedal Leg Prototype (Rear view)

18

4.1.3 Electrical

-
HEVVYGRT g:gf,:.g Ell El

= racaive
= sransmit P

C2

LI I
=N 8 w
ez w B8
<). C:
c2e e
& .
cx

R -

PO/RET [
PLEOLAND pociRet b
REE |

PECIRBS

Tuw mout

3

1)

b Tilh TOUT T
RIGUT RIIN

Em Jothi gy 5
MAXZ32

RAHAHT
RAZIANT RBd
Brg/AND FOMRD3

REB2

2 RB3 ¢
5 RAJANT FGMRDI f
RATICKE i RBz [

3 RAGIANA ret

31 REO/RIWIANS INT/RBO

g *
RE2/CSAANT ESF?/RD? o

RAS/ANA RAI
RENRO#ACE iNT/RBO
RE1AWFH/AHG +
REMCSAAL FSFORDT
FSPo/ROY
0SCHCLEIN FSP5R05
QSC2CLKOUT BEFARDA
RWRECT?

ACHTIO51 THRCS

QG

13 Kee
@ &
T

SROMCE
RCHSCK SOKRC
ROMFSAT ROXPSES
RDHRSPY ROLFSR2

H Roustk :

A rowPSPD ro3iPsee b

ROIPSP ROUPSPL
S

ey
1 fee

2 4ehi Tl

Figure 17 : Schematic board for controiler with 2 PIC 16F877

The controller circuit board utilized two PIC 16F877, one is known as Servo
Controller and the other is Walking Controller as shown in figure 17. The Servo
Controller is connected directly to the servos and handles the task of controlling
the 10 servos. It will read the output instruction from the Walking Controller and
continuously update the position for each servo at a time. However the Walking
Controlier will not have to worry about the PWM output controlling the servo
but instead focuses on walking timing and patterns that need to be achieved. To
comply with this condition, different clock timing for each PIC have to be
introduced because if both PICs have the same clock timings they were unable to
communicate with each other. Different clock timing will gift PIC2 enough time
to retrieve data from PIC1. A 4 MHz crystal oscillator is installed to the Servo
Controller while the Walking Controller will use an 8 MHz oscillator. For the
receiver, MAX232 chip manufactured by MAXIM is used. The MAX232 is a
dual driver (transmitter and receiver) that includes a capacitive voltage generator

to supply standard Energy Information Administration (E1A)-232 voltage levels

19

from a single 5V supply. The receiver converts EIA-232 inputs to +5V TTL or
CMOS levels, which to be sent to the controller from the computer.

Figure 19 : Printed Circuit Board layout for the circuit schematic

The Printed Circuit Board layout as shown in Figure 19 was generated from the
schematic board, used to fabricate a Printed Circuit Board where the electronic
components will be installed and welded. The circuit was tested before
implementation on the printed circuit board as shown in Figure 18. The circuit

will be then mounted on the bipedal robot and connects to the servos.

20

4.2 System Description

System controlling the bipedal robot is divided into two parts which are the Servo
Controller and the Walking Controller. The Servo Controller is connected directly to
the entire servos while generating Pulse Width Modulation to vary the servo
position. The Walking Controller selects the servo to be controtled and instruct the
servo to achieve the required angle or position. This will produce a specialization in
each controller with each of them performing the previous stated task, shown in

Figure 20.

< ‘ IT
Walking Select serve Servo »

D Controller Controller

PC PWM signal

Figure 20 : Walking Controller and Servo Controller association

With this arrangement, the Servo Controller will only have to focus on generating
the required PWM to the servo while the Walking Controller will only have to worry
about the walking gait. On the other hand by using this configuration, the
programming code will also be reduced significantly. This is due to climination of

instruction set on servo selection, positioning and memory allocation.

4.2.1 Servo Controller

Servos are control using pulse width modulation (PWM) to allocate the desired
position which is easy to produce by the microcontroller. Maximum pulse width
to conirol a servo is 2ms and the minimum pulse width of lms with the
frequency of 50Hz. Frequency of 50Hz will produce 20ms for each period. To

avoid overlapping among the servos, a 2ms pulse slot is always allocated for

21

each servo so that other servo pulse width will never overlap with each other
even if the pulse width for a servo does not reach 2ms. Meaning with a
maximum pulse width of 2ms for each servo, there would be 18ms of idle pulse
width is divided to other nine servos with different time allocation. Figure 21

may ease the comprehension.

N
3
@

serd

]

serl

]

ser2

]

ser3

serd

serS

serf —— I l

J

ser7 :

ser8 ' I-_|

serd E] |
o

20ms >

Figure 21 : PWM output from servo controller

This pattern is use so that one servo can be processed at a time and simplifies the
walking algorithm. With PWM, the duration of a pulse can be varies from lms

to 2ms to control the servo movement.

To achieve the PWM output from the controller, servo program was written as
shown in Figure 22 explaining the servo controller program flow. There are ten
globally declared variable servos 0 to 9 that stores the required servo position,
these variables are retrieves from the Walking Controller output and updated to

allocate the desired pulse width, The controlier will update only one servo at a

22

single time. Programming on the servo PIC was finalized first before working on
the walking control PIC. In this project, the ranges of motion of the servo are not

the fuil 180 degrees but instcad only 90 degrees.

23

Initialize microprocessor

Y

Set servoe register

N
'3

Servo 1
Check servo 1 instruction ~ [~°""~""""""7777TT
Allocate desired pulse width

v

<.__.-_—___-l

Servo 2
Check servo 2 instruction .
Allocate desired pulse width Ss

¥ * .
— Serve Routine

Servo 3

Check servo 3 instruction -

Allocate desired pulse width Update one servo at a time
v

¥
Read instructiom(walking program)

Servo 4
Check servo 4 instruction [~ ¥ -
Y

Allocate desired pulse width -
i Execute instruction (pulse width allocation)

v

Servo 5 .
Check serve 5 instruction
4 4 4 4
i]
! [
t

Allocate desired pulse width ,

+ s
'

s [}

’ ')

Servo 6 ,

Check servo 6 instruction N
Allocate desired pulse width] !
[}

1
)
1
t
1
]
'
! ; '
i
[J ! '
i
'
'
'
i
i
'

Servo 7
....... [}

1
1
Check servo 7 instruction K
Allocate desired pulse width N
)
f
[
t

¥

Servo 8
Check servo 8 instruction {------=-~ 4
Altocate desired pulse width

+

Servo 9
Check servo 9 instruction
Allocate desired pulse width

\

Servo 10
Check servo 10 instruction
Allocate desired pulse width

Figure 22 : Servo controller program flowchart

24

4.2.2 Walking Controller

The control PIC will not have to worry about PWM controlling the servo but
instead focuses on walking timing and patterns that need to be achieved. The
controller indicates which servo to operate at a time and instruct the servo
controller what to do later. Figure 23 below shows the simplified flowchart for
walking controller.

START |
input variable - number of steps

A
- Tilt to the right

- Left leg steps forward
- Right leg pushes back
- Tilt back to center

Number of steps
finished?

- Tiit to the left

- Right leg steps forward
- Left leg pushes back

- Tilt back to center

A 4

- Tilt to the right

- Left leg steps forward
- Right leg pushes back
- Tilt back to center

'

END
- Tilt to the left
- Right leg steps to origin
- Tilt back to center

Figure 23 : Flowchart for walking controller program

25

4.3 Discussion

4.3.1 Servo Controller C Program

By using this program code, the controller will read the data received from
PORT C input to determine which servo to be control at a single time and then
retrieve the desired position for the servo from PORT A. The Servos 0 to 9 are
set as integer variable serv0 to serv9 accordingly, which represent a 6 bit (64

levels) position value. This mean servo position value can be varies from 0 to 63

levels.
int serv0,serv1,serv2,serv3,servd,servs servé,serv7,serv8.serv9; //Set integer
void update() //Update function
{
int ser,pos; //Set servo and position as integer
ser=PORTC; //Read data from PORTC and determine servo
pos=PORTA; //Read data from PORT A for position
if(ser==0){serv0=pos;} //Select servo 0 if ¢ and put position value in serv0
else if(ser==1){servl=pos;} /{Seleet servo 1 if 1 and put position value in servl
else if(ser==2){serv2=pos;} //Select servo 2 if 2 and put position value in serv2
else if{ser==3){serv3=pos;} //Select servo 3 if 3 and put position value in serv3
else if(ser==4){servd=pos;} //Select servo 4 if 4 and put position value in serv4
else if(ser==5){serv5=pos;} //Select servo 5 if 5 and put position value in serv5
else if{ser==6){serv6=pos;} //Select servo 6 if 6 and put position value in servé
else if(ser==7){serv7=pos;} //Select servo 7 if 7 and put position value in serv7
else if{ser=—=8){serv8=pos;} //Select servo 8 if 8 and put position value in serv8
else if(ser==9){serv9=pos;} //Select servo 9 if ¢ and put position value in serv9d
b

The next program code is the pulse width modulation generator for the Servo
Controller. The program will retrieve the input variable serv to serv9 and

calculate the pulse width to be given to the selected servo.

//servo 0

update(); {/Go to Update function

dell=serv0*4; //Delay 1 value (pulse duration delay)
del2=255-dell,; //Delay 2 value (delay for neutral)
PORTB~0x80; //Output to servo O at RB7
PORTD=0x00; /No output at RORT D

delay us(980); //Minimum puise width of 0.98ms
delay_us(dell); //Use Delay 1 to delay the pulse width
delay us(dell); //Use Delay 1 to delay the pulse width
delay us(dell); /{Use Delay 1 to delay the pulse width_

26

delay_us{dell); /{Use Delay 1 to delay the pulse width

PORTB=0x00; //No output to servo 0

PORTD=0x00; //No output at PORT D
delay_us(del2); //Use Delay 2 to delay for 0 amplitude
delay_us(del2); //Use Delay 2 to delay for 0 amplitude
delay us{dei2); /MUse Delay 2 to delay for 0 amplitude
delay_us(del2); /{Use Delay 2 to delay for 0 amplitude

Figure 24 below simplify the configuration on how the program will determine
and locate pulse width for servo 0 and servo 1. Note that dell which varies from
0 to 1008 represent the enlarged input variable ser(to serv9 that varies from 0 to
63 (amplification of 4). To maintain a 2ms period gap between each servo,

output bit 0 will be delay 4 times by 255-dell, represent by del2.

1ms minimum Varies
width puise ms1 to 2ms

+5 7"
Serv0 “ , >

+5
Serv1
0

L

1ms + dellx4

4 2ms period —
gap

del2x4

Figure 24 : Servo Controller pulse width modulation generator

27

4.3.2 Walking Controller C Program

servd

sarv2

servl

savl

Figure 25 : Servo variable representation on the bipedal robot

Figure 24 shows the servo variable representation for each servo located at the
bipedal robot. The program below is for tilting purpose which is to put the center
of gravity of the whole robot body into either one foot, The tilt process only
involves 4 servos which are ser(), serd, ser5 and ser9. These servos will shift the
body of the robot to the side, either right or left. To tilt to the lefi, ser0 and ser 9
current pulse widths will be reduced to rotate the shaft of the servo in
anticlockwise direction. Meanwhile ser4 and ser5 current pulse width will be
:nereased to rotate the shaft of the servo in clockwise direction. Actions on these
4 servos will shift the torso of the robot body to the lefi resulting the left foot to
accumulate the center of gravity of the robot. Like wise for tilting to the right,
the process will be the same but only with the opposite shaft rotation direction.

void ser0459(int op.int del) //ser0459 fumction for tils
//set integer op for operation and del for level

iflop=="+" /fselect if operation is + or tilt to the left
ser0=ser0-del; //decrease current servo 0 position by del level
serd=serd+del; //increase current servo 4 position by del level
ser3=ser5-+del; //increase current servo 5 position by del level
ser9=ser0-del; //decrease current servo 9 position by del level

else iflop=="" //select if operation is - or tilt to the left
ser0=ser(+del; /fincrease current servo 0 position by del level
serd=serd-del; //decrease current servo 4 position by del level
ser5=ser5-del; //decrease current servo 5 position by del level
ser9=ser9-+del, //increase current servo 9 position by del level
}

28

The next program is to keep the feet and torso at the same plane or parallel to
each other, even if the leg is lift up. This action is very important for the robot to
have smooth landing during walking by directing the foot to be parallel to. the

ground. This routine will be updated every time when servo 6 and servo 7

moves.
void serv8() {fserv8 routine
{
signed pos6,pos7 temp; //signed integer pos6,pos7 and temp
posé=sch-sero; //pos6 is servo 6 center position — current position
pos7=sc¢7-ser7; //posT is servo 7 center position — current position
temp=sc8; /ftemp is servo 8 center position
temp=temp-+pos7+pos6; //catculate temp for changes
ser§=temp; /lservo 8 position equal to temp value
¥

The next program is written to command the left leg for bending or stretching.
To bend the leg, servo 6 pulse width will be increase by 1 level and servo 7’s
pulse width will be decrease by 2 levels. This action will rotate the servo 6’s
shaft to clockwise direction and servo 7 shaft to anticlockwise direction which
resulting the left leg to bend. Different rotation direction of the servos will make
the leg to stretches back to normal. The program is also applied to the right leg

with different servo selection.

void blefi(int dir) //bleft routine for bend to left and set variable direction
{
if{dir=="-" //Select if to shorten the leg if variable input is —ve sign
t
serb=ser6+1; J/increase current setvo 6 position by 1 level
ser7=ser7-2; //decline current servo 7 position by 2 level
serv8(); //Call serv8 routine
h
else if{dir=—="+" J/Selett if to stretches leg if variable input is +ve sign
ser6-=ser6-1; //decrease current servo 6 position by 1 level
ser7=ser7+2; //increase current servo 6 position by 2 level
servB(); {/Call serv8 routine
}

4.3.3 Computer Instruction C Program

This C program is the main program for the user instruction to the robot, and

will be execute using the MPLAB. The program will ask the user to seiect 6

29

available actions for the robot to achieve by inputting a number ranging 1 to 6
using the keyboard. If the input is 4, 5 or 6 the program will further ask the user
to enter the number of steps to be taken by the robot ranging from 1 to 9 steps.

printf{"\nSelect action : ");
do {
act=getc();
} while (act 1='0° && act 1=2' && act 1='3' && act =4'&& act |='5'&& act 1="6'&& act
1='7T&& act 1='8'&& act 197,
printf{*%c\r",act);

if(act="0"{bend(-',90.,6);}

etse if(act="1"y{bend{*+,90,6);}
else if{act="2"){tilt(-',90,5)%;}
else if(act="3"{tilt(*+',90,5);}
else iflact='4)

¢
printf("\nFast walk\r");
printf{"nNumber of steps : "),

do{
s=getc();
) while (act 1="1"&& act ="2'&&act |="3'&&act =4 & &act 1="5'&&act
1=6'& &act 1='7"&& act 1='8'&&act 1=97;
printf("%echr",s);
s=convert(s);
watk(30,5,4);

}
clse if{act=="5")

{
printf{"nMed walk\s"),
printf{"nNumber of steps : *);
do {
s=getc();
} while (act '="1'&& act [=2'&&act ='3'&&act 1="4"& &act 1='5'88act
1='6'"& &act 1='7'&& act 1="8'&&act 1=9'),
printf{"%c\t",s);
s=convert(s);
walk(60,5,4);

}
clse if{act="6")

{
printf{"nSlow walk\r");
printf{"nNumber of steps : ")
do{
s=gete();
1 while (act 1="1'&& act 1='"2'&dact 1=3'&&act =4 & &act I='5'&&act
1=6'& &eact I="P&& act =8'& &act 1=9),
printf{"%ec\r",s);
s=convert(s);
walk(250,5,5);

H

else if(act=="r"){reset();}
else {send();}

} while (TRUE),

}

30

CHAPTER 5
CONCLUSION AND RECOMENDATION

The twentieth century was a period of radical change from almost every aspect of
scientific discoveries. Increasingly cheap and compact computing power, however,
has made two-legged robots more feasible. Throughout the project student are
tequired to do a lot of research related to bipedal robot, make a lot of decision in
choosing suitable material and equipment and also anticipate in design process. At
the end of the project, the bipedal robot can be used to investigate the theories of

bipedal walking and can contribute to more advance studies on humanoid robot.

As recommendation due o this project breakdown, several different approaches
needed to be taken toward this project completion. To avoid failure of the controller
circuit, each servo mofor needed to be initially tested at each joints before
integrating it all together one by one. The student also needed to understand clearly
the operation of the servo before designing the servo controller. This project
methodology has to be revised for a better outcome. As an additional
recommendation a single microcontroller can be used instead of two to produce the
same output, by storing the servo selection and position data in the controller
temporary registers. The bipedal robot’s 6 bits servo positioning resolution can also
be refine to have a much improve and smooth walking gait. Further development,
would be designing it to be autonomous with addition of sensors and camera. After
it had become an autonomous walker (able to walk on any surface), next we can add
a remote controller so that the robot can be controlled remotely while the robot deal
with obstacles. In the future, human can be replaced by machine that can move like
human and such robot can spare human life by doing harmful task or work in the

most horrible surroundings.

31

(1

121

131

[4]

151

[61

171

8]

191

[10]

[11]

REFERENCES

Harprit Sandhu, (1997). “An Introduction to Robotics”. Nexus Special
Interest Ltd, Nexus House, Boundary way, Hemel Hempstead, England.

Saced b Niku, (2001). “Infroduction to Robotics, Analysis, System,
Application”. Prentice Hall Inc, Upper Saddle River, New Jersey.

Arthur G. Erdman, George N. Sandor, (1984). “Mechanism Design: Analysis
and Synthesis”. Prentice-Hall.

Barnett, Cox and O’Cull, (2004), “Embedded C Programming and the
Microchip PIC”. 1st Edition, Thomson Delmar Learning

Mazidi, M.A, McKinlay, R.D., Causey, D., (2008), “PIC Microcontroller
and Embedded Systems”. Pearson Prentice Hall.

Huang, (2005). “PIC Microcontroller: An Introduction to Sofiware and

Hardware Interfacing”. Thomson Delmar Learning.

Muhamad Aidil Jazmi, (2006). “Microprocessor 2 Project Technical
Report”. Institute Technology of Petronas, Perak, Malaysia.

(nttp://aidilj.tripod.com/)

Erik V. Cuevas, Daniel Zaldivar, Raul Rojas, (2005). “Bipedal Robot
Description Technical Report”. Freie Universitdt Berlin, Institut fiir
Informatik Takustr, Berlin, Germany, Universidad de Guadalajara Av.

Revolucion, Guadalajara, Mexico.
(http://page.mi.fu-berlin.de/~zaldivar/ files/tr-b-04-19.pdf)

(2007).“Asimo the World Most Advance Robot”.

(http://www.asimo.honda.com)
(2003-2007). “Kondo robot”
(http://www.kondo-robot.com)
(2007).“Futaba Standard Analog Servo”

(http://www.futaba-rc.com/servos/index.html)

32

[12]

[13]

[14]

[15]

(2005-2007). “Bipedalism™ (http://en.wikipedia.org/wiki/Biped)

(2005-2007). “Mechanical linkage”.
(http://en.wikipedia.org/wiki/Linkage_%28mechanical%29#References)

(2007). “What a Servo: A Quick Tutorial”
(http://www.scattlerobotics.org/guide/servos.html)

Ben Fry and Casey Reas, (2001-2007). “Processing”.
(http://processing.org/reference/index.htmi)

33

APPENDICES

APPENDIX A — PROJECT GANTT CHART

APPENDIX B — BIPEDAL ROBOT SCHEMATIC BOARD

APPENDIX C - FUTABA $3001 STANDARD SERVO SPECIFICATION
APPENDIX D — PIC16F877 DATA SHEET

APPENDIX E - MAX2321 DUAL DRIVERS/RECEIVERS DATA SHEET
APPENDIX F — SERVO CONTROLLER C PROGRAM

APPENDIX G — WALKING CONTROLLER C PROGRAM

APPENDIX H — COMPUTER INSTRUCTION C PROGRAM

34

8992057]

JUO)S H]TWE F e !

uorpessi(] 19alord Jo vomSIEqnG

UOTRResaRd [RI0

ei(] PUL] UOTRHISEI(JO VOISSIUgNg

T3[[ORUO3 31}
o apoo Burwuwreozd auy epidurod pue pRNGg-

apoa BumneiBerd ey vo anUmUC,)

stmuTiu0d 404 Pafoid

7 podey $524801d Jo UOISSIWANS

APPENDIX A

JATOTUOS prR0g FRom paywd ot a1e0lige -

PROJECT GANTT CHART

29JI0NB03 30} OO SRWAYIE auy) USsa(T

35

anT0 D) oM Poetorg

[3 1 podsy ssaB054 J0 BOISSTUGNG

adfgoosd 1og07 Eepedig ey pTna pue uBise(]-

ueucdWio Papas v sAMNeYy”

uaﬂ.nawo o pp foaforg

—

£ [4 I SE T

APPENDIX B
BIPEDAL ROBOT SCHEMATIC BOARD

—i%

100

HIWSUER
EPAEEEY
330
PG

o

36

APPENDIX C
FUTABA S3001 STANDARD SERVO SPECIFICATION

361

§3001 is a Standard Servo with a Ball Bearing on the output shaft. It has a "J"
connector and uses a nylon gears. This servo can produce high-current draw from
your batteries. If using NiMH or LiPo batteries, make sure they are capable of

delivering sufficient amps.

FEATURES: Single Top Ball Bearing, 3-pole motor, same mounting as S148 and
§9201 (individual rectangular grommets),

SPECS:

Length :1.6" (4lmm)

Width : 0.8" (20mm)

Height :1.4" (35mm)

Weight :1.60z (45.1g)

Torque : 33 oz-inat 4.8V 42 oz-in. at 6V

Transit : 0.28 sec/60° @ 4.8V .22 sec/60° @ 6V

37

APPENDIX D
PIC 16F877 DATA SHEET

38

APPENDIX E
MAX2321 DUAL DRIVERS/RECEIVERS DATA SHEET

39

MICROCHIP

Appendix D

PIC16F87X

28/40-pin 8-Bit CMOS FLASH Microcontrollers

Devices Included in this Data Sheet:

« PIC16F873 + PIC16F876
» PIC16F874 « PICt6F877

Microcontroller Core Features:

» High-performance RISC CPU

« Only 35 single word Instructions to leam

- All single cycle instructions except for program
branches which are two cycle

+ Operating speed: DC - 20 MHz clock input
BC - 200 ns instruction cycle

« Up to 8K x 14 words of FL.ASH Program Memory,
Up to 368 x 8 bytes of Data Memory (RAM)
Up to 256 x 8 bytes of EEPROM data memory

» Pinout compatible to the PIC16C73B/T4B/T6/77
- interrupt capability (up to 14 sources)
» Eight leve! deep hardware stack
- Direct, indirect and relative addressing modes
« Power-on Reset (POR)
« Power-up Timer (PWRT) and
Oscillator Start-up Timer (OST)
« Watchdog Timer (WDT) with its own on-chip RC
oscillator for reliable operation
» Programmable code-protection
+ Power saving SLEEP made
- Selectable oscillator options
« Low-power, high-speed CMOS FLASH/EEPROM
technology
= Fully static design
« In-Circuit Seriat Programming™ (ICSP) via two
pins
« Single 5V In-Circuit Serial Programming capability
« In-Circuit Debugging via two pins
« Processor readiwrite access 10 program memory
- Wide operating voltage range: 2.0V to 5.5V
« High Sink/Source Current: 25 mA
» Commercial and Industrial temperature ranges
» low-power consumption:
- <2 mA typical @ 5V, 4 MHz
- 20 pA typical @ 3V, 32 kHz
- <1 pA typical standby current

Pin Diagram
PDIP
WCLRvePITHY ——= 11 U 40 [3 «—= RB7PGD
RAO/ANG w—w] 2 39 [] e RBBAPGC
RATANT =— 13 38] =—= RBS
RAZ/ANZIVREF- a—a [4 37 [] == RB4
RAS/ANSNREF+ a—w [] 5 38 [} = RBHPCGM
RA4/ITOCK! [6 35 [[] =—» RB2
RAS/AN4/SS =— [17 < 34 [] =—» RB1
REQ/RD/ANS =—-[] B t= 33[1-=—= RBOANT
REVWRIANS w—= [9 D 30— Voo
REZCSIANT +—= 10 = 31[0 =— vss
vop —= T 11 E 36 [1 =—+ RD7PSPT
VSs —e [12 W 29 []=-= RDGPSPS
GSCUCLKIN —= [] 13 6 28 [] =—» RD5/PSPS
OS5C2/CLKOUT «—[] 14 & 7 [] «—= RD4PSP4
RCOIT1OSOMICK! ~—w [15 26 [] =— RCTRXDT
RCATIOSHCCP2 s [16 25 [+—a RCETXICK
REC2CCPT w—= [17 24 [J «—» RCS/SDO
RCHSCKISCL =+—a 11 18 23 [=— RC4/SDISDA
RDO/PSPE w—u | 10 25 | -+—e RDIPSP3
RD1/PSP1 «— [20 21] =+~ RD2IPSP2

Peripheral Features:

Timer0: 8-bit timer/counter with 8-bit prescaler
Timert: 16-bit imer/counter with prescaler,

can be incremented during sleep via external
crystal/clock

Timer2: 8-bit timer/counter with 8-bit period
register, prescaler and postscaler

Two Capture, Compare, PWM modules

- Capture is 16-bit, max. resolution is 12.5 ns

- Compare is 16-bit, max. resoiution is 200 ns

- PWM max. resolution is 10-bit

10-bit multi-channel Analog-to-Digitat converter
Synchronous Serial Port (SSP) with SPI™ (Master
Mode) and I12C™ (Master/Slave}

Universal Synchronous Asynchronous Receiver
Transmitier (USART/SCI) with 8-bit address
detection

Paralle} Slave Port (PSP) 8-bits wide, with
external RD, WR and CS controls {40/44-pin only)
Brown-out detection circuitry for

Brown-out Reset (BOR)

I

© 1999 Microchip Technology Inc.

DS30292B-page 1

PIC16F87X

Appendix D

NI
Pin Diagrams
DIp, SOIC
WETRVepTHY— [1°1 7 28] == RBI/PGD
raDiaND = 2 27[] = RBB/IPGC
RAYANT=—1] 3 - 26] == RBS
RAZ/AN2VREF-+—+ L] 4 ~ 25[] = RB4
RAYAN3NVREFs =[] & © 24[] = RBIPGM
rasrTock=—0] & e z23[] = R82
RASIAN4SS L] 7 il 220"} = RB1
vas—[} 8 o 21[] == RBOANT
OSCHCLKIN-—[] 2 o 20[] = Voo
oscaicLkout ~—1L]10 o 19[] -— vss
RCOT10SOITICK =[] 11 18{] == RCTRX/DT
RCyTIOSICCP2~—[]12 17[7] == RCBITXICK
RC2CCP1 =113 18[] = RCHSDO
RCHSCK/SCL =114 15[] =— RCA/SDISDA
+
b 2
ﬁsv [=] & j= 18]
£5%%z o2
PLCC aa:a‘_- S
S35EE0RRRES
AF]
RAUTOCK en o O T3995 —
GKi 3907 RB3/PGM
RASIANASS < [4 38[]~» RE2
sffae od ibsg
REVWRMNE + =1 gL1 > RBOANT
ANT - D11 PIC16F877 35K+ gvﬂ
Vee _rHI2 PICT6F874 5T RO7IPSPT
OSC1CLKIN w14 320 = RDG/PSP6
OSC2ACLKOUT o [15 31[0 «—= RD5/PSPS
RCOT1080/T1 Crll(é - 16 0[] =—» RDAIPSP4
T oo—npswan 291 —= RCTRXDT
o owe O DN NG DTN
L { O { | o | R
o
8 P
- g o Y5 dRERDSQ%S
0o288EE2hd 882pEEdlax
s = = 3
e S35502855
QFP B8388088000 9%395‘1"5'13 =
FPrreyrerirris = g ¥
b
PHELEELILY €
H29T8R3E88S
RC7/IRX/DT -+ LT 1 Faprs NG
ROAPSP4 <—=[FH 2 32T+ RCOMIOSOTICK
RD&PSP5 =Tl 3 31— OSC2ICLKOUT
RDEPSPE +—C10 4 3p[T1=— OSCI/CLKIN
RO7IPSP? <—~CIH5 PIC16F877 20[TTI«— Vss
Ves —>CIE PICIBFB74 b Reaanis
VoD 7 27 RE2/ANTICS.
RBO/INT <=1 8 261 =—= RE1V/ANSAR
RB1 =19 253 =—= REO/ANG/RD
RB2 ~+-=ETIt 10 24%*—— RAS/ANA/SS
RE3/PAM = 11wammr~mmcs—w23' == RA4/TOCKI
TR IRORAD
couLWUAZos s &
ST
g5E33538
mmiéézﬁ
2 =z

DS30292B-page 2

© 1999 Microchip Technology Inc.

PIC16F87X

Key Features
PICmicro™ Mid-Range Reference PIC16FB73 PIC16F874 PIC16F876 PIC16F877
Manual (DS33023)

Operating Frequency DC - 20 MHz DC - 20 MHz DC - 20 MHz DC - 20 MHz

Resets {(and Delays) POR, BOR POR, BOR POR, BOR POR, BOR
(PWRT, OST) | (PWRT,OST) | (PWRT,0ST) | (PWRT, OST)

FLASH Program Memeory 4K 4K BK 8K

{14-bit words)

Data Memory (bytes) 192 192 368 368

EEPROM Data Memory 128 128 256 256

Interrupts 13 14 13 14

1/Q Ports Ports A,B,C Ports A,B,C.DE Ports AB,C Ports A,B,C.D.E

Timers 3 3 3 3

Capture/Compare/PWM modules 2 2 2 _ 2

Serial Communications MSSP, USART | MSSP USART | MSSP, USART | MSSP USART

Paralle] Communications en PSP — PSP

10-bit Analog-to-Digital Module 5 input channels | 8 input channels | 5 input channels 8 input channels

tnstruction Set 35 Instructions | 35 Instructions | 35 Instructions | 35 instructions

® 1999 Microchip Technology Inc.

DS8302928-page 3

PIC16F87X Appendix D
—-—_-_———-—_-—l-———"__"—._-___.—

r—tt P i —— e ——— — —

Table of Contents

1.0 DEVICE CVEIVIBW ...o.cviviisasreresesaeememrciesatsssarsrsnssssanasasas c1 6B s o bbb s JRTUUTOR BTN 5
2.0 Memory Organization.... N
30 HOPOMS ..ot aeesn e .28
40 Data EEPROM and FLASH Program Memory4
B TIIEI0 MOAUIE oerooveeee s cecoereeoeemsssssissanems e e nbas e s a8 mems a8 TR S80S anE RS TS8R S LT 47

6.0 Timer! Module...

7.0 Timer2 MOGUIEcooveicerie it rmmraer et .. 55
8.0 Caplure/Compare/PWM {CCP) MOGUIB(S)..........c.iirricnri s e rereenenes BT
9.0 Master Synchronous Serial Port (MSSP) Module .o cirivincniiinaneens ceverere, 63
10.0 Universal Synchronous Asynchronous Receiver Transmitter (USART) ..o ... 95
11.0 Analog-to-Digitai Converter {A/D) MOGUI. ... wvrerrmmirimrmiems it reerremrneemssrrnraness 111
12,0 Special FEAMUres OF the CPU.. ... sisirrsaras s s s AT e 121
13.0 Instruction Set Summary.. 137
14.0 Development SUPDO ...t e . 145
15.0 Electrical Charactefistics.........c..orvvnrceinssmniienr . 151
16.0 DC and AC Characteristics Graphs and Tables.. .173
17.0 Packaging INFOMMALONooouuuerotsssersrecesserriesotsisrs st s ot o 175
Appendix A: Revision History e eeemeeriererettseaseessetemseseiseeiiesRTaIS et ieanes s aara e s et 183
ADPENDiX B: DEVICE DIFSISMCESoiovvioeveevesusetsissssiemsas st et T TR 183
Appendix C: Comversion Consitderations ...t e 183
Index e vveeeseemeemtseeseetbassrsfesessseresiioERRLIESeSisLeRIIIeREITASSeES e nn e e eetbebrreeeeteresseenebiar b s 185
On-Line Suppott......ccooeeiveeae - Lo
Product Identification System........... . 103

To Our Valued Customers

Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
hitp:fiwww.microchip.com .
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number. e.g., DS30000A Js version A of document DS30000.
New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

Errata

An errata sheet may exist for cufrent devices, describing minor operational differences (from the data sheet) and recommended
workarounds. As device/documentation issues become known fo us, we will publish an erata sheet, The errata will specify the revi-
sion of silicon and revision of document to which it applies.

To determine if an errata sheet exists for & particular device, please check with one of the following:

- Microchip's Worldwide Web site; hitp:/fwww.microchip.com

+ Your local Microchip sales office (see last page) .

+ The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277) _

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include fiter-
ature number) you are using. . : ' . L)
Corrections to this Data Sheet

We constantly strive ta improve the quality of all our produs:ts and documentation. We have spent a great deal of time to ensure
that this document Is correct. However, we reatize that we may have missed a few things. If you find any information that is missing
or appears in error, please: : S :)

+ Fill out and mail in the reader response form in the back of this data sheet.

» E-mail us at webmaster@microchip.com. ‘

We apprediate your assistance in making this a better document,

I— ——

DS30282B-page 4 © 1999 Microchip Technology Inc.

PIC16F87X

1.0 DEVICE OVERVIEW

This document contains device-specific information.
Additional information may be found in the PICmicro™
Mid-Range Reference Manual, (DS33023), which may
be obtained from your local Microchip Sales Represen-
tative or downloaded from the Microchip website. The
Reference Manual should be considered a comple-
mentary document to this data sheet, and is highly rec-
ommended reading for a better understanding of the
device architecture and operation of the peripheral
modules.

There are four devices (PIC16F873, PiC16F874,
PIC16F876 and PIC16F877) covered by this data
sheet. The PIC16F876/873 devices come In 28-pin
packages and the PIC16F877/874 devices come in 40-
pin packages. The 28-pin devices do not have a Paral-
lel Slave Port implemented.

The foliowing two figures are device block diagrams
sorted by pin number; 28-pin for Figure 1-1 and 40-pin
for Figure 1-2. The 28-pin and 40-pin pinouts are listed
in Table 1-1 and Table 1-2, respectively.

FIGURE 1-1: PIC16F873 AND PIC16F876 BLOCK DIAGRAM
Device Program Data Memory Data
FLASH EEPROM
PIC16FB73 4K 192 Bytes 128 Byies
PIC16FE876 8K 368 Bytes 256 Bytes
13 DataBus 8 PORTA
Program Counter s
FLASH @ RAG/ANO
Program M RA1T/ANT
Memory RAM ¥ e[| RAZANZ/VREF-
8 Level Stack File: Y RAANIVREF+
{13-bit) Registe 4= RAMTOCK]
egisiers RAS/AN4/SS
Program 4 a
Bus RBO/INT
- RB1
nstruction reg REZ
Direct Addr RB3/PGM
RB4
RB5
RB6/PGC
RB7/PGD
8 RCOT10SO/TACKI
7 RC1/T10SYCCP2
RC2/CCP1
\} Power-up RC3/SCK/SCL
Timer RC4/SDUSDA
Instruction Oscillator - RCS5/SDO
Decode & (=4 | Start-up Timer L4 >] RCBITWCK
Contral Bowat-on RCT/IRXDT
Reseat
Timing Watchda
B3 Generation [~ Timer 9
0OSCA/CLKIN Brown-out
QSC2/CLKOUT Reset
in-Cirouit
Debugger
Low-Voltage
Programmin
WMCLR Voo, Vss
Timer(Timer1 Timer2 10-bit A
\]P b 4 {
Data EEPROM CCP12 Sgnechmrluggrl.tis LSART
Note 1: Higher order bits are from the STATUS register.
® 1999 Microchip Technology Inc. DS30292B-page 5

PIC16F87X Appendix D

FIGURE 1-2: PIC16F874 AND PIC16F877 BLOCK DIAGRAM

Davice Program Data Memory Data
FLASH EEPROM
PIC16F874 4K 192 Bytes 128 Bytes
PIC16F877 8K 368 Bytes 256 Bytes
13 DataBus ° PORTA
FLASH Program Counter <}:—‘l|7— 1 RAG/AND
Program < RA1/AN1
Memory RAM L X RAZ/AN2/VREF-
8 Level Stack File j 5 RAJANI/VREF+
{13-bit} Registers +—=[X} RA4TOCKI
- RASIANA/SS
Program 4,
Bus RBO/INT
Instruction reg 1 ::g;
Direci Addr 7 [RB3/PGM
> RB4
RBS
- RBB/PGC
= RB7/PGD
8 RCOT10SOMTACKI
7 | RC1/TA0SICCP2
| RC2/ICCP4
i/ Power-up 1 RC3/SCKISCL
Timer - RC4/SDVSDA
Instruction Oscifiator » RC5/SDO
Decode & (< | Start-up Timer o RCBTXICK
Gontrol Power-on RCT/RXDT
Resel
Timil Watchdog
B3 Generation [Timer
OSCHCLKIN L Brown-out
OSC2/CLKOUT Reset RO7/PSPT:RDO/PSPO
In-Circuit
Debugger
Low-Voltage
Programming Parallel Stave Port k) PORTE
é é .;._..& REO/ANSRD
E.p =[] RETIANBANR
MCLR VDD, Vss +—X] RE2ANTICS
TimerD Timer1 Timer2 10-bit A/D

j? i it 4
! 4 b i

Data EEFROM Synchronous
CCP1.2 Serial Port USART

Note 1: Higher order bits are from the STATUS register,

DS30292B-page 6 ©® 1999 Micrachip Technology inc.

PIC16F87X

TABLE 1-1: PIC16F873 AND PIC16F876 PINOUT DESCRIPTION
. oIp Soic HofP Buffer e
Pin Name Pin# Pinit Type Type Description

OSCUCLKIN s 9 I stieMos® | Oscillator crystal inputfexternal clock source input.

0OSCZICLKOUT 10 10 0 — Osclllator crystal output. Connects to crystal or resonator in crystal
ascillator mode. In RC made, the OSC2 pin ouiputs CLKOUT
which has 1/4 the frequency of 0SC1, and denctes the instruction
cycle rate.

MCLRAVPRITHV 1 1 e ST Master clear (reset) input or programming voltage input or high
voltage test mode corttrol. This pin is an active low reset to the
device.

PORTA is a bi-directional I/ port.

RAO/AND 2 110 TTL RAD can also be analog input0

RA1/ANA 3 o TIL RA1 can also be analog input1

RAZ/AN2/VREF- 4 o Tm RAZ can also be analog input2 or negative analog reference

voltage

RAJIANINREF+ B 5 1o TTL RAZ can aiso be analog input3 or positive analog reference

voltage

RA4ITGCKI 6 L] 1o sT [2A4 can also be the clock input to the Timer(module. Output

is open drain type.

RAS5/SS/ANA 7 7 Vo TTL RAS can also be analog inputd or the slave select for the

synchronous serial port.
PORTB is a bi-girectional /O port. PORTB can be software
programmed for internal weak pull-up an all inputs.

RBO/WNT 21 2 [}0] TTLSTY RBO can aiso be the external interrupt pin.

RB1 22 22 o] TIL

RB2 23 23 I{e] L

RB3/PGM 24 24 [[1e] TTL RB3 can aiso be the low voltage programming input

RB4 25 25 [/{e]} TTL Interrupt on change pin.

RB& 26 28 10 TTL Interrupt on change pin.

RB6/PGC 27 27 j{[o] TTL/ST® interrupt on change pin or In-Circuit Debugger pin. Serial

programening clock.

RB7/PGD 28 28 [lis} TTUSTR Interrupt on change pin or in-Circuit Debugger pin. Serial

programming data.
PORTC is a hi-directional ¥O port.

RCO/T10S0/TICKI 11 11 {8} ST RCO can also be the Timer1 oscillator output or Timer1 clock

input.

RC1/T108YCCP2 12 12 HQ ST RC1 can also be the Timer1 oscillator input or Capture2 input/

Compare2 output/PWM2 output.

RC2/CCP1 13 13 o 13 RC:2 can also be the Capiure1 input’Compare1 output/PWM1

output.

RC3/SCK/SCL 14 14 o ST RC3 can also be the synchronous serial clock input/output for

both SPI and G modes.
RC4/SDI/SDA 15 15 l{e} ST RC4 can also be the SP1 Data in (SP| mode) or
data 1/O {I’C mode).

RCAISDO 16 16 /0 sT RC5 can also be the SPI Data Out (SP! mode).

RCSXICK 17 17 1o ST RCH can also be the USART Asynchronous Transmit or
Synchronous Clock.

RCTIRX/DT 18 18 o 1) RC7 can aiso be the USART Asynchronous Receive or
Synchronous Data.

Vss 8,19 8,18 P — Ground reference for logic and 10 pins.

Vob 20 20 P — Positive supply for logic and /O pins.

Legend: |=input 0 = quiput /O = inputfoutput P = power

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt,

2: This buffer is a Schmitt Trigger input when used in serial programming mode.
3 This buffer is a Schmilt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

© 1999 Microchip Technology Inc.

DS302928-page 7

PIC16F87X Appendix D

TABLE 1-2: PIC16F874 AND PiC16F877 PINOUT DESCRIPTION

DIP PLCC QFP | O Buffer _—
Pin Name Pin#t Pin# Pink | Type Type Description

QOSC/CLKIN 13 14 30 t sT/CMOSH | Oscillator crystal inputfexternal clock source input.

OSC2/CLKOUT 14 15 31 0 —_ Osciltator crystal output. Connects to crystal or resonator in
crystal ostillator mode, in RC mode, OSC2 pin outputs CLK-
OUT which has 1/4 the frequency of OSC1, and denotes the
instruction cycle rate.

MCELRNPRTHY 1 2 18 P ST Master clear (reset) input or programming voltage input or high
voltage test mode control. This pin ts an active low reset to the
device.

PORTA is a bi-directional I/O port.

RAQ/ANO 2 3 19 iie} TTL RAD can also be analog input

RA1/AN1 3 4 20 0o TTL RA1 can also be analeg inputi

RA2/AN2{VREF- 4 5 21 I{e] TTL RAZ2 can also be analeg input? or negative analog

reference voltage

RA3/ANI/VREF+ 5 6 22 o TTL RA3 can also be analog input3 or positive analog

reference voltage

RAATOCKI 6 7 23 [1s} ST RA4 can also be the clock input to the TimerQ timer/

counter, Quiput is open drain fype.

RAS/SSIAN4 7 8 24 Vo 7L RAGS can also be analog input4 or the slave select for the

synchronous serial port.
PORTB is a bi-directional VO port. PORTB can be software
programmed for internal weak pull-up on all inputs.

RBO/INT 33 36 8 WO TTUST RBO can also be the external interrupt pin.

RB1 34 3r 9 o TTL

RB2 35 33 10 1o TiL

RB3/PGM 36 39 11 [Le] TTL RB3 can also be the low voltage programming input

RB4 37 4 14 e} TTL Interrupt on change pin.

RBS 38 42 18 (e} TTL Interrupt on change pin.

RB6/PGC a9 43 16 WG TTUSTR Interrupt on change pin or In-Circuit Debugger pin. Serial

programming clock.

RB7/PGD 40 44 17 I{e] TrsT® Intesrupt on change pin or In-Circuit Debugger pin. Serial

programming data.
PORTG is a bi-directional /0 port.

RCOT1OS0Q/T1CKL 15 16 32 e} ST RCO can aiso be the Timer1 oscillator output or a Timer1

clock input.

RC1A/T1OSI/CCP2 16 18 35 [l ST RC1 can also be the Timeri oscillator input or Capture2

input/Compare2 output/PWM2 output.

RG2/CCP1 17 19 36 o ST RC2 can alsc be the Captured input/Compare1 output/

PWM1 ouiput.

RC3/SCKISCL 18 20 3r L8] ST HC3 can also be the synchronous serial clock inputfoutput

for both SPI and 12C modes.
RC4/SDI/SDA 23 25 42 Vo ST RC4 can also be the SPI Data In {SPt mode} or
data 4/0 (IC mode).

RCS5/SBO 24 26 43 e 5T RC5 can also be the 5Pl Data Cut
(SPI mode).

RC8/TXICK 26 27 44 o ST RC6 can also ba the USART Asynchranous Transmit or
Synchronous Clock.

RC7/RX/DT 26 29 1 1o ST RCT can also be the USART Asynchronous Receive or
Synchronous Data.

Legend: |=input O = output I/0 = inputfoutput P = power

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.
2. This buffer is a Schimitt Trigger input when used in serial programming mode.
3: This buffer is a Schimitt Trigger input when configured as general purpose 1/O and a TTL input when used in the Paraliel Siave
Port mode (for interfacing to a microprocessor bus).
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a GMOS input otherwise.

0S5302928-page 8 ® 1999 Microchip Technology Inc.

PIC16F87X

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION (CONTINUED)

. bip PLCC QFP | HOP Buffer o
Pin Name Pink | Pink | Pin# |Type| Type |OCSCTRHOR
PORTD is a bi-directional /O port or parallel slave port when
interfacing to a microprocessor bus.
RDO/PSPO 19 21 38 o sT/TTLIS
RD1/PSP1 20 22 39 o sTTL®
RD2/PSP2 21 23 40 o sTTL®
RDIIPSP3 22 24 41 fie] STATLY
RD4/PSP4 27 30 2 170 STATLR
RDS5/PSPS 23 3 3 o] STTTLE
RDG/PSPE 29 3z 4 s’ STATLE
RD?7/PSPT 30 33 5 le} sTATLE
PORTE is a bi-directional /0 port.
REO/RIVANS 8 9 25 o STATLE REQ can also be read control for the parallel slave port, or
analog input5.
RE1/WR/ANG 2 10 26 /o STTTLE RE1 can also be write contrai for the paraliel slave port, or
analog input6.
RE2/CS/ANT 10 i1 27 e sTATL® REZ2 can also be select control for the paraliel slave port,
or analog input?.
Vss 12,31 | 13,34 6,29 P — Ground refarence for logic and /O pins.
VoD 11,32 | 1235 7,28 P — Positive supply for logic and YO pins.
NC — 1,17.28, | 12,13, — These pins are not internally connected. These pins should be
40 33,34 left uncornected.
Legend: =input O = output 1O = inputioutpit P = power
-— = Not used TTL = TTL input ST = Schmitt Trigget input
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.
2 This buffer is a Schmitt Trigger input when used in serial programming mode.
3: This buffer is a Schmitt Trigger input when configured as general purpose HO and a TTL input when used in the Parallel Slave
Port mode (for interfacing to a microprocessor bus).
& This buffer is @ Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise. -

© 1999 Microchip Technology Inc. DS30202B-page 9

PIC16F87X Appendix D

Fl
it
i

NOTES:

DS$30292B-page 10 © 1999 Microchip Technology Inc.

PIC16F87X

2.0 MEMORY ORGANIZATION

There are three memory blaocks in each of these
PICmicro MCUs. The Program Memory and Data
Memory have separate buses so that concurrent
access can occur and is detailed in this section. The
EEPROM data memory biock is detaited in
Section 4.0.

Additional information on device memory may be found
in the PiCmicro™ Mid-Range Reference Manual,
(DS33023). '

21 Program Memory Organization

The PIC16F87X devices have a 13-bit program counter
capable of addressing an 8K x 14 program memory
space. The PIC16FB77/876 devices have 8K x 14
words of FLASH program memory and the PIC16F873/
874 devices have 4K x 14. Accessing a location above
the physically implemented address will cause & wrap-
around,

The reset vector is at 0000h and the interrupt vector is
at 0004h,

FIGURE 2-1: PIC16F877/876 PROGRAM

MEMORY MAP AND STACK
| PCe12:0> |
CALL, RETURN 13 y
RETFIE, RETLW 7
Stack Leval 1
Stack Level 2
L]
L]
-
Stack Level 8
Reset Vector 0000h
L]
. Q_—_.x
»
Interrupt Vector p004h
00051
Page O
07FFh
08000
Page 1
On-Chip
OFFFh
Program <
Memory 1000h
Page 2
17FFh
1800h
Page 3
1FFFh

FIGURE 2-2: PIC16F874/873 PROGRAM

MEMORY MAP AND STACK
| PC<12:0>]
CALL, RETURN 13 .,
RETFIE, RETLW
Stack Level 1
Slack Level 2
L]
.
L]
_ Stack Level 8
Reset Vector 0000h
-
. <F_'—::—_
[]
Interrupt Vector 0004h
0005h
On-Chip Page 0
Progrem G7FFh
Memory 0800h
Page 1
OFFFh.
1000h
1¥FFFL

® 1999 Microchip Technotogy Inc.

DS30292B-page 11

PIC16F87X

Appendix D

2.2 Data Memory Organization

The data memory is pariitioned into multiple banks
which contain the General Purpose Registers and the

Special Function Registers. Bits RP1{STATUS<6>)and

RPO (STATUS<5>) are the bank select bits.

RP1:RPO Bank
00]
o1 1
10 2
11 3

Each bank extends up to 7Fh (128 bytes). The lower
locations of each bank are reserved for the Special
Function Registers. Above the Special Function Regis-
ters are General Purpose Registers, implemented as
static RAM. All implemented banks contain Special
Function Registers. Some “high use” Special Function
Registers from one bank may be mirrored in another
bank for code reduction and quicker access.

Note: EEPROM Data Memory description can be
found in Section 4.0 of this Data Sheet

221 GENERAL PURPOSE REGISTER FILE

The register fle can be accessed either directly, or indi-
rectly through the File Select Register FSR.

D$30292B-page 12

© 1999 Microchip Technology Inc.

PIC16F87X

FIGURE 2-3: PIC16F877/876 REGISTER FILE MAP

File
Address
Indirect addr.t? | 00h Indirect addr.®)| gon | Indirect addr.(?| 100n | Indirect addr.C| 180n
TMRO g1h OPTION_REG| 8th TMRO 10th | OPTION_REG| 181h
PCL 02h PCL 82h PCL 102h PCL 182h
STATUS 03h STATUS 83h STATUS 103h STATUS 183h
FSR 04h FSR 84h FSR 104h FSR 184h
PORTA 05h TRISA 85h | 105h 185h
PORTB 06h TRISB 86h PORTB 106h TRISB 186h
PORTC | 07h TRISC 87h 107h . 187h
PORTD ® | 08h TRISD ™ | 88h | 108h 188h
PORTE®™ | 08h TRISE™ | 8%h 10%h 189h
PCLATH | 0Ah PCLATH | 8Ah PCLATH | 10Ah PCLATH 18Ah
INTCON 0Bh INTCON 8Bh INTCON 10Bh INTCON 18Bh
PIR1 0Ch PIE1 8Ch EEDATA 10Ch EECON1 18Ch
PIR2 0Dh PIE2 8Dh EEADR 10Dh EECON2 18Dh
TMR1L OEh PCON 8Eh EEDATH 10Eh Reserved® | 18Eh
TMR1H OFh : 8Fh EEADRH | 10Fh Reserved® | 18Fh
T1CON 10h : 90h 110h 190h
TMR2 11h SSPCONZ | 91h 111h 191h
T2CON | 12h PR2 92h 112h 192h
SSPBUF 13h SSPADD a3h 113h 193h
SSPCON 14h SSPSTAT 84h 114h 194h
CCPRIL 15h 1 95h 115h 195h
CCPR1H 16h : =1 96h 116h 196h
CCP1CON | 17h f 97h General 117h General 197h
Purpose Purpose
RCSTA | 18h TXSTA | 98h Register | 118N Register | 198h
TXREG 18h SPBRG 99h 16 Bytes 119h 16 Bytes 193h
RCREG 1Ah ' gAh 11Ah 19Ah
CCPR2L | 1Bh 9Bh 11Bh 19Bh
CCPR2H | 1Ch i | oCh 11Ch 19Ch
CCP2CON | 1Dh ; | oDn 11Dh 19Dh
ADRESH 1Eh ADRESL 9Eh 11Eh 19Eh
ADCONO | 1Fh ADCON1 | 9Fh 11Fh 19Fh
20h ACh 120h 1A0h
General General General General
Purpose Purpose Purpose Purpose
Register Register Register Register
96 Bytes 80 Bytes EFh 80 Bytes 16Eh 80 Bytes 1EFh
accesses FOh accesses 170h accesses 1FOh
70h-7Fh 70h-7Fh 70h - 7Fh
7Fh FFh 17Fh 1FFh
Bank 0 Bank 1 Bank 2 Bank 3
™ Unimplemented data memory locations, read as '0’.
* Not a physical register.
Note 1: These registers are not impiemented on 28-pin devices.
2: These registers are reserved, maintain these registers clear.

©® 1999 Microchip Technology inc. DS30292B-page 13

PIC16F87X Appendix D

FIGURE 2-4: PIC16F874/873 REGISTER FILE MAP

File
Address
Indirect adar.C? | 00Oh Indirect addr.?| .goh indirect addr.C? | 100h indirect addr.(?{ 180h
TMRO 0th OPTION _REG] 81h TMRO 101h QOPTION_REG{ 181h
PCL 02h PCL 82h PCL | 102h PCL 182h
STATUS 03h STATUS 83h STATUS 103h STATUS 183h
FSR 04h FSR 84h FSR 104h FSR 184h
PORTA 05h TRISA 85h 105h 185h
PORTB g6h TRISB 86h PORTB 106h TRISB 186h
PORTC 07h TRISC 87h | 107h ' 187h
PORTD @ | 0Bh TRISD™ | 88h 108h 188h
PORTE®M | 0%h TRISE® | 89n 109h N 189h
PCLATH 0Ah | PCLATH 8Ah PCLATH 10Ah PCLATH 18Ah
INTCON 0Bh INTCON 8Bh INTCON 10Bh INTCON 18Bh
PiR1 OCh PIE1 8Ch EEDATA 10Ch EECON1 18Ch
PIR2 0Dh PIE2 8Dh EEADR 40Dh EECON2 18Dh
TMRIL OEh PCON 8Eh EEDATH 10Eh Reserved® | 18Eh
TMR1H OFh 8Fh EEADRH | 10Fh Reserved® { 18Fh
T1CON 10h a0h 110h 190h
TMR2 11h SSPCONZ | 91h
T2CON 12h PR2 92h
SSPBUF 13h SSPADD 93h
SSPCON 14h SSPSTAT - | 94h
CCPRI1L 156h ' - | 95h
CCPR1H 18h | 96h
CCP1CON | 17h .| 97h
RCSTA 18h TXSTA 98h
TXREG 19h SPBRG 9gh
RCREG 1Ah | 9Ah
CCPR2L 1Bh . 9Bh
CCPR2H 1Ch : 1 9Ch
ceP2con | 1Dk : | 9Dh
ADRESH 1Eh ADRESL 9Eh
ADCONO 1Fh ADCON1 9Fh 120h . 1A0h
20h AOh
FC)-}eneraf F(;:‘ueneral
Register Registr accesses acrasses
96 Bytes 96 Bytes 16Fh 1EFh
170h 1FOh
7Fh FFh | 17Fh 1FFh
Bank 0 Bank 1 Bank 2 Bank 3
T~ Unimplemented data memory locations, read as ‘0.
* Not a physical register.
Note 1: These registers are not implemented on 28-pin devices.
2: These registers are reserved, maintain these registers clear.

[530292B-page 14 ©® 1999 Microchip Technology inc.

Maxim MAX232

ESD Protection Exceeds JESD 22

Meet or Exceed TIA/EIA-232-F and ITU
Recommendation V.28

Operate With Single 5-V Power Supply
Operate Up to 120 kbitis
Two Drivers and Two Receivers
+30-V Input Levels
Low Supply Current . . . 8 mA Typical
Designed to be Interchangeable With

~ 2000-V Human-Body Model (A114-A)

& Applications
TIA/EIA-232-F
Battery-Powered Systems
Terminals
Modems
Computers

description/ordering information

MAX232, MAX232|

DUAL EIA-232 DRIVERS/RECEIVERS

SLLS047) - FEBRUARY 1589 — REVISED QCTOBER 2002

MAX232...D, DW, N, OR NS PACKAGE
MAX2321 ... D, DW, OR N PACKAGE

(TOP VIEW)
c1+] i 18]] Ve
Vs+ [}z 15[] GND
ci-f{3 1fTIOUT
cz+[]4 13f] R1IN
c2-[|5 1z R1OUT
Ve[| M TN

T20UT[{7 10f] T2IN
R2IN[] 8 of] R20UT

The MAX232 is a dual driverfreceiver that includes a capacitive voltage generator to supply ElA-232 voltage
jevels from a single 5-V supply. Each receiver converts EIA-232 inputs to 5-V TTL/CMOS levels. These
receivers have a typical threshold of 1.3 V and a typical hysteresis of 0.5 V, and can accept +30-V inputs. Each
driver converts TTLUCMOS input levels into EIA-232 levels. The driver, receiver, and voltage-generator
functions are available as cells in the Texas Instruments LinASIC™ library.

ORDERING INFORMATION
ORDERABLE TOP-SIDE
A PACKAGET PARTNUMBER | MARKING
PDIP (N} Tube MAXZ32N MAX232N
Tube MAX232D
S0IC (D) MAX232
Tape and reel MAX232DR
0°C to 70°C
Tube MAX232DW
SOIC (DW) MAX232
: Tape and reel MAX232DWR
SOP (NS) Tape and reel MAX232NSR MAX232
PDIP {N) Tube MAX232IN MAXZ32IN
Tube MAX2321D
50IC (D) MAX232!
-40°C 10 85°C Tape and resl MAX23Z2IDR
SOIC (OW) Tube MAX2321DW MAX232]
Tape and real MAX232IDWR

1 Package drawings,

standard packing quantities, thermal data, symbeolization, and PCB design
guidelines are available at www.ti.com/sc/package.

Please be aware that an important nofice concerning availability, standard warranty, and use in crifical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinASIC is a trademark of Texas Instruments.

PRODUCTION nlﬂlmmﬂmbm«olrwmmh.
specications per the feems; of Texnt Instruments

Products contorm to

standard warranty. Production processing does not necossarily include

testing of wll paratneters.

“.’PTEXAS

Copyrigl

INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

ht © 2002, Texas Instruments Incorporated

X232, MAX232 .
AL EIA-232 DRIVERS/RECEIVERS Appendix E

j047| — FEBRUARY 1989 — REVISED OCTOBER 2002
Function Tables

EACH DRIVER

INPUT | OUTPUT
TIN TOUT

L H
H L

H = high level, L = low
level

EACH RECEIVER

INPUT | OUTPUT
RIN ROUT

L H
H L
H = high level, L = low

level
jic diagram (positive logic)

1 14
TIIN ————DO———- TIOuT

10 7
T2N DC T20UT
12 13
R1OUT 0@ RN
9 8
R20UT ﬂ@ R2IN

‘V TeEXAS
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75268

MAX232, MAX232
DUAL EiA-232 DRIVERS/RECEIVERS

$L1.S0471- FEBRUARY 1989 - REVISED OCTOBER 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)t

.. -{03VtoBV
Voe~03Vio 15V

input supply voltage range, V¢ (see Note 1)
Positive output supply voltage range, Vg4

Negative output supply voltage range, Vgovoiior i -03Vto-15V
Input voltage range, V1 DIVEr oo -03VtoVge+03V
RBEBIVET oottt ettt ettt e e aa e ta e 30V

Output voltage range, Vo: T1IOUT, T20UToiiiiiiininninnnns Vg.—-03VioVg +03V
RIOUT, R2ZOUT .. ee e =03Vio Ve +03V

Short-circuit duration: T1OUT, T20UT ..ottt Unlimited
Package thermal impedance, 85 (see Note 2): Dpackageoooiiiinaiinnnnes 73°CIW
DWPackagecconeivennmeminininnnn. 57°CIW

Npackageooovvvnmi i 67°C/IW

NSPackageccieevranrnnrieaananans 64°C/w

Lead temperature 1,6 mm (1/16 inch) from case for 10seconds ... tnes 260°C
—65°C to 150°C

Storage temperature range, Tgig

t Stresses beyond those listed under “absaiute maximum rafings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditicns beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to network ground terminal.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

MIN NOM MAX| UNIT
Voo Supply voltage 45 5 55 v
ViH High-level input voltage {T1IN,T2IN} 2 Vi
V)L Low-level input voltage (T1IN, T2IN) 08 \'4
R1IN, RZIN Receiver input voltage +30 A
TA Operating free-air temperature MAXZs2 9 L °C
i MAX2321 —40 85

electrical characteristics over recommended ranges of supply voltage

and operating free-air

temperature (unless otherwise noted) (see Note 3 and Figure 4)

PARAMETER TEST CONDITIONS MIN TYPF MAX| UNIT
Voo =55V, All outputs open,
Icc Supply current Ta = 25°C 8 10§ mA

$ All typical values are af Vo = 5V and Ta = 25°C.
NOTE 3; Test conditions are G1-C4 =1 pF alVpc =5V 105 V.

‘W TEXAS

INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

1X232, MAX2321 Appendix E

/AL E1A-232 DRIVERS/RECEIVERS

50471 — FEBRUARY 1988 — REVISED OCTOBER 2002
DRIVER SECTION

ctrical characteristics over recommended ranges of supply voltage and operating free-air
nperature range {see Note 3}

PARAMETER TEST CONDITIONS MiNn TYpl MAX | UNIT
M High-level output voltage TI0UT, T20UT |RL =3 kQto GND 5 7 v
i Low-ievel output votiageF TAOUT, T20UT | R =3 k1o GND -7 5] vV
Output resistance TIOUT, T20UT |Vg4=Vg-=0, Vo=42V 300 0

58 Short-circuit output current T1OUT, T20UT |Vpg =55V, V=0 +10 mA
Short-circuit input current T1IN, T2IN Vi=0 2001 pA

I typical values are at Voo = 5V, To = 25°C.
1e algebraic convention, in which the least positive (most negative) vaiue is designated minimum, is used in this data sheet for logic voltage

vels only.
ol more than one ouiput should be shorted at a time.
TE 3: Test conditions are C1-C4 =1 uF atVoc =5V 0.5V,

fitching characteristics, Vog =5V, Ta = 25°C (see Note 3)

PARAMETER TESTCONDITIONS | MIN TYP MAX | UNIT
. RL=3kQto 7k,
% Driver slew rate See Figure 2 30| Vips
i) Driver transition region slew rate See Figure 3 3 Vius
Data rate One TOUT switching 120 kbit's
TE 3: Test conditions are C1-Cd=1pFatVge =5V =05V,
RECEIVER SECTION

sctrical characteristics over recommended ranges of supply voltage and operating free-air
mperature range (see Note 3}

PARAMETER TEST CONDITIONS MiN TPl MAX| uNIT
x4 High-level outpul voltage R10OUT, RZOUT |lgH=~-1mA 35 v
5L Low-levet output voltaget R10UT, R20UT |%oL =3.2mA 04| Vv
Receiver positive-going input - = 60
T+ threshold voltage R1IN, R2IN Vee =5V, Tp = 25°C 17 24| Vv
o poosvel ’\',2‘,{:*;3“9‘""9 input | RN, R2IN Vee =5V, Ta=25°C 08 12 v
wys input hysterests voitage R1IN, RZIN Voo =o9v 0.2 0.5 1 \
Receiver input resistance - RN, R2IN Ve =5, Tp =25°C 3 5 7] k@

Wl typical values are at Vo = 5V, T = 25°C.
‘he algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage

svels only.
JTE 3: Test conditions are C1-C4 =1 uF atVoc =5V 05V

vitching characteristics, Vo =5V, TA = 25°C (see Note 3 and Figure 1)

PARAMETER TYP | UNIT
si(R) Receiver propagation delay time, low- to high-level output 500 ns
JHI(R) Receiver propagatian delay time, high- to low-level cutput 500 ns

YTE 3: Test conditions are G1-C4=1Fat Vo =5V 105V,

M
{5‘ Texas
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

MAX232, MAX232
DUAL ElA-232 DRIVERS/RECEIVERS

5LLS047(- FEBRUARY 1988 ~ REVISED OCTOBER 2002

PARAMETER MEASUREMENT INFORMATION

Vee
é

Pulse
Generator
(see Note A)
C =50 pF
T (see Note B)
TEST CIRCUIT

<ions -» | | r——smns

| b —— v
Input 2 90% 90%
10% | 50% 50% | 10% oV

a— 500 ns —w

-t
tPHL | i PLH
| l VoH
Output 1.5V 15v £ VoL
WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: Zo = 50 £, duty cycle < 50%.
B. C_ includes probe and jig capacitance.
C. Al diodes are 1N3064 or equivalent.

Figure 1. Receiver Test Circuit and Waveforms for tpy_ and tpp 4 Measurements

M
J@ TeExAs
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

\X232, MAX232I _
IAL EIA-232 DRIVERS/RECEIVERS Appendix E

30471 - FEBRUARY 1989 - REVISED OCTOBER 2002
PARAMETER MEASUREMENT INFORMATION

Pulse TN or T2iN T10UT or T20UT
Generator ElA-232 Output
(see Note A} _I_
RL I CL=10pF

{see Note B)
TEST CIRCUIT
<10 ns -—»E - —» It——swns
| [0% 9% l Tt 3V
Input
10% lZ| 0% 50% 10% oV
le—— 5us —»
j-—P—1PLH
tpHL —je—p! |
[
-?\9:"" [A~ 90% Von
Qutput] |
10% 10%
! - e VoL
THL e _'! j- fTLH
or = 2 Vou~Vou) 98 Vg, - Vo)
trn L
WAVEFORMS

JTES: A. The pulse generator has the following characteristics: Zo = 50 Q, duty cycle < 50%.
B. Cy includes probe and jig capacitance.

Figure 2. Driver Test Circuit and Waveforms for tpy; and tp 4 Measurements (5-us nput)

Pulse
(ggnﬁmo;) _T_ ElA-232 Output
3kO

T CL=25nF

TEST CIRCUIT
<tins —» |e— —l le— <10ns
Input |
| 90% 290% |
10% 1.5V 15V | 10%
o 2o
€ty
frm.“'} %‘* : | L
; Von
Output 3V k i v |j 3v
=3V el e —— Vol
6V

YL o7 Yuw

WAVEFORMS
3TE A: The pulse generator has the following characteristics: Zoy = 50 £, duty cycle < 50%.

Figure 3. Test Circuit and Waveforms for tyy_ and ty 4 Measurements (20-us Input)

{'? TEXAS
INSTRUMENTS

POST CFFICE BOX 635303 ® DALLAS, TEXAS 75265

MAX232, MAX232|
DUAL ElA-232 DRIVERS/RECEIVERS

SLLS0471 - FEBRUARY 1089 — REVISED OCTOBER 2002

APPLICATION INFORMATION

5V
+
Ceypass =14F -
16
B . Vece
_re— ¢1 -
C1- 14F 3 ct Vs+
P————-«“ Ci-
Ve |
L S-
C2 T 1uF 5 c2r
b C2—
n_ | > > 14 g1a.232 Output
Frem CMOS or TTL 10 T
g = © EIA-232 Output
12
— o —1—1§—— FlA-232 Input
To CMOS or TTL ° s
_ —] oV I }—4—— EJA-232 Input
15
GND

T C3 can be connected to Vg or GND.

Figure 4. Typical Operating Circuit

‘t? TEXAS
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265 7

Appendix £

IMPORTANT NOTICE

Texas Instruments incorporated and its subsidiaries (T1) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Gustomers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subjectto TI's terms
and conditions of sale supplied at the time of order acknowledgment.

T! warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control technigues are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Ti components. To minimize the risks associated with customer products
and applications, customers should provide adeguate design and operating safeguards.

Tl does not warrant or represent that any license, either express or impiied, is granted under any Tt patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
inwhich Tl products or services are used. information published by T1 regarding third—party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thersof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from T| under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by T! for that
product or service voids all express and any implied warranties for the associated Ti product or service and
is an unfair and deceptive business practice. T| is not responsible or liable for any such staiements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright ©® 2002, Texas Instruments incorporated

APPENDIX F
SERVO CONTROLLER C PROGRAM

//Servo program

#include <16fR77.h> JiStandard Include for L6F877 Chip
#fuses HS,NOPROTECT,NOWDT,NOBROWNOUT,NOLVP
#use delay(clock=4000000) /Delay clock is 4Mhz

#byte PORTA =5 //Port A is "File Address 0SH" in "Bank 0"
#byte PORTB =6 J/Port B is "File Address 06H" in "Bank 0"
#byte PORTC =7 JPort C is "File Address 07TH" in "Bank 0"
#byte PORTD =38 J//Port D is "File Address 08H" in "Bank 0"
#define ALL,_OUT 0 //Constant to set data direction register 10 output

#define ALL_IN OxFF J/Constant to set data direction register to input

int serv(,serv} ,scrv2,scrv3,serv4,serv5,serv6,scrv7,serv8,serv9; //Set integer

void update() {Update function

{

int ser,pos; /iSet servo and position as integer

5er=PORTC; J/iRead data from PORTC and determing servo
pos=PORTA; jMRead data from PORT A for position
ifiser==0){serv0=pos.} JiSelect servo 0 if 0 and put position value in servl

¢lse if{ser="1){serv1=pos;} ISelect servo 1if 1 and put position value in servl
else if{ser==2){serv2=pos;} J/Select servo 2 if 2 and put position value in serv2
else if{ser==3){serv3=pos} J1Select servo 3 if 3 and put position value in serv3
else if(ser=4){serv4=pos;} HSelect servo 4 if 4 and put position value in serv4
else iffser=5){serv5=pos:} J/Select servo 5 if 5 and put position value in servi
else if(ser—"6){serv6=pos;} J1Select servo 6 if 6 and put position value in servé
else if{ser==T7){servT=pos;} JSelect servo 7 if 7 and put position value in servy
else if{ser—=8){serv8=pos;} J/Seloct servo 3 if 8 and put position value in serv8
else if{ser==9){servi=pos;} //Select servo 9 if'9 and put position vatue in serv9

}

main () {

int deli,del2; /iSet integer delay 1 and delay 2
set_tris_A(ALL_IN), //Set all bits{byte) in Port A to inpui
set_tris C(ALL_TN); J/Set all bits(byte) in Port C to input
set_tris_B(ALL_OUT); //Set all bits(byte) in Port B to output
set_fris D(ALL_OUT), /iSet all bits(byte) in Port D to output

delay_ms(10);
jfimitialize servo center position

serv0=37; //Default center position for servo 0
serv1=37, JiDefault center position for servo 1
serv2=37, i/Default center position for servo 2
serv3=37; HDefault center position for servo 3
serv4=3T, //Default center position for servo 4
servs=3T, /iDefault center position for servo 5
serv6=37; /Mefault center position for servo 6
serv7=27; /iDefault center position for servo 7
serv8=37, /iDefault center position for servo B
setvd=37, /iDefault center position for serve 9

delay_ms{10);
do{

/fpulse width modulation generator

fiservo 0

update(); 1/Go to Update function
dell=serv0*4, //Delay | value (pulsc duration delay)
del2=255-del1, {Melay 2 value (delay for neuiral)
PORTB=0x80; /fOutput to servo 0 at RB7
PORTD=0x00; J/No output at PORT B
delay_us(980); jMMinimum pulse width of 0.98ms

40

delay_us(deil);
defay_us(dell);
delay_us{dell};
delay_us(delil);

PORTB=0x00;
PORTD=0x00;
delay_us(del2);
delay_us(del2);
delay_us{del2);
delay_us(det2);

Hservo 1
update();
deli=serv]*4;
del2=255-deil;
PORTB=0x40;
PORTD=0x00;
delay _us(980);
delay_us(dell);
delay_uvs(dell);
detay_us(dell);
delay_us(dell);

PORTB=0x00;,
PORTD=0x09;
delay_us{del2);
delay_us(del2);
delay_us(del2);
delay us(del2);

Hservo 2
update();
dell=serv2*4;
del2=255-dell;

PORTB=0x20;
PORTD=0x00;
delay_us(980);
delay_us(dell);
defay_us(dell);
delay_us(deli),
detay _us(dell),

PORTB=0x00;
PORTD=0x00;
delay_us(del2);
delay_us(del2);
delay_us(del2),
delay_us(del2);

Hservo 3
update();
dell=serv3*4;
del2=255-dell;

PORTB=0x10;
PORTD=0x00;
delay_us(980);
delay_us(detl);
delay_us(dell);
delay_us(dell);
delay_us(dell);

PORTB=0x00;
PORTD=0x00;
delay_us{del2);
delay_vs(del2);
delay_us{del2);
delay_us(dei2);

{Iservo 4
update();
deil=serv4*4;
del2=255-dell;

//Use Delay 1 to delay the pulse width
/fUse Detay 1 to delay the pulse width
/fUse Delay 1 i delay the pualse width
{fUse Delay 1 to delay the pulse width

//No output to servo 0

/o output at PORT D

//Use Delay 2 to delay for 0 amplitude
/fUse Delay 2 to delay for 0 amplitude
/Use Delay 2 to delay for 0 amplitude
{{Use Delay 2 to delay for 0 amplitude

/fGo to Update function

{/Delay 1 value (pulse duration delay)
//Delay 2 value (delay for neutral)
HOutput to servo 1 at RB6

/MNo output ai PORT D

jiMinimum pulse width of 0.98ms
J/Use Delay 1 10 delay the pulse width
//Use Delay 1 to delay the pulse width
{/Use Delay 1 to detay the pulse width
JIUse Delay 1 to delay the puise width

J/No output to servo 1

//No output at PORT D

{/Use Delay 2 to delay for 0 amplitude
{1Use Delay 2 to delay for 0 amplitude
{/Use Delay 2 to delay for 0 amplitude
f/Use Delay 2 to delay for 0 amplitude

//Go to Update function
{fDelay 1 value (pulse duration delay)
fiDelay 2 value (delay for neutral)

J/Quiput to servo 2 at RB3

//No output at PORT D

/Minimmm pulse width of 0.98ms
J/Use Delay 1 to delay the pulse width
/fUse Delay 1 to delay the pulse width
j/Use Delay 1 to delay the pulse width
J/Use Delay 1 to delay the pulse width

ffNo output to serve 2

//No output at PORT D

//Use Delay 2 to delay for 0 amplitude
/{Use Delay 2 to delay for 0 amplitude
//Use Delay 2 to detay for 0 amplitude
/MUse Delay 2 to delay for 0 amplitude

//Go to Update function
/Delay 1 value (pulse dusation delay)
/iDetay 2 vatue (delay for neutral}

J//Output to servo 3 at RB4

J//iNo output at PORT D

/MMinimum pulse width of 0.98ms
//Use Delay 1 io delay the pulse width
/MUse Delay 1 to delay the pulse width
{/Use Delay ! to delay the pulse width
//Use Delay 1 to delay the pulse width

/MNo output to servo 3

/fNo output at PORT D

/{Use Delay 2 to detay for 0 amplitude
/{Use Delay 2 to delay for 0 amplitude
J/Use Delay 2 to delay for 0 ampiitude
{/Use Delay 2 to delay for 0 amplitude

JiGo to Update function
//Delay 1 vatue (pulse duration delay)
//MDelay 2 value (delay for nentral)

41

PORTB=0x08;
PORTD=0x00;
delay_us(980),
delay_us(dell);
delay_us{dell);
delay _us(dell),
delay_us(detl);

PORTB=0x00;
PORTD=0x{0;
delay_us(del2);
delay_us(del2),
delay_us(del2);
delay_us(del2);

/iservo 5
update();
deli=servi*4;
dei2=255-deli;
PORTB=0x04,
PORTD=0x00,

delay_us(980);
delay_us(dell);
detay_us(dell};
delay_us(dell);
delay_us(dell);

PORTB=(x00;
PORTD=0x00,
detay_us(del2);
delay_us(del2).
delay_us(del2);
delay_us(del2);

{fservo 6
update();
dell=serv6*4;
del2=255-deli;

PORTB=0x02;
PORTD=0x00;
delay_us(980);
delay_us(dell);
delay_us(dell);
delay_us(detl);
delay_us(dell);

PORTB=0x00;
PORTD=0x00;
delay_us(del2);
delay_us{del2);
delay_us(del2),
delay_us(del?);

fiservo 7
update();
dell=serv7*4;
del2=255-dell;

PORTB=0x01,
PORTD=0x00;
delay_us(980);
delay_us(deil);
delay_us(dell);
delay_us(dell);
detay_us(dell);

PORTB=0x00,
PORTD=0x00;,
delay_us(del2),
delay_us(del2);
delay_us(del2);
delay_us(del2),

//Output to servo 4 at RB3

/No output at PORT D

/Minimum pulse width of 0.98ms
{/Use Delay 1 to delay the pulse width
//Use Delay 1 to delay the pulse width
/fUse Delay 1 to delay the pulse width
{fUse Delay 1 to delay the pulse width

//No output to servo 4

{MNo output at PORT D

/fUse Delay 2 to delay for 0 amplitude
/fUse Delay 2 to defay for 0 amplitude
//Use Delay 2 to delay for 0 amplitude
{{Use Delay 2 to delay for 0 amplitude

//Go to Update function

{/Delay 1 value (pulse duration delay)
//Delay 2 value (delay for neutral)
/Output to servo 5 at RB2

/fNo output at PORT D

/{Minimum pulse width of 0.98ms

{fUse Delay 1 to delay the pulse width
//Use Delay 1 to delay the pulse width
//Use Delay 1 to delay the pulsc width
/fUse Delay 1 to delay the pulse width

//No output to servo 5

/Mo output at PORT D

{/Use Delay 2 to delay for 0 amplitude
j{Use Delay 2 to delay for 0 amplitude
//Use Delay 2 to delay for 0 amplitude
{Use Delay 2 to delay for 0 amplitude

}1Go to Update function
jDelay 1 value (pulse duration delay)
i/Delay 2 value (delay for neutral)

JfOutput o servo 6 at RB]

{/No output at PORT D

/MMinimusm pulse width of 0.98ms
//Use Delay 1 to delay the pulse width
/fUse Delay 1 to delay the pulse width
i/Use Delay 1 to delay the pulse width
//Use Delay 1 to delay the pulse width

}/No output 10 servo 6

//No output at PORT D

//Use Delay 2 to delay for (amplitude
j{Use Delay 2 to delay for 0 amplitude
/IUse Delay 2 to delay for O amplitude
}Use Delay 2 to delay for 0 amplitude

#/Gio to Update function
{/Delay 1 value (pulse duration delay)
//Delay 2 value (delay for neutraf)

J/Output to servo 7 at RBO

J/No output at PORT D

/Minimum pulse width of 0.98ms
JfUse Delay t to delay the pulse width
{fUse Delay 1 to delay the pulse width
//Use Delay 1 to delay the pulse width
/fUse Delay 1 to delay the pulse width

//No output to servo 7

/fNo cutput at PORT D

/iUse Delay 2 to delay for 0 amplitude
JiUse Delay 2 to delay for (amplitude
{/Use Delay 2 to delay for 0 amplitude
//Use Delay 2 to delay for G amplitude

42

/fservo 8
update();
dell=serv8*4;
del2=255-dell;

PORTB=0x00;
PORTD=0x38(;
delay_us(980);
delay_us{dell);
delay_us(dell);
delay_us(dell);
defay_us(dell);

PORTB=0x00;
PORTD=0x00;
delay_us(del2),
delay_us(del?);
delay_us(del2),
delay_us{del2);

Hservo 9
update();
dell=servo*4;
de12=255-dell;

PORTB=0x00;
PORTD=0x40;
delay_us(980);
delay_us(detl);
delay_us(dell);
delay_us(detl);
delay_us(dell);

PORTB=0x00,
PORTD=0x00;
detay_ws(del2),
delay_us(delZ);
delay us(del2);
delay_us(del2},

1 while {TRUE);
}

/IGo io Update function
/Melay 1 value (pulse duration deiay)
{/Delay 2 value (delay for neutral)

//No output at PORT B

/{Output to servo 8 at RD7
/IMinimum pulse width of 0.98ms
//Use Delay 1 to delay the pulse width
{fUse Delay 1 to delay the pulse width
/fUse Delay 1 1o delay the pulse width
J/Use Delay | to delay the pulse width

{/No output ai PORT B

//No cutput to servo 8

//Use Delay 2 to delay for 0 amplitude
{{Use Delay 2 to delay for O amplitude
//Use Delay 2 to delay for 0 amplitude
f/Use Delay 2 to delay for 0 amplitude

}1Go to Update function
//Delay 1 vaiue {pulse duration delay)
{/Delay 2 vatue (delay for neutral)

//No output at PORT B

JfOutput to servo 0 at RDo6
/iMinimum pulse width of 0.98ms
//Use Delay 1 to delay the pulse width
//Use Delay 1 to deiay the pulse width
{/Use Delay 1 to delay the polse width
JfUse Delay 1 to detay the pulse width

/fNo output at PORT B

//No output to servo 9

/fUse Delay 2 to delay for ¢ amplitude
}fUse Delay 2 to delay for 0 amplitude
//Use Delay 2 to delay for 0 amplitude
jfeJse Delay 2 to detay for 0 amplitude

//Endless routines (non stop operation}

43

APPENDIX G
WALKING CONTROLLER C PROGRAM

[fWalking program

#include <16£877.h> //Standard Include for 16F877 Chip
#fuses HS,NOPROTECT,N()WDT,NOBROWNOUT,NOLVP

#use delay{clock=8000000) /Melay clock is SMHz

#use 15232(baud=5600, xmit=PM_AD, rev=PIN_Al) //Sctup RS8232

#byte PORTR = 6 JPort B is "File Address 06H" in "Bank 0*

#byte PORTD =8 JiPort I is "File Address 08H" in "Bank 0"

#defing ALL_OUT 0 //Constant to sct data direction register to output

#define ALL_IN 0xFF J/IConstant 1o set data direction register to mput

//Set integer for servos output variables for position (level)
int scrO,serl,ser2,ser3,ser4,scr5,serﬁ,ser?,sers,sm;

/1Set adjusted servo center position (6 hits, 0-63 level resolution, default center is 37)

int sc0=37,5c1=37,5¢2-37.5¢3

=37 sc4+37,5¢5=37,506=37 507=37,8c8=37,5¢5=37;

/fput values onto buses/iransmit to servo controller

void outpui(int serv,int posi)

/iOutput funetion for variables servo and position

{
PORTIDF=serv; //PORTD output is servo selection
PORTB=posi; //PORTB output is servo position
delay_ms(2); {/Delay for 2 ms

}

Jiput default vaiue to servo registers/stand straight

void resef() J/Reset function for default center position
ser0=sc(; //Servo 0 center position is 37 (from default set values)
serl=scl; /iServo () center position is 37

set2=sc2; /fServo O center position is 37

ser3=sc3; /iServo 0 center position is 37

serd=scd; /1Servo 0 center position is 27

seri=scs; /iServo 0 center position is 37

serb=sch; fiServo 0 center position is 37

ser7=s¢7; /fServo O center position is 37

ser8=scy; /iServo 0 center position is 37

ser9=sc9; //Servo 0 center position is 37

3

Jicalls the routing which send data/setvos move as registess value

/fupdate one servo at 2 time with 2ms gap between each {at output fumetion)

void send(} #Send function

{

output{0,set0}; #/Call output function (pu position value for serve 0)
output(l,serl); J/Call output function (put position value for servo 1)
output(2,ser2); {/Call output function {put position value for servo 2)
outpui(3,ser3); //Call putput fanction (put position value for servo 3)
output(4,serd); jfCall output function (put position value for servo 4)
outpat(3,ser5); JCall output function (put position value for servo 5)
output(s,ser6); {/Call output function {put position value for servo 6}
output(7,ser7}; JICall output function (put position value for servo 7)
output(8,ses8); J#Calt output funetion (put position value for servo 8)
output(9,ser9); J/Call output function (put position value for servo 9)
}

ffreturns the decimai value from ascii character
J/variable value is input character to be insert by user (number of steps)

int convert(int vatue)

int resuli;

if{value=="0"{result=0;}
if{value=="1"y{result=1;}

/Ivariable comvert is result

Jif input variable is 0, result is decimal vatue 0
/A input variable is 1, result is decimal value 1

44

iftvalue=—="2"){result=2;}
ifivatue=="3"){result=3;}
if(vatoe=="4"){result=4;}
if(value=="5"){result=5;}
iftvalue="6"Y{result=6;}
if{value="7"{result=7:}
if{value=="8"{result=8;}
if{value="9"}{result=9,}
retumn resulf;

}

J/if input variable is 2, result is decimal value 2
JAf input variable is 3, resuit is decintal value 3
J/if nput variable is 4, result is decimal value 4
##if input variable is 5, result is decimat vajue 5
Jiif input variable is 6, result is decimal value 6
//if input variable is 7, result is decimal value 7
/i€ input variable is 8, resuit is decimat value §
Jfif input variable is 9, result is decimal value 9
Jfretarn result as reply

/position of servo 0,4, 5, and 9 because position are dependent

11+ tilt left, " tilt right

void ser0459(int op,int def)

{
iflop="+)

ser(=ser(-del;
serd=serd-+del;
serS=serj+del;
ser9=serd-del;
}

else iflop=—"-")

{

ser=ser0+del;
serd=serd-del;
ser5=ser§~del;
serf=serd+del;

j

fiserv8 and serv] routines automati
J/this routines will makes the feet horizo!
Jialways uses these routines! Do not man

void serv8()

{

signed pos6,posT,temp;
pos6=sch-ser6;
pos7=sc7-setT;
tempr=5c8;
temp=temp+posT+posé;
serf=temp;

void serv1{)

{

signed pos3,pos2,temp;
pos3=sc3-set3;
pos2=sc2-ser2;
temp=scl;
temp=temp+pos2-+pos3;
seri=temp;

Jiroutine to bend left leg, not a convention
/- to make it shorter,+ it stretches

void blefi{int dir)

if{dir="")
ser6—ser6+1;
seri=ser7-2;
serv8();

else if{dir="+)
{
serb=ser6-1;
ser7=seri-+2,
servB();

}

}

/hikewise for right leg

J/ser0459 function for till
J/set integer op for operation and del for level

/iselect if operation is + or tilt to the left

Hdecrease current servo 0 position by del level
J/increase cursent servo 4 position by del level
/fincrease current servo 5 position by del level
/idecrease corrent servo 9 position by del level

J/setect if operatien is - or tilt to the fefl

Jfincrease curment servo 0 position by ded level
Jidecrease current servo 4 position by del level
Jdecrease current servo 5 position by del level
Jincrease current serve 9 position by del level

cally check for values so that the torso and feet are parallel
ntally parallel fo torso
mally sct ser§ and ser] Except for special occasions

/iserv8 routine

/isigned integer pos6,pos7 and temp

/Ipos6 is servo 6 center position — current position
/ipos7 is servo 7 center position — current position
Jitemp is servo 8 center position

{fcaleulate temp for changes

Hservo 8 position equal to temp value

fiserv routine

/fsigned integer pos3,pos2 and temp

Mpos3 is servo 3 center position — current position
fipos2 is servo 2 center position — current position
/ftemp is servo 1 center position

/fcalculate temp for changes

Jiservo 1 position equal to temp value

Jibleft routine for bend to left and set variable direction
//Select if to shorten the leg if variable input is —ve sign
Mincrease current servo 6 position by 1 level

Jidecline current servo 7 position by 2 level

J/Calt serv8 routine

/1Select if to stretches leg if variable input is +ve sign
Jidecrease current servo 6 position by 1 level

Jfincrease current servo 6 position by 2 level
//Call serv8 routine

45

void bright(int dir)

if{dir="-'
serd=ser3-1;
ser2=ser2+2;
serv1();

else if{dir—"+"
serd=serd+i;
ser2=ser2-2;
serv1();
}

}

/' to bend, '+ to unbend legs

void bend(int dir,int dela,int j)

t

inty;

for (i=1:i<=i++)
{
blefi(dir);
bright(dir),
send();
delay ms(dela);
}

}

/P 1o vitt right, + to tilt JeR
void tili{int dir,int dela,int j)

L

nt 1;

for (i=15i<=i++H)
{
ser0459(dir,1);
send();
delay_ms(dela);
}

}

fwalking routine

/fbright function for bend to right and set integer direction
[Selcet if to shorten leg if variable input is — ve sign

/fdecrease current servo 3 position by 1 level
Jfincrease current servo 2 position by 1 level
f/Call serv] routine

//Select if to stretches leg if variable input is +ve sign

{fincrease current servo 3 position by 1 level
Jidecline current servo 2 position by 1 level
}Call servi routine

/Mend function for leg bending

Jivariable dir (+ve if stretch, —ve if shorten)
Jivariable dela for hold time (control speed)
/fvariable j for magnitude

[fset integer i
{1do for j times (depend on magnitede)

JiCall bleft routine and put variable dir
J#Call bright routine and put variable dir
JiCall send function

/Mold for variable dela ms

/il function for tilting process

Jvariable dir for direction (+ve if left, —ve if right)
Jivariable deta for hold time (speed)

Jfvariable j for magnitude

J/set integer i
/do for j times {depend on maganitude)

J/Call ser0459 routine and use input variable dir
J/Cali send function
/fhotd for input variable dela in illisecond

/iwalk(speed, number of steps, tilt magnitude)

yoid walk(int del,int steps,int i)

{
inti;
int k;

Jislight forward movement of upper t0rso

for (i=1;i<=5;++)

{
serb=ser6+1;
serj=ser3-1,
send();
delay_ms{del),
}

Hold current position

sch=serd;

sc3=ser3;

Ihwalk routine, set variable for detay, steps and tilt

Jido for 5 times (for smooth movement do 1 by 1)

{idecrease servo 6 position by 1 level
/fincrease servo 3 position by 1 Tevel
/iCall send function

Jinold for del variable in millisecond

/Inew servo 6 center position value
/inew servo 3 center position value

J/itst step, tilt to the right, left leg steps forward

VSTART

J#tilt to right to put right feet into center of gravity

tili("-' del.ti},

/iend left leg to rise left feet for first step

{/call tilt function
Jfinsert variable —ve sign to tilt to right, de! and ilt

46

for (i=1;i<=12;++) jfdo until 12 times(for smooth movement)

{

blefi(-"); Jicall bleft function and give —ve sign

send(); ficall send function

delay_ms(del); /hold for variable del value in milliseconds
Hsiretches back the lefi leg

/ithe thigh stretches back for only 2/3 of origin
//the lefi shapk stretches to origin and the left leg became straight.

for (i=1;i<=8;++i} Jido until 8 times(for smooth movement)
seré=sero-1; Hideerease servo 6 position by 1 level
ser7=ser7+3; Jfincrease servo 7 position by 3 levels
serv3(}); Hecall serv8 routines

Jimeznwhile the right leg pushes backward to shift the entire body to front

ifi=1]i==3}=5|li="7 Jido at the same time for every 2 interval
ser3=ser3+1; //increase servo 3 position by 1 level
serv1(}; Jfcall serv] routines
send(); /icall send function
delay ‘ms(del); /thold for variable del in milliseconds
H
J/tiit back to center with left foot kept upfront
i+, del ti); Jfcall tilt function (+ve value to tilt to left)
Jftilt to the lefi, right leg steps forward
for(l=1 k<==steps;+k) /Do until reaches number of steps

JHilt to Teft to put keft feet into center of gravity
tili("+, del.ti); Heall tilt function
Jfinsert variable +ve sign to tilt to left, del and tilt

Jistretches back left teg to normal

for (i=1i<=4;++1} //do until 4 times(for smooth movement)
ser6=ser6-1; J/decrease servo 6 position by 1 level
serv8(); //call serv8 routines

/fbend right leg to rise right feet

bright(*-'); Jicall bright function and give -ve sign
send(); Heall send function
delay_ms(del); j/otd for variable del value in milliseconds
}

/fmore rise on the right feet

for (i=1;i<=8;++} /ido until 8 times(for smooth movement)
{
if(i>08&&i<5) Jido for every count 1 to 4 {0<i<5)

ser3=ser3-1; /idecrease servo 3 position by 1 level

serd=ser3-1; Jidecrease servo 3 position by 1 level
ser2=ser2+1; Jfincrease servo 2 position by 1 level
servi(); //call serv] routines
send(); ficall send function
delay_ms(del}; /irold for variable del value in milliseconds
}

Mstretches back the right leg
fithe thigh stretches back for only 50% of origin
i/the right shank stretches to origin and the right leg became straight,

for (i=1,i<=8;++i} /do until 8 times(for smooth movement)
serd=ser3+1; Jlincrease servo 3 position by 1 level
ser2=ser2-2; Jidecrease servo 2 position by 2 level
serv1(), {lcall servl routines

iNleft leg pushes backward to shift the entire body to front
H(E=1j[i==3fi==5li==T7) Jido at the same time for every 2 interval

seré—ser6-1; /ldecrease servo 6 position by 1 level

47

servB(}; /fcall serv8 routines

}
send(); ffcall send fanction
delay_ms(del}; Jhold for variable del value in milliseconds
}
Jitlt back to center with right foot kept upfront
tilt(-, del i), Jcall tilt function

Jfinsert variable —ve sign to ilt to right, del and tilt
Jiilt to the right, left leg steps forward

Jilt o right to put right feet indo center of gravity
e’ delti); Jlcall tilt function
/finsert variable —ve sign to tilt to right, del and tilt

Istretches back right Jeg to normal

for (i=1;i<=d;++i) Jfdo until 4 times(for smooth movement)
ser3=ser3+1; /fincrease servo 3 position by 1 level
servl(); Jicalt serv] routines
/fbend left leg to rise left feet
bleft(-); Jicall bleft function and give —ve sign
send(); flcail send function)
delay_ms(del); Jthold for variable del value in milliseconds
}
Jfmore rise on the left feet
for (i=1;1<=8;+H) Jido until # times(for smooth movement)
if(i>0&&i<5) Jido for every count 1 to 4 (0<i<5)
serb=seré+1; /fincrease servo 6 position by 1 level
}
serG=serb+1; /fincrease servo 6 position by 1 level
ser7=ser7-1; //decrease servo 7 position by 1 level
servB(); /lcall serv8 toutines
send(); /fcall send function
delay_ms({del}, Jihold for vatiable del value in milliscconds
H

Hstretches back the left leg
Jfthe thigh stretches back for only 50% of origin
Jihe left sharik stretches to origin and the right leg became straight.

for (i=1;i<=8;++i) //do until § times(for smooth movement)
ser6=ser6-1, //decrease servo 6 position by 1 level
ser7=serT+2; Jfincrease servo 7 position by 2 level
serv8(); [feall serv8 routines
Jiright leg pushes stightly forward to maintain center of gravity
ifE=1|li==3/i==5li==7) Hdo at the same time for every 2 interval
ser3=ser3+1; //increase servo 3 position by 1 Jevel
servl(}; /lcall servl routines
}
send(); ficall send function
delay ms(del); Jihold for variable del value in milliseconds
)
J/iilt back to center with left foot kept apfront
tlt(+ del.ti); Jlcall 1} function

Jfinsert variable +ve sign to tilt to left, del and tilt

}
Hstop routine with left leg at front

Jitilt to left to put left feet into center of gravity
(' de ti); ffcall tilt function

Jinsert varigble +ve sign to tilf to left, del and tilt

fistreiches back left leg to origin
for (i=1;i<=4;++) /do until 4 times(for smooth movement)

48

serb=sero-1; Jidectease servo 6 position by 1 level
serv8(}; {/call serv8 routines

//bend right leg to rise right feet

bright('-"); /fcall bright fusction and give -ve sign
send(); ficall send function
delay_ms(del); Jihold for variable del value in milliseconds
¥

fimore rise on the right feet

for (i=1;i<=4;+H) Jido until 4 times(for smooth movement)
serd=ser3-1; Jidecrcase servo 3 position by 1 level
serv1(); Hcall servl routines
send(); /icall send function
delay_ms(del}; //hold for variable del in milliseconds
}

Jstretches back the right leg

//the right thigh stretches for only 50% of origin but became parallel to left leg
JHthe left shank stretches to origin and the left leg became straight

for {i=1;i<=d;++) Jfdo until 4 times(for smooth movement)
bright(+);
send(); Jfcall send function
delay_ms(del); Jido at the same time for every 2 interval
H
J1tilt back to center with both feet at origin
tilt(-, del.ti); {fcall tilt function
Jfinsert variable --ve sign to tilt to right, del and tilt
}done positioning,
for (i=1;i<=5;++) ido for 5 times(for smooth movement)
//slight backward movement of upper torso o it origin
serb=ser6-1; Jidecrease setvo 6 position by 1 level
ser3=ser3+l; /fincrease servo 3 position by 1 level
send(); }{Call send function
delay_ms(del); /Mold for del variable in millisecond
}
sch=serd; Jinew servo 6 center position
se3=ser3; [Inew servo 3 center position

49

main) {

APPENDIX H
COMPUTER INSTRUCTION C PROGRAM

int §,8;
int act;

set_tris_B(ALL_OUT);
set_tris_D{ALL_OUTY),
set_tris C(ALL_OUT);
set_tris B(ALL OUT);

reset();

delay _ms(1000);
send(};

do {

i=0;

=0,

Jfask user to select action

JAif input is 0; the robot will bend the leg

/fif input is 1; the robot will stretch the leg

JAf input is 2; the robot will tilt the leg to the right

Jif input is 3; the robot will tilt the leg to the left

Jfif input is 4; ask user to enter number of step (1-9) for fast walk

Jif input i3 5; ask user to enter number of step (1-9) for medium walk
JAF input is 6; ask user to enter number of step (1-9) for slow walk

printf{"\nSelect action : ");
do {
act=gete();
} white (act ='0" && act 1=2" && act 1='3 && act =4&& act t='5&& act ='6'&& act
=& & act 1='8'&& act 1='9')
printf("%c\r", act);

if{act==0") {bend(-.90,6).}

else iffact=="1"){bend('+',90.,6};}
else iffact="2") {til(-",90,5);}
else il{acE="3"){tilt(+'90,5);}
else if{act—="4")

{
printf{"aFast walky");
printf{("nNumber of steps : "Y

do {
s=gete():
} while (act 1="1"&& act =& &act =& &act 1='4'& &act 1='5'd&&act
1=t & &act 1= 7' && act 1='8' & &act 1='9');
prinif{"%ci™.5);
s=convert(s);
walk(30,5,4);

}
else if{act=—"5"

{
printf("\nMed walk\r");
printf{"\nNumber of steps : ");
do{
s=getc();
} while (act 1='1'&& act =& &act =3 &&act =4 &&act 1="5'&bact
=6 G &act =7 && act I='8'&&act 1=9');
printf{"%c\r",5);
g=convert(s};
walk(60,5,4);

}
else if{act="6")

{
printf("\nSlow walk\");
printf("\nNumber of steps - ",

50

do§
s=gete();
} while (act ="1'&& act 1='2'&8act 1="3'& &act ='4"&&act 1='5&&act
1='6' & &act 1="7'&& act !='8'&&act 1='9");
printR"%c\c",s);
s=converi{s),
walk(250.5,5);

}

else iffact=""){reset(}; }
eise {send(};}

3 while (TRUEY,

}

51

