EFFECTIVE BUILDING ENERGY MANAGEMENT SYSTEM

By

SOLIHAH BINTI MOHD SALAHUDDIN

FINAL REPORT

Submitted to the Electrical & Electronics Engineering Programme in Partial Fulfillment of the Requirements for the Degree Bachelor of Engineering (Hons) (Electrical & Electronics Engineering)

> Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

© Copyright 2007 by Solihah Binti Mohd Salahuddin, 2007

-

CERTIFICATION OF APPROVAL

EFFECTIVE BUILDING ENERGY MANAGEMENT SYSTEM

by

Solihah Binti Mohd Salahuddin

A project dissertation submitted to the Electrical & Electronics Engineering Programme Universiti Teknologi PETRONAS in partial fulfillment of the requirement for the Bachelor of Engineering (Hons) (Electrical & Electronics Engineering)

Approved:

DR BALBIR SINGH MAHINDER SINGH HEAD OF DEPARTMENT Foundation Studies Department Block 20, Level 3 Universiti Teknologi PETRONAS 31750 TRONOH PERAK DARUL RIDZUAN

Dr. Balbir Singh Mahinder Singh Project Supervisor

> UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK

> > June 2007

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

Solihah Binti Mohd Salahuddin

ACKNOWLEDGEMENT

First and foremost, I would like to express my greatest gratitude to Allah the Almighty for giving me the opportunity to complete my Final Year Project successfully and with great achievement. Carrying out this project had been a wonderful and invaluable experience. A lot of knowledge gained will definitely be very useful in applying my engineering skills in future.

Therefore, I would like to express my deepest appreciation and thanks to Dr. Balbir Singh Mahinder Singh, my supervisor for being very supportive and helpful in guiding me all the way through this project.

I also would like to extend my gratitude to, Ms. Siti Hawa, Ms. Noorsyawaliza and Mr. Isnani in assisting with all the reports and equipment being used through out this project. To my friends Mohd Azrul Adha, Wan Hatifah Hanin, Mohd Syaifudin and Ismail, thank you for always being there for me and sharing your knowledge in order for me to complete my FYP.

Last but not least, I would like to thank my parents and family, for having faith in me, and also for the words of inspiration that kept me going.

ABSTRACT

The energy management is crucial in the present time, as proper energy utilization will improve industry competitiveness and ensure a more sustainable energy in future. The focus of this project is on building's energy management system where the main purpose is to use of energy efficiently and reduce energy consumption. There are several factors which contribute to the energy consumption of buildings in Malaysia but the major factors are lighting as well as cooling. In 9th Malaysian plan, the aim is to ensure that efficient utilization of energy resources and minimization of wastage; and the focus will be on energy efficiency initiatives, particularly in the industrial, transport and commercial sectors as well as in government buildings. Software to estimate cooling load has been produced and in many ways will help a lot in identifying the energy use for a particular area. A prototype of an area which is well equipped and system for energy efficiency and saving is produced. The system is used for controlling the energy consumption of lighting and cooling. For lighting system, the use of occupancy sensor for controlling the on and off of the lights will definitely reduce the energy wastage. Besides, using the energy efficient equipment such as energy saver bulb can definitely lower the power consumption. As for cooling system, the temperature surrounding is monitored by the temperature sensor and the microcontroller will control the temperature of the air-conditioning system depends on the room temperature at that time. In addition, the occupancy sensor will send signal to the controller either to on or off depending on the present of people in the particular room. A small feature is added into the system where the blind used is automated using the photo sensor to control the amount of lights getting into the room.

TABLE	OF	CONTENTS
-------	----	-----------------

CERTIFICATION OF APPROVALii
CERTIFICATION OF ORIGINALITYiii
ACKNOWLEDGEMENTiv
ABSTRACTv
LIST OF TABLESix
LIST OF FIGURESx
LIST OF ABBREVIATIONS
CHAPTER 1 INTRODUCTION
1.1 Background of study1
1.2 Problem Statement
1.2.1 Problem Identification2
1.2.2 Significant of the Project2
1.3 Objective and Scope of Study
CHAPTER 2 LITERATURE REVIEW/THEORY
2.1 Energy Efficiency Concept4
2.2 Energy Efficiency in Office Buildings4
2.3 Cooling System in Office Buildings5
2.4 Building Envelope and Material5 vi

	2.5 Reducing Cooling Power Consumption
	2.6 Lighting Controller in Building Energy Management System6
	2.7 Building Automation Systems
	2.8 Control in BEMS using Simulation
	2.9 The Cooling Load and Calculations7
CHAPTER	3 METHODOLOGY/PROJECT WORK
	3.1 Procedure Identification
	3.2 Design System
	3.3 Circuit Design & Construction
	3.4 C Programming10
	3.5 PIC for microcontroller circuit
	3.6 PCB Design
	3.7 PC communication Port Interface
	3.8 Graphical User Interface (GUI)14
CHAPTER	4 RESULTS AND DISCUSSION
	4.1 Energy Consumption by Building Type in Malaysia15
	4.2 Analysis on Power Consumption of an Air-conditioner
	4.3 Cooling Load Calculator Software17
	4.4 Lighting Circuit/Automated-blind circuit
	4.5 Microcontroller Circuit
	4.6 PCB Design

	4.7 PC Communication Port Interface	9
	4.8 Graphical User Interface (GUI)	0
	4.9 The Prototype	2
CHAPTER :	5 CONCLUSION AND RECOMMENDATIONS	3
	5.1 Conclusion	3
	5.2 Recommendation	3
REFERENC	ÆS	5
APPENDIC	ES	6
	APPENDIX A TABLE	7
	APPENDIX B PIC 16F877 DATASHEET	8
	APPENDIX C MAX232 DATASHEET	9
	APPENDIX D LM35 DATASHEET4	0
	APPENDIX E PIC CODING	1
	APPENDIX F VISUAL BASIC CODING (EMSYS)	2
	APPENDIX G VISUAL BASIC CODING (AIR-COND CONTROL) 4	3

.

LIST OF TABLES

Table 3.1	Pin assignment for PIC 16F877A	12
Table 3.2	Pin assignment for RS 232	14
Table 4.1	Air-conditioning Usage (Case 1)	16
Table 4.2	Air-conditioning Usage (Case 2)	16
Table 4.3	Information selected using the EMSys	22
Table 4.4	Power Consumption of Different Orientation	23

LIST OF FIGURES

Figure 3.1	Process Flow of Methodology
Figure 3.2	Light/Dark activated relay circuit [12]
Figure 3.3	Microcontroller circuit
Figure 3.4	PIC 16F877A1
Figure 3.5	Input and Output Pin for PIC 16F877A1
Figure 3.6	MAX 232 Interface Circuit
Figure 3.7	RS 232
Figure 4.1	Energy Consumption by Building Type in Malaysia [8] 15
Figure 4.3	General details of cooling load calculation
Figure 4.4	Roof descriptions for cooling load calculation18
Figure 4.5	Wall descriptions for cooling load calculation
Figure 4.6	Window descriptions for cooling load calculation
Figure 4.7	Occupancy details for cooling load calculation
Figure 4.8	Equipment Load details for cooling load calculation21
Figure 4.9	Results of cooling load calculations22
Figure 4.11	Lighting/Auto-Blind Circuit24
Figure 4.12	Flow of Operation for Lighting System
Figure 4.13	Flow of Operation for Automated-Blind25
Figure 4.14	Microcontroller Circuit on PCB
Figure 4.15	Lighting circuit
Figure 4.16	Lighting Board27
Figure 4.17	Microcontroller Schematic
Figure 4.18	Microcontroller Board28
Figure 4.19	MAX 232 interface Circuit
Figure 4.20	Flow of Operation using MAXIM 232
Figure 4.21	Graphical User Interface
Figure 4.22	Flow of Operation for Air-conditioning System
Figure 4.23	Prototype
Figure 4.24	Zoom in Prototype

LIST OF ABBREVIATIONS

EE	Energy Efficiency	
BEMS	Building Energy Management System	
РТМ	Pusat Tenaga Malaysia	
FYP	Final Year Project	
UTP	Universiti Teknologi PETRONAS	
BAS	Building Automation System	
мер	Mechanical, Electrical and Plumbing	
РСВ	Printed Circuit Board	
РІС	Programmable Integrated Circuit	
LDR	Light Dependent Resistor	
GUI	Graphical User Interface	

2

CHAPTER 1 INTRODUCTION

This section will give an overview of this project entitled 'Effective Building Energy Management System' which consists of the background of study, problem statement, and also objective and the scope of study.

1.1 Background of study

Energy efficiency has not been practiced widely around Malaysia but the government has encouraged and exposed the benefits of applying it. Therefore, the use of appliances and equipments which contribute to the energy saving and energy efficiency is essential. This is in order to prevent a lot of energy wastage and saving them. Energy becomes more and more vital and plays an important role in people's life and daily activities nowadays. In Malaysia, the consumption of energy per year is divided into types of buildings and most of the energy are utilized for lightings and air-conditioning system. The types of buildings categorized are the residential, hotels, shopping complexes and also offices. Most of the electricity energy is being used by the shopping complexes and also offices.

The level of awareness among industries and building owners of saving energy in their premises need to be increased. Businesses should be made to realize that energy management is as important as managing their financial and human resources. Proper maintenance in buildings can also make a difference in terms of energy savings with little or no investment at all.

Therefore, this project will hopefully contribute to a better energy wise to these buildings in future particularly for offices and shopping complexes. Basically, the project will be focusing on how to reduce the energy consumption of cooling and lightings in a particular building.

1.2 Problem Statement

The purpose of this project is to come out with the best approach to manage the energy consumption and energy use of an office building. It means that, the energy consumption for cooling especially must be reduced as well as the heat and energy transfer in the building. The aim of this project is to produce a solution for saving the energy consumption and the amount of energy being used as well as contribution to energy efficiency.

1.2.1 Problem Identification

Building Energy Management System (BEMS) is designed due to the waste and misuse of energy. Energy especially electricity can be save and utilize wisely in future. Besides that, the amount of energy use can be cut-off and contributes to low expenditure. Less electricity consumption can actually protects the environment and avoid greenhouse effect. Electricity is generated using fuel oil where the gas emissions will pollute the air and emits carbon monoxide therefore less usage of electricity will lessen the gas emissions.

1.2.2 Significant of the Project

The energy utilized nowadays is in a large amount which definitely will cost a lot of money. The government has actually encouraged the citizens to use the electricity efficiently and there are a lot of ways to apply them. Therefore, this project will certainly help the country in such a way and expected to be economically feasible in future.

1.3 Objective and Scope of Study

In every project accomplishments, there will always be some objectives to endeavor and achieved so that in the end, the project can be completed successfully during the time frame given.

The objectives of this project are:

- To reduce the energy consumption of an office building
- To come out with an effective BEMS
- To integrate the software and hardware using serial port interface

The scope of study for this project is implementing energy efficiency in UTP office building where BEMS for UTP office building will be developed.

CHAPTER 2 LITERATURE REVIEW/THEORY

In this section, the literature reviews will support all the facts and information regarding this project. Besides that, some theory related to the topic will be pointed out in order to provide a better understanding of this project.

2.1 Energy Efficiency Concept

Energy efficiency is very important nowadays in order to save energy consumption as well as saving money and helps to protect the environment by reducing the amount of electricity that needs to be generated. Besides that, energy efficiency also reduces economic costs and environmental impacts as well as using less energy or electricity to perform the same function or job even better [2].

2.2 Energy Efficiency in Office Buildings

EE in office buildings means use less energy for heating, cooling and lighting. It also means buying energy-saving appliances and equipment for use in the building. [3] In Malaysia, cooling and lighting systems typically use the most energy in a building. The addition of efficient controls, such as programmable thermostat or timer can significantly reduce the energy use of this system. For commercial buildings, maximizing the use of Building Energy Management System (BEMS) can provide the best approach to energy-efficient cooling and lightings.

For this particular project, the focus is on office buildings, which use a very large amount of energy especially in cooling and lightings. The model building is the UTP's office buildings well-equipped with lightings and cooling systems.

2.3 Cooling System in Office Buildings

Basically, there are two types of cooling system in office buildings, a central cooling system or split unit. The central cooling system usually uses the air handling unit where chilled water is used to cool the air supply to a particular area. As for split unit, the cooling system operates individually where the air from outside is cooled using compressor and the evaporator.

2.4 Building Envelope and Material

The building materials or building envelope are one of the factors which contribute to the gain and loss of heat. The materials, including roofs, walls, windows and floors. The lower the u-value of the material, least heat absorption occurs. Comparing between the glass and brick wall, brick definitely will have least heat absorption as it contains very tiny wholes filled with air as insulation. The U-value of double glass is lower than single glass due to the air insulation between the two glasses.

2.5 Reducing Cooling Power Consumption

Most of energy in buildings are consumed for cooling purposes. In Malaysia, the optimization of energy consumption is still in progress where in the Ninth Malaysian plan the aim is to ensure that efficient utilization of energy resources and minimization of wastage [4]. In cooling system, windows have a significant role in connecting the indoor environment of buildings to the outdoor. Buildings with a large amount of glazing have higher electrical demand. Therefore, a good window design and best orientation should be analyzed and later be implemented.

Besides that, factors such as sensor-based demand controlled ventilation, use of renewable energy resources for driving cooling control systems, setting the comfort temperature to its higher value, optimal thermal design buildings, reducing lighting usage in daytime and also using day-lighting, will give an impact to the whole cooling system.

2.6 Lighting Controller in Building Energy Management System

Not many building control systems nowadays integrate the main innovations in the BEMS. In particular, the continuous adaptation of the system to the environment and building characteristics is a very promising feature that is rarely studied; only few studies have been done on adaptive controllers in buildings and nearly never implemented. In addition, a predictive approach in the control algorithms is quite necessary to obtain really efficient control systems. [5]

2.7 Building Automation Systems

Building automation system (BAS) begins with plans and specifications produced by mechanical, electrical and plumbing (MEP) design engineer. The MEP plans include equipment and process schematic which specify the locations of control elements and sensors for the mechanical system. It is an overall process and specifications of control strategy for heating, ventilation and air-conditioning system. A database configuration then created for the control system, which establishes communication, network and device parameters as well as input/output (I/O) configuration parameters. [6]

An automatic control system can be created either for controlling cooling or lightings. Instead of networking, a stand alone control system can be used and implemented for existing system. The usage of parallel port or serial port interfacing is also relevant.

2.8 Control in BEMS using Simulation

Some significant advances of the application of new building control techniques have been made. The concept of predictive control, which uses a model in addition to measured data in order to estimate the optimum control strategy to be implemented, could assist in the more efficient operation of BEMS. This should result in lower energy consumption and more comfortable buildings. Simulation programs replacing the two areas are for the HVAC system where the first one called emulators; use a computer program to simulate their response to BEMS commands. Also used for control product development, tuning of control equipment and imitating fault situations to test on how the BEMS can cope. The second one is evaluators where it is used to test the efficacy of possible control strategies which are evaluated in terms of comfort acceptability and energy efficiency. [7]

2.9 The Cooling Load and Calculations

The air inside a building will gain heat from a number of sources. In order to maintain the temperature and humidity of the air at a comfortable level, this heat must be removed. The amount of heat that must be removed is called the cooling load. [11]

Cooling load through roof and walls use the following equations:

$$Q = U x A x CLTD_c$$
 Eq.2.1

Where

Q = Cooling load for roof or wall, BTU/hr U = Overall heat transfer coefficient for roof or wall, BTU/hr-ft²-FA = Area of the roof or wall, ft²CLTD_c = corrected cooling load temperature difference, F

Cooling load for windows use the following equations:

$$Q = SHGF x A x SC x CLF$$
 Eq.2.2

Where

Q = Cooling load for window, BTU/hr SHGF = maximum solar gain heat factor

 $A = Area of the glass, ft^2$

SC = Shading Coefficient

CLF = Cooling Load Factor

All the values for calculating the formula are based on the Air-conditioning Principles and Energy Approach handbook. [11]

CHAPTER 3 METHODOLOGY/PROJECT WORK

All steps and procedures to be taken in carrying out this project will be clarified step by step. This methodology section will briefly show the path for accomplishing this project from the beginning until end.

3.1 Procedure Identification

Figure 3.1 Process Flow of Methodology

3.2 Design System

During the initial stage of this project, some research and literature review is being done to get to know more about BEMS. After that, the designing stage begins where the main objective of this project is to reduce the energy consumption of cooling and also lighting. As for lighting, the idea of using an occupancy sensor to control the on and off the lights depending on the present of people is used. A small feature of using automated-blind is added to the system to reduce more energy on lighting and cooling usage. As for cooling, the temperature of the air-conditioner can be control by using also the occupancy sensor to on and off it and the temperature sensor for monitoring the room temperature.

3.3 Circuit Design & Construction

There will be two main circuits in this project which are the circuit for lighting system and also the temperature control circuit. As for the lighting system, an independent circuit which utilizes an occupancy sensor will be produced but due to the limitation of the project, the Light Dependent Resistor (LDR) will be used to replace the occupancy sensor. The same circuit will be used representing the automated blind for reducing heat transfer and energy consumption. The circuit used is the Light/Dark activated Relay circuit for both lighting and auto-blind. As for the air-conditioner control circuit, the microcontroller will be used to control the sensors. The circuit is being constructed and tested on the breadboard first before proceed with the PCB design process.

Figure 3.2 Light/Dark activated relay circuit [12]

Figure 3.3 Microcontroller circuit

3.4 C Programming

The C program for controlling the sensors was created using the basic programming of microcontrollers. The ADC program and also LCD display program are being modified to suit the system of the temperature sensor circuit. There will be two sensors involved in this particular circuit. The LDR will represent the occupancy sensor for sensing people present or other wise. As for the temperature sensor, it will monitor the room temperature and ensure that it maintains at comfort level. In addition, there is also a function for RS 232 which is the serial port where it will be interface with the Graphical User Interface (GUI). Refer to Appendix E for PIC coding.

3.5 PIC for microcontroller circuit

Figure 3.4 PIC 16F877A

The PIC is programmed to read analog input from sensors which will be converted into digital data and processed in the PIC. Then the data will be converted back into analog output which produced 0-5V, depending on the assigned output.

Figure 3.5 Input and Output Pin for PIC 16F877A

Pin Name	Pin no.	Assignation
Vss	12,31	Ground reference for logic I/O pins
V _{DD}	11,32	Positive supply for logic I/O pins
OSC1	13	Oscillator Clock Input
MCLR	1	Master Clear Reset input or programming voltage input
A0	2	Sensor 1- LDR
Al	3	Sensor 2 – LM 35
E0,E1,E2	8,9,10	LED Indicator for output
B0-B2	33,34,35	LCD Display
B4-B7	37,38,39,40	LCD Display
C6,C7	26,25	Data Receive and Transmit

The information on output and input of the pins are obtained from the datasheet (Refer to Appendix B – PIC 16F877A datasheet)

3.6 PCB Design

The PCB is design using the eagle 4.16 software where the schematics have to be drawn. Then the board will be automatically created. The sizing and shapes for the route and via must meet the requirement where the information was obtained from the PCB lab technician. Instead of using chemical etching method, drilling method was used to come out with the board due to machine faulty. The *.brd* file will be process into Gerber file before it can be produced into PCB.

3.7 PC communication Port Interface

During the earlier stage of the project, the parallel port, DB 25 is to be used to interface the circuit with the PC but after some research done, it seems that using serial port is easier to interface. The serial port, RS 232 is used so that the information from PIC can be transmitted, translated and recognized by the visual basic programming. Each pin of the serial port will be assigned whether to transmit or received data.

Figure 3.6 MAX 232 Interface Circuit

A female connector, DB 9 will be used to connect the interface circuit with the PC.

Figure 3.7 RS 232

Table 3.2Pin assignment for RS 232

Pin	Signal	Pin	Signal
1	Data Carrier Detect	6	Data Set Ready
2	Received Data	7	Request to Send
3	Transmitted Data	8	Clear to Send
4	Data Terminal Ready	9	Ring Indicator
5	Signal Ground		

3.8 Graphical User Interface (GUI)

The Graphical User Interface will be created using visual basic 6. The GUI will receive data from serial port (COMM Port) inform of ASCII code and run the system according to the code receive.

CHAPTER 4 RESULTS AND DISCUSSION

This project covers the energy saving and energy efficiency system. The end results are discussed in this session where the steps to determined the complete project is explained below.

4.1 Energy Consumption by Building Type in Malaysia

Figure 4.1 Energy Consumption by Building Type in Malaysia [8]

The energy consumption in Malaysia is divided into types of building where the graph shown in Figure 4.1 is the comparison between the energy used for lightings and also air-conditioning. It is obvious that offices consumed the most energy especially in air-conditioning and slightly lower for lightings compare to shopping malls.

4.2 Analysis on Power Consumption of an Air-conditioner

The Air-conditioner Split Unit is a 1 Horsepower type and the power consumption is being analysed referring to the cases below.

Sneed		
No. Equipment	2 Softing T	TPH Constant Estimated
	3 Sering Lo)w High II ON Power
1 Blower	的情绪,我的意志不同的	
2 Compressor	an a	a sense anna a star se an anna an anna an anna an anna an anna an an
3 External Fan	16°C	
4 Circulation		
Fan 5 Other nexts		
o uner parts	<u> 2월 14일 2월 18일 18일 18</u> 일	Low of Low

Table 4.1 Air-conditioning Usage (Case	1)	,
--	---	---	---

For case 1, the energy consumption is estimated to be 0.746 kW.

The total energy usage of 8 hours a day is 0.746 kW x 8 = 5.97 kWh

Based on the Tenaga Nasional Berhad tariff, the cost is 23.4 sen/kWh

(Refer to Appendix A)

Total Monthly cost: 23.4 sen/kwh x 5.97 kWh x 26 days = \mathbf{RM} 36.32

Total Annual Cost: RM36.32 x 12 months = RM 435.86

Table 4.2	Air-conditioning Usage (Case 2)

No Faninmont	Speed	Temperature	rpm	Constant	Estimated
tio. Equipment	1 2 3	Setting	Low High	if ON	Power
1 Blower v				an a	
2 Compressor					
3 External	n an the second seco			anan in the sur-	
Fan		24°C	n an		
4 Circulation					
Fan				¥	er enninger The second
5 Other parts	an a	n film de la compañía An Alaga de Calendar			Low

For case 2, all settings are maintained the same except that the temperature is increased from 16°C to 24°C. The energy consumption is estimated to be lower than case 1. Therefore the total energy consumption will also be lower. When the temperature is higher, the blower will work less and consumed less energy to produce cooled air.

Referring to the tables [Table 4.1 and 4.2], the cost of the air-conditioner power consumption can be reduced by controlling the air-conditioner temperature. By varying the temperature depending on the comfort level at a particular time can give an impact to cost of the electricity bills.

4.3 Cooling Load Calculator Software

The cooling load graphical user interface GUI named **EMSys** is used during designing stage where energy consumption can be estimated.

			E	MSys				
Gen	eral Root	f Wall	Windov	Occupancy	Equipmen	t Load I	Result	
	General De	teils		Adam) A				
	Solar Tim	ne :	ें ज	ndoor Temperat	ure (Celciu	s): °		
	0100 0200 0300		- s. [≥1	utdoor Temper	ature (Celc	Celcius		
	0400 0500 0600		.			Celcius	and the second second	
	0700			1. 1. 1. 1.		н 1 н н		
	e e e e e e e e e e e e e e e e e e e	ser 11	1.5	Maria (Sector)	- 49 - s t		a section of	
	the second	di stra		1977 - 1994 	. **	-		

Figure 4.3 General details of cooling load calculation

The first tab for this GUI is the general description where users must select the appropriate solar time and also key-in the outdoor and indoor temperature. An error message will pop-up if all the choices and blanks are not completed.

			EN	Sys			
Ger	neral Roof	Wall	Window]	Occupancy	Equipment	Load Resul	t
	Description (Roof Ca	nstruction				
	n yn ydera. Proersyder	wana car wana car	u (er∠m. Mareba	1.1630640.00	9	н 	
	<u>Ceána Constitu</u>	ction		<u>Ceilla Sizo (</u>	meter)		
	@ With	Suspende	d Ceiling	Length :		meter	
	C Witho	ut Suspei	nded	Width :		meter	: 50
		en e	er i sagi Ma				
	n Na Na Na N				BRRA	Next	
		<u> 1988</u>					

Figure 4.4 Roof descriptions for cooling load calculation

The next tab is the roof description where the details about the roof and ceiling construction to be selected and the size of the ceiling is key-in into the provided box. After that, then only the user can proceed to the next tab. The same thing happens if the details for roof tab are not completed; error message will pop-up

The equation used for calculating cooling load for roof can be referred to the equation below.

$$Q = U x A x CLTD_c$$

Where

 $\mathbf{Q} = \mathbf{Cooling}$ load for roof, $\mathbf{BTU/hr}$

U = Overall heat transfer coefficient for roof, BTU/hr-ft²-F

 $A = Area of the roof, ft^2$

 $CLTD_c = corrected \ cooling \ load \ temperature \ difference, F$

			EMSys		A AND STAT	
Ge	neral Roof Description Of V	Wall Wi	ndow Occu <u>tion</u>	pancy Equip	ment Load R	əsult
	Length :		meter meter			
	Direction :	ns te d			e estation article estation article estation	
				B		

Figure 4.5 Wall descriptions for cooling load calculation

As for the wall tab, users have to choose the wall construction and also the orientation of the wall. Other than that, the size of the wall must be entered in order to proceed to next tab.

The equation used for calculating cooling load for wall can be referred to the equation below.

$$Q = U x A x CLTD_c$$

Where

Q = Cooling load for wall, BTU/hr

U = Overall heat transfer coefficient for wall, $BTU/hr-ft^2-F$

A = Area of the wall, ft^2

 $CLTD_{c}$ = corrected cooling load temperature difference, F

V.		EMSys		
	General Roof Wall	Window Occupar	cy Equipment L	pad Result
	Type of Glezing			
		Direction :		
	Clear	Window Size (n	<u>teter)</u>	55 B S 🕴
	C Heat Absorbing	Length :	mete	t da da k
	Shading Effects :	Width : [mete	r
	€ No Shading		an dina sa	
	C With Blinds			20072002000
				NEW CONTRACTOR

Figure 4.6 Window descriptions for cooling load calculation

For the window tab, users can select the type of glazing and specify whether there is a shading effect or not by selecting the radio-button under shading effects. Besides that, the direction/orientation of the window is also important as well as specifying the size of the window.

The equation used for calculating cooling load for window can be referred to the equation below.

Where

Q = Cooling load for window, BTU/hr

SHGF = maximum solar gain heat factor

A = Area of the glass, ft^2

SC = Shading Coefficient

CLF = Cooling Load Factor

			E	WSys				
	Cuincille.	in luce		Occupon	مدار			
	General j Ro	JOI I AASII		v occupan	ca l Ednibi	nent Load	Kesult	
	Оссирел	ey.	·			άΥ΄.		
	No. o	f People :	1	1917 - 19	e vî n			
	_							
	Hype of	Activity :	A Bellerie	(a,b) = a				
1.00		n san s	n e sere	e sterioù e tr F	a negra re			
	en en Alexandria	n an Saint an S	n de la composition de la comp					
				e jaar		nesia) seisene	asseand a	
	ite di second	1.54			<u> 3898</u>			
61.0						Given a		

Figure 4.7 Occupancy details for cooling load calculation

The number of people occupying the room must be specified and the type of activity being done can be selected from the dropdown list.

				EMSys			
Gen	eral Ro	of Wall	Wind	ow Occup	ancy Equ	ipment Load	Result
	quiomen	tland		1.1			
i i	io. of P(s :	74	Condition		tand By	
	· .		n Selation		Ć F	ull Consumpt	tion
	Other	s: [W	atts			
	weig fe	and a second	a de la composición de la comp				

Figure 4.8 Equipment Load details for cooling load calculation

After specifying the number of people present, the number of personal computers used must be denoted and the condition of the computers must be selected either they are in stand by mode or full consumption mode. Other electrical appliances being used in the particular area must be stated in the box provided. Then the **calculate** button is pressed.

				EN	Size		
	General	Roof	Wall	Window	Occupancy	Equipment Loa	d Result
		0.5	koof :		BTU/br		
		Q	Wall ;	· · ·	BTU/hr		
		Q Win	ndow :	 	BTU/hr		
		Q-Occup:	ancy :	, [BTU/hr		
	Q Equ	ipment (.ead :		BTU/hr	Total Wa	tts:
		QT	otal :	No. 19 Areas	BTU/hr		
South State							
						<u>in</u>	

Figure 4.9 Results of cooling load calculations

After all the fields have been filled in and the button **Calculate** has been pressed, **EMSys** will calculate the total power consumed referring to the details and information specified by users. The button **Reset** and **Quit** can be used anytime the software runs. If the **Reset** button is pressed, the whole information specified before will be removed and the General tab will appear. As for button **Quit**, the whole system will be terminated once it is pressed.

This software can predict and estimates the energy consumption of an area specify by users. The options listed in the software are mostly common in Malaysia.

Details	Information selected
Roof	Steel Sheet with 1 in. insulation, with suspended ceiling, size - 10m x 7m
Wall	4 in. face brick, size - 15m x 7m
Window	single glass, clear, without blinds, size-8m x 4m
Occupancy	No. of people- 2, light office work
Equipment	no. of PC-2, full consumption, others: 20 watts

 Table 4.3
 Information selected using the EMSys

	East/W	est Direct	ion	North/South Direction				
Solar Time	Indoor Temp.	Outdoor Temp.	Total Watts	Solar Time	Indoor Temp.	Outdoor Temp.	Total Watts	
0800	22	24	3614.56	0800	22	24	1528.11	
0900	22	26	4692.56	0900	22	26	2158.45	
1000	22	28	5876.144	1000	22	28	2987.91	
1100	22	29	6962.09	1100	22	29	3911.61	
1200	22	30	7596.14	1200	22	30	4552.91	
1300	22	31	10710.73	1300	22	31	4667.44	
1400	22	29	15795.733	1400	22	29	5064.67	
1500	22	29	19629.08	1500	22	29	4588.58	
1600	22	27	21843.75	1600	22	27	4570.66	
1700	22	28	21082.17	1700	22	28	4012.99	

 Table 4.4
 Power Consumption of Different Orientation

Figure 4.10 Graph Power vs. Solar Time

It can be seen from Figure 4.10, the east/west orientation consumed a lot of power compared to the one with north/south orientation. This proved that orientation of the building is very important in order to reduce energy consumption. The direction of walls and windows has to be designed facing north or south instead of west or east. Based on this result, the software can be used in designing and planning stage.

4.4 Lighting Circuit/Automated-blind circuit

The schematic of the circuit is obtained from the internet where it is the schematic of a light switch. It is being implemented for the stand-alone lighting system where the LDR will indicate as the occupancy sensor to sense the present of people in the room. The same thing is being applied for automated-blind where the LDR indicate as the photo sensor where when there is bright light, the blind will shut off indicate by the light bulb. The circuit has been tested and results in working circuit as shown in Figure 4.11.

Figure 4.11 Lighting/Auto-Blind Circuit

The lighting and auto-blind circuit, basically using the same circuit. Due to the limitations of the project, instead of using the real sensor such as occupancy and photo sensor, they are being replaced by the Light Dependent Resistor. The LDR can represent the same function to be implemented in the prototyping part. Figure 4.12 shows the flow of operation for lighting system whereas Figure 4.13 shows the operation of automated-blind.

Figure 4.12 Flow of Operation for Lighting System

Automated-Blind

Figure 4.13 Flow of Operation for Automated-Blind

Figure 4.14 Microcontroller Circuit on PCB

For this microcontroller circuit [Figure 4.14], the PIC 16F877A is being used. The basic circuit was modified to fit in two sensors which is the temperature sensor (LM35) and also the LDR indicating occupancy sensor. LCD Display is added to the circuit to display the current temperature reading.

The LM 35 is being used for temperature monitoring but for the occupancy sensor, it will be represent by the LDR. Since there is certain limitations, the program for controlling the temperature; it is decided that there are only two conditions where if the temperature less than 24°C and temperature more than 24°C then only the circuit will trigger. The default value of room temperature is set to 24°C; comfortable temperature for human being. When the room temperature is higher than 24°C, the air-conditioner control system will reduce to 22°C and if the temperature is below 24°C the system will increase the temperature to 26 °C. The RS232 port is use for interfacing the controller circuit with the GUI.

4.6 PCB Design

After the circuit has been tested on breadboard, the PCB is designed using Eagle 4.16 software. PCB for both circuit were designed; the schematics and the boards are as shown in figure below.

Figure 4.15 Lighting circuit

Figure 4.16 Lighting Board

Figure 4.17 Microcontroller Schematic

Figure 4.18 Microcontroller Board

4.7 PC Communication Port Interface

The microcontroller circuit will transmit signals to the interface circuit where an IC, MAX 232 will change the receive signal into readable PC signal line which is 12V and -12V. From the MAX 232, data will be transmitted inform of ASCII character which can be analyzed using the HyperTerminal software. The ASCII data transmitted to the PC will be recognized by Visual Basic program (GUI). The serial port RS 232 (COMM Port) is used to transmit data from MAX 232 which convert digital signals from PIC into computer serial port signal data. The circuit for interfacing is shown in figure below.

Figure 4.19 MAX 232 interface Circuit

Figure 4.20 Flow of Operation using MAXIM 232

4.8 Graphical User Interface (GUI)

The GUI is an interface for users and the system provides with information of the temperature readings. The GUI receives data from the serial port (COMM Port) from the PC communication interface circuit.

The GUI will display default temperature for the air-conditioner and also the current temperature depending on the reading of the room temperature. It also displays the system on, off or in a standby mode depending on the occupancy of the particular room. The GUI is equipped with the emergency stop button so that user can stop the system manually if anything went wrong during the process.

The GUI is produced using the Visual Basic 6.0 programming which is reliable and very user friendly.

AIR-COND COI SYSTEN	NTROL
System Status STANDBY	STOP
_ <u>Temperature Setting</u> 	
Comfort Level Temperature:	Begree Celsius

Figure 4.21 Graphical User Interface

Figure 4.22 Flow of Operation for Air-conditioning System

Referring to Figure 4.22, it shows the flow operation for the air-conditioning system where the signals will be received from the microcontroller and read by the GUI.

The system is represented by a prototype where the circuits were placed into a room representing by a box made out of Perspex. The PCB is assembled and connected to the PC communication interface circuit and being placed in the box. [Figure 4.23] The circuit board, PCB, interface circuit and display are all gathered and assembled into one system.

Figure 4.23 Prototype

Figure 4.24 Zoom in Prototype

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This project has finally completed, where a system for reducing energy consumption for lightings and cooling have been produced. The objectives of this project have been achieved. Software for estimating cooling load has been developed. The Lightings can be control by using the occupancy sensor besides using energy efficient bulb which can produce 40 watts of power with only 8 watts of power consumption.

As for cooling, the temperature can be control depending on the room temperature to maintain the comfortable temperature at all times and also it will be automatically off when there is no one around the room.

BEMS is crucial in order to cut down the cost and reduce the energy usage of a building. Besides, using energy efficient and energy saving appliances will also contribute to reducing energy consumption.

5.2 Recommendation

For future recommendations, few improvements can be made to produce better solution for building energy management system.

• Varying air-conditioning temperature

More conditions for varying temperature of air-conditioning system should be added in order to use energy efficiently depending on the outdoor temperature and the indoor temperature. • Integrate Lighting and cooling system into one system

Integrate the independent lighting circuit with the air-conditioning control system. The same occupancy sensor can be used to control on and off of the system.

• Solar radiation data collector

Install the solar radiation data collector on-site to monitor the amount of radiation received by the building daily.

• Orientation

The orientation of the building has to be taken into consideration as it will influence the power consumption of that particular building.

• BEMS for each building

Each building must have BEMS in order to use energy efficiently and reduce the energy consumptions.

• Building Integrated Photovoltaic (BIPV)

Use alternative energy (solar) as a source of power instead of electricity to reduce power consumption and electricity bills. BIPV should be implemented integrating with the building energy management system.

REFERENCES

- Property Times 08 October 2005 issue
 http://www.nst.com.my/Weekly/PropertyTimes/News/Focus/200510121756
 54/Article/ (Retrieved: August 6 2006)
- [2] http://www.esd.rgs.org/glossarypopup.html (Retrieved: July 27 2006)
- [3] http://www.ptm.org.my/ee_building/ (Retrieved: July 26 2006)
- [4] Property Times, April 26th 2006, News Straits Time.(Retrieved: August 8 2006)
- [5] A. Guillemin, N. Morel, An innovative lighting controller integrated in a self-adaptive building control system, Energy and Buildings.
- [6] J. Schein, An information model for building automation systems, Automation in Construction (2005), doi: 10.106/j. autcon.2006.07.006
- J.A Clarke, J.Cockroft, S.Conner, J.W.Hand, N.J.Kelly, R.Moore, T.O'Brien,
 P.Stranchan, Simulation-assisted control in Building Energy Management
 Systems, Energy and Buildings (2002). Published by Elsevier B.V.
- [8] http://www.ptm.org.my/publications/ES%20PTM%2012-2003.pdf(Retrieved: September 6 2006)
- [9] The Economic Planning Unit, Prime Minister Department Putrajaya2006, Ninth Malaysian Plan 2006-2010.
- [10] http://www.ccc.govt.nz/TargetZero/ResourceAndWasteSpecific/ WasteGuideEnergy.pdf - (Retrieved: September 20 2006)
- [11] Pita, E.G, 2002. Air Conditioning Principles and Systems an Energy Approach, 4th Ed. Prentice Hall
- [12] http://www.electronics-lab.com/projects/projects.html(Retrieved: January 16 2007)
- [13] M.S Hatamipour, H.Mahiyar, M.Taheri, Evaluation of existing cooling systems for reducing cooling power consumption (2006). Published by Elsevier B.V. doi:10.1016/j.enbuild.2006.05.2007

APPENDICES

APPENDIX A TABLE

Commercial Tariffs	Unit	Rates (RM/sen)
Tariff B - Low Voltage Commercial Tariff		
For all kWh	sen/kWh	32.30
The minimum monthly charge is RM7.20		······
Tariff C1 - Medium Voltage General Commerical	l Tariff	
For each kilowatt of maximum demand per month	RM/kW	19.50
For all kWh	sen/kWh	23.40
The minimum monthly charge is RM600.00		
Tariff C2 - Medium Voltage Peak/Off-Peak Comm	nercial Tariff	
For each kilowatt of maximum demand per month during the peak period	RM/kW	29.00
For all kWh during the peak period	sen/kWh	23.40
For all kWh during the off-peak period	sen/kWh	14.40
The minimum monthly charge is RM600.00	1 1	

APPENDIX B PIC 16F877 DATASHEET

PIC16F87X

28/40-pin 8-Bit CMOS FLASH Microcontrollers

Devices Included in this Data Sheet:

- PIC16F873
- PIC16F876
- PIC16F874
- PIC16F876
 PIC16F877
- •874 Pl

Microcontroller Core Features:

- · High-performance RISC CPU
- Only 35 single word instructions to learn
- All single cycle instructions except for program branches which are two cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- Up to 8K x 14 words of FLASH Program Memory, Up to 368 x 8 bytes of Data Memory (RAM) Up to 256 x 8 bytes of EEPROM data memory
- · Pinout compatible to the PIC16C73B/74B/76/77
- Interrupt capability (up to 14 sources)
- · Eight level deep hardware stack
- · Direct, indirect and relative addressing modes
- · Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- · Programmable code-protection
- · Power saving SLEEP mode
- · Selectable oscillator options
- Low-power, high-speed CMOS FLASH/EEPROM technology
- Fully static design
- In-Circuit Serial Programming[™] (ICSP) via two pins
- · Single 5V In-Circuit Serial Programming capability
- In-Circuit Debugging via two pins
- · Processor read/write access to program memory
- Wide operating voltage range: 2.0V to 5.5V
- High Sink/Source Current: 25 mA
- · Commercial and Industrial temperature ranges
- Low-power consumption:
 - < 2 mA typical @ 5V, 4 MHz
 - 20 μA typical @ 3V, 32 kHz
 - < 1 µA typical standby current

Pin Diagram

Peripheral Features:

- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler, can be incremented during sleep via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Two Capture, Compare, PWM modules
 - Capture is 16-bit, max. resolution is 12.5 ns
 - Compare is 16-bit, max. resolution is 200 ns
 - PWM max. resolution is 10-bit
- 10-bit multi-channel Analog-to-Digital converter
- Synchronous Serial Port (SSP) with SPI[™] (Master Mode) and I²C[™] (Master/Slave)
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) with 9-bit address detection
- Parallel Slave Port (PSP) 8-bits wide, with external RD, WR and CS controls (40/44-pin only)
- Brown-out detection circuitry for Brown-out Reset (BOR)

© 1999 Microchip Technology Inc.

DS30292B-page 1

PIC16F87X

Pin Diagrams

DS30292B-page 2

© 1999 Microchip Technology Inc.

Key Features PICmicro™ Mid-Range Reference Manual (DS33023)	PIC16F873	PIC16F874	PIC16F876	PIC16F877
Operating Frequency	DC - 20 MHz			
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
FLASH Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
EEPROM Data Memory	128	128	256	256
Interrupts	13	14	13	14
I/O Ports	Ports A,B,C	Ports A,B,C,D,E	Ports A,B,C	Ports A,B,C,D,E
Timers	3	3	3	3
Capture/Compare/PWM modules	2	2	2	2
Serial Communications	MSSP, USART	MSSP, USART	MSSP, USART	MSSP, USART
Parallel Communications	_	PSP		PSP
10-bit Analog-to-Digital Module	5 input channels	8 input channels	5 input channels	8 input channels
Instruction Set	35 Instructions	35 Instructions	35 Instructions	35 Instructions

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	13	14	30	1	ST/CMOS ⁽⁴⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	14	15	31	0		Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLK- OUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp/THV	1	2	18	I/P	ST	Master clear (reset) input or programming voltage input or high voltage test mode control. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19	1/0	TTL	RA0 can also be analog input0
RA1/AN1	3	4	20	1/0	TTL	RA1 can also be analog input1
RA2/AN2/VREF~	4	5	21	I/O	TTL	RA2 can also be analog input2 or negative analog reference voltage
RA3/AN3/VREF+	5	6	22	1/0	⊤TL	RA3 can also be analog input3 or positive analog reference voltage
RA4/T0CKI	6	7	23	1/0	ST	RA4 can also be the clock input to the Timer0 timer/ counter. Output is open drain type.
RA5/SS/AN4	7	8	24	1/0	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.
						PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8	иo	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	34	37	9	1/0	TTL	
RB2	35	38	10	1/0	T⊤L	
RB3/PGM	36	39	11	1/0	TTL	RB3 can also be the low voltage programming input
RB4	37	41	14	1/0	TTL	Interrupt on change pin.
RB5	38	42	15	I/O	TTL	Interrupt on change pin.
RB6/PGC	39	43	16	I/O	TTL/ST(2)	Interrupt on change pin or in-Circuit Debugger pin. Serial programming clock.
RB7/PGD	40	44	17	1/0	⊤TL/ST ⁽²⁾	Interrupt on change pin or In-Circuit Debugger pin. Serial programming data.
						PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32	1/0	ST	RC0 can also be the Timer1 oscillator output or a Timer1 clock input.
RC1/T1OSI/CCP2	16	18	35	1/0	ST	RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1	17	19	36	1/0	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	18	20	37	1/0	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	23	25	42	1/0	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	24	26	43	1/0	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK	25	27	44	I/O	ST	RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	26	29	1	١/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.
Legend: I = input	O = ou	tput	· · · · · ·	l/O = inp	out/output	P = power

- = Not used

ST = Schmitt Trigger input TTL = TTL input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

DS30292B-page 8

© 1999 Microchip Technology Inc.

	1			 ,		
Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	l/O/P Type	Buffer Type	Description
						PORTD is a bi-directional I/O port or parallel slave port when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38	1/O	ST/TTL ⁽³⁾	
RD1/PSP1	20	22	39	1/0	ST/TTL ⁽³⁾	ĩ
RD2/PSP2	21	23	40	1/O	ST/TTL ⁽³⁾	
RD3/PSP3	22	24	41	1/0	ST/TTL ⁽³⁾	
RD4/PSP4	27	30	2	vo	ST/TTL ⁽³⁾	
RD5/PSP5	28	31	3	i/o	ST/TTL ⁽³⁾	
RD6/PSP6	29	32	4	1/0	ST/TTL ⁽³⁾	
RD7/PSP7	30	33	5	1/0	ST/TTL(3)	
						PORTE is a bi-directional I/O port.
RE0/RD/AN5	8	9	25	1/0	ST/TTL(3)	RE0 can also be read control for the parallel slave port, or analog input5.
RE1/WR/AN6	9	10	26	1/O	ST/TTL (3)	RE1 can also be write control for the parallel slave port, or analog input6.
RE2/CS/AN7	10	11	27	1/0	ST/TTL ⁽³⁾	RE2 can also be select control for the parallel slave port, or analog input7.
Vss	12,31	13,34	6,29	Р		Ground reference for logic and I/O pins.
VDD	11,32	12,35	7,28	P	_	Positive supply for logic and I/O pins.
NC	-	1,17,28, 40	12,13, 33,34			These pins are not internally connected. These pins should be left unconnected.
Legend: I = input	0 = ou — = N	itput lot used		I/O = inp TTL = T	out/output TL input	P = power ST = Schmitt Trigger input

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION (CONTINUED)

ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

 This buffer is a Schmitt Trigger input when used in serial programming mode.
 This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Stave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

© 1999 Microchip Technology Inc.

DS30292B-page 9

APPENDIX C MAX232 DATASHEET

+5V-Powered, Multichannel RS-232 Drivers/Receivers

General Description

The MAX220–MAX249 family of line drivers/receivers is intended for all EIA/TIA-232E and V.28/V.24 communications interfaces, particularly applications where $\pm 12V$ is not available.

These parts are especially useful in battery-powered systems, since their low-power shutdown mode reduces power dissipation to less than 5μ W. The MAX225, MAX233, MAX235, and MAX245/MAX246/MAX247 use no external components and are recommended for applications where printed circuit board space is critical.

Applications

Portable Computers

Low-Power Modems Interface Translation

Battery-Powered RS-232 Systems

Multidrop RS-232 Networks

Superior to Bipolar

- Operate from Single +5V Power Supply (+5V and +12V—MAX231/MAX239)
- Low-Power Receive Mode in Shutdown (MAX223/MAX242)
- Meet All EIA/TIA-232E and V.28 Specifications
- Multiple Drivers and Receivers
- 3-State Driver and Receiver Outputs
- Open-Line Detection (MAX243)

_Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX220CPE	0°C to +70°C	16 Plastic DIP
MAX220CSE	0°C to +70°C	16 Narrow SO
MAX220CWE	0°C to +70°C	16 Wide SO
MAX220C/D	0°C to +70°C	Dice*
MAX220EPE	-40°C to +85°C	16 Plastic DIP
MAX220ESE	-40°C to +85°C	16 Narrow SO
MAX220EWE	-40°C to +85°C	16 Wide SO
MAX220EJE	-40°C to +85°C	16 CERDIP
MAX220MJE	-55°C to +125°C	16 CERDIP

Ordering Information continued at end of data sheet.

*Contact factory for dice specifications.

_Selection Table

Part Number	Power Supply (V)	No. of RS-232 Drivers/Rx	No. of Ext. Caps	Nominal Cap. Value (µF)	SHDN & Three- State	Rx Active in SHDN	Data Rate (kbps)	Features
MAX220	+5	2/2	4	0.1	No		120	Ultra-low-power, industry-standard pinout
MAX222	+5	2/2	4	0.1	Yes		200	Low-power shutdown
MAX223 (MAX213)	+5	4/5	4	1.0 (0.1)	Yes	~	120	MAX241 and receivers active in shutdown
MAX225	+5	5/5	0		Yes	V	120	Available in SO
MAX230 (MAX200)	+5	5/0	4	1.0 (0.1)	Yes		120	5 drivers with shutdown
MAX231 (MAX201)	+5 and	2/2	2	1.0 (0.1)	No	_	120	Standard +5/+12V or battery supplies;
	+7.5 to +13.2							same functions as MAX232
MAX232 (MAX202)	+5	2/2	4	1.0 (0.1)	No	_	120 (64)	Industry standard
MAX232A	+5	2/2	4.	0.1	No	—	200	Higher slew rate, small caps
MAX233 (MAX203)	+5	2/2	0		No	_ `	120	No external caps
MAX233A	+5	2/2	0		No	_	200	No external caps, high slew rate
MAX234 (MAX204)	+5	4/0	4	1.0 (0.1)	No	_	120	Replaces 1488
MAX235 (MAX205)	+5	5/5	0	_	Yes		120	No external caps
MAX236 (MAX206)	+5	4/3	4	1.0 (0.1)	Yes	<u> </u>	120	Shutdown, three state
MAX237 (MAX207)	+5	5/3	4	1.0 (0.1)	No	_	120	Complements IBM PC serial port
MAX238 (MAX208)	+5	4/4	4	1.0 (0.1)	No	_	120	Replaces 1488 and 1489
MAX239 (MAX209)	+5 and	3/5	2	1.0 (0.1)	No	_	120	Standard +5/+12V or battery supplies;
	+7.5 to +13.2							single-package solution for IBM PC serial port
MAX240	+5	5/5	4	1.0	Yes	_	120	DIP or flatpack package
MAX241 (MAX211)	+5	4/5	4	1:0 (0.1)	Yes	_	120	Complete IBM PC serial port
MAX242	+5	2/2	4	0.1	Yes	~	200	Separate shutdown and enable
MAX243	+5	2/2	4	0.1	No		200	Open-line detection simplifies cabling
MAX244	+5	8/10	4	1.0	No	—	120	High slew rate
MAX245	+5	8/10	0	_	Yes	~	120	High slew rate, int. caps, two shutdown modes
MAX246	+5	8/10	0		Yes	~	120	High slew rate, int. caps, three shutdown modes
MAX247	+5	8/9	0		Yes	¥	120	High slew rate, int. caps, nine operating modes
MAX248	+5	8/8	4	1.0	Yes	~	120	High slew rate, selective half-chip enables
MAX249	+5	6/10	4	1.0	Yes	v	120	Available in quad flatpack package

M/XI/N _

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Features

+5V-Powered, Multichannel RS-232 **Drivers/Receivers**

ABSOLUTE MAXIMUM RATINGS—MAX220/222/232A/233A/242/243

Supply Voltage (Vcc) -0.3V to $\pm 6V$

Input Voltages		16-Pin Narrow SO (de
T _{IN}	0.3V to (V _{CC} - 0.3V)	16-Pin Wide SO (dera
RIN (Except MAX220)	±30V	18-Pin Wide SO (dera
R _{IN} (MAX220)	±25V	20-Pin Wide SO (dera
TOUT (Except MAX220) (Note 1)	±15V	20-Pin SSOP (derate)
Tout (MAX220)	±13.2V	16-Pin CERDIP (derat
Output Voltages		18-Pin CERDIP (derat
Тоит	±15V	Operating Temperature
Rout	0.3V to (Vcc + 0.3V)	MAX2 AC MAX2
Driver/Receiver Output Short Circuite	d to GNDContinuous	MAX2 AE MAX2
Continuous Power Dissipation (TA = -	+70°C)	MAX2 AM , MAX
16-Pin Plastic DIP (derate 10.53mW/	°C above +70°C)842mW	Storage Temperature Ra
10 Dia Dia tra DID (alamata dat data 147		

18-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW

2

20-Pin Plastic DIP (derate 8.00mW/°C above +70°C) ..440mW erate 8.70mW/°C above +70°C) ...696mW ate 9.52mW/°C above +70°C).....762mW ate 9.52mW/°C above +70°C).....762mW ate 10.00mW/°C above +70°C).....800mW 8.00mW/°C above +70°C)640mW te 10.00mW/°C above +70°C).....800mW te 10.53mW/°C above +70°C).....842mW Ranges

2__C__...0°C to +70°C 2__E_40°C to +85°C 2__M__....55°C to +125°C ange-65°C to +160°C Lead Temperature (soldering, 10s)+300°C

Note 1: Input voltage measured with Tout in high-impedance state, \overline{SHDN} or $V_{CC} = 0V$.

Note 2: For the MAX220, V+ and V- can have a maximum magnitude of 7V, but their absolute difference cannot exceed 13V. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243

 $(V_{CC} = +5V \pm 10\%, C1-C4 = 0.1\mu F, MAX220, C1 = 0.047\mu F, C2-C4 = 0.33\mu F, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS	
RS-232 TRANSMITTERS	<u> </u>						
Output Voltage Swing	All transmitter outputs loaded with $3k\Omega$ to GND			±8		V	
Input Logic Threshold Low				1.4	0.8	V	
Input Logic Threshold High	All devices except	ot MAX220	2	1.4			
	MAX220: V _{CC} = 5	5.0V	2,4			v	
Logic Pull-Lin/Input Current	All except MAX22	20, normal operation		5	40		
	SHDN = OV, MAX	(222/242, shutdown, MAX220		±0.01	±1	μΑ	
Output Leakage Current	VCC = 5.5V, SHD	$\overline{N} = 0V$, $V_{OUT} = \pm 15V$, MAX222/242		±0.01	±10		
	$V_{CC} = \overline{SHDN} = 0$	V, $V_{OUT} = \pm 15V$		±0.01	±10	μΑ	
Data Rate				200	116	kbps	
Transmitter Output Resistance	ACC = A+ = A- =	$0V, V_{OUT} = \pm 2V$	300	10M		Ω	
Output Short-Circuit Current	VOUT = 0V		±7	±22		mA	
RS-232 RECEIVERS							
RS-232 Input Voltage Operating Range					±30	V	
BS-232 Input Threshold Low	$V_{CC} = 5V$	All except MAX243 R2 _{IN}	0.8	1.3		V	
The Zez input the canolic Lew		MAX243 R2 _{IN} (Note 2)	-3				
RS-232 Input Threshold High	$V_{CO} = 5V$	All except MAX243 R2 _{IN}		1.8	2.4		
	VCC = 0V	MAX243 R2 _{IN} (Note 2)		-0.5	-0.1		
RS-232 Input Hysteresis	All except MAX243, V _{CC} = 5V, no hysteresis in shdn.			0.5	1		
The set input hysteresis	MAX243	MAX243		1		V	
RS-232 Input Resistance			3	5	7	kΩ	
TTL/CMOS Output Voltage Low	IOUT = 3.2mA			0.2	0.4	V	
TTL/CMOS Output Voltage High	IOUT = -1.0mA			V _{CC} - 0.2		V	
	Sourcing V _{OUT} = GND			-10			
	Shrinking VOUT = VCC			30		mA	

MIXIM

+5V-Powered, Multichannel RS-232 Drivers/Receivers

PARAMETER	CONDITIONS			ΤΥΡ	MAX	UNIT
TTL/CMOS Output Leakage Current	$\overline{SHDN} = V_{CC} \text{ or } \overline{EN} = V_{CC} (\overline{SHDN} = 0V \text{ for MAX222}),$ $0V \le V_{OUT} \le V_{CC}$			±0.05	±10	μA
EN Input Threshold Low	MAX242			1.4	0.8	V
EN Input Threshold High	MAX242		2.0	1.4		V V
Operating Supply Voltage			4.5		5.5	V
	Nolood	MAX220		0.5	2	
VCC Supply Current ($\overline{SHDN} = V_{CC}$),	INO IOAU	MAX222/232A/233A/242/243	•••••••	4	10	
Figures 5, 6, 11, 19	3kΩ load	MAX220		12		
	both inputs	MAX222/232A/233A/242/243		15		1
		$T_A = +25^{\circ}C$		0.1	10	· ···
Shutdown Supply Current	MAYOOOJOAO	$T_A = 0^{\circ}C$ to $+70^{\circ}C$		2	- 50	
Shuldown Supply Current	IVIAA222/242	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		2	50	- μA
		T _A = -55°C to +125°C		35	100	1
SHDN Input Leakage Current	MAX222/242			±1	μA	
SHDN Threshold Low	MAX222/242			1.4	0.8	V
SHDN Threshold High	MAX222/242		2.0	1.4		V
Transition Slew Rate	$C_L = 50 \text{pF} \text{ to } 2500 \text{pF},$ $R_L = 3k\Omega \text{ to } 7k\Omega,$ $V_{CC} = 5V T_A = +25^{\circ}C_A$	MAX222/232A/233A/242/243	6	12	30	Vlue
	to -3V or -3V to +3V	MAX220	1.5	3	30	viµs
	t=1 0 m	MAX222/232A/233A/242/243		1.3	3.5	μs
Transmitter Propagation Delay	I IPHLT	MAX220		4	10	
Figure 1		MAX222/232A/233A/242/243		1.5	3.5	
		MAX220		5	10	
	touro	MAX222/232A/233A/242/243	•	0.5	1	
Receiver Propagation Delay	I PHLK	MAX220		0.6	3	- μs
Figure 2	touro	MAX222/232A/233A/242/243		0.6	1	
5		MAX220		0.8	З	1
Receiver Propagation Delay	t _{PHLS}	MAX242		0.5	10	
RS-232 to TLL (Shutdown), Figure 2	tPLHS MAX242			2.5	10	μs
Receiver-Output Enable Time, Figure 3	tER	MAX242		125	500	ns
Receiver-Output Disable Time, Figure 3	tDR .	MAX242		160	500	ns
Transmitter-Output Enable Time (SHDN Goes High), Figure 4	tet	MAX222/242, 0.1µF caps (includes charge-pump start-up)		250		μs
Transmitter-Output Disable Time (SHDN Goes Low), Figure 4	tor	MAX222/242, 0.1µF caps		600		ns
Transmitter + to - Propagation Delay Difference (Normal Operation)	tphlt - tplht	MAX222/232A/233A/242/243 MAX220		300		ns
Receiver + to - Propagation	tphlr - tplhr	MAX222/232A/233A/242/243		100		ns
Doldy Difference (Horman Operation)	<u> </u>	IVIAA22U		225		ł

Note 3: MAX243 R2_{OUT} is guaranteed to be low when R2_{IN} is \ge 0V or is floating.

MAXIM -

3

APPENDIX D LM35 DATASHEET

November 2000

National Semiconductor

LM35 Precision Centigrade Temperature Sensors

General Description

The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear temperature sensors calibrated in Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Centigrade scaling. The LM35 does not require any external calibration or trimming to provide typical accuracies of ±1/4°C at room temperature and ±34°C over a full -55 to +150°C temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM35's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies, or with plus and minus supplies. As it draws only 60 µA from its supply, it has very low self-heating, less than 0.1°C in still air. The LM35 is rated to operate over a -55° to +150°C temperature range, while the LM35C is rated for a -40° to +110°C range (-10° with improved accuracy). The LM35 series is available pack-

Typical Applications

FIGURE 1. Basic Centigrade Temperature Sensor (+2°C to +150°C)

aged in hermetic TO-46 transistor packages, while the LM35C, LM35CA, and LM35D are also available in the plastic TO-92 transistor package. The LM35D is also available in an 8-lead surface mount small outline package and a plastic TO-220 package.

Features

- Calibrated directly in ° Celsius (Centigrade)
- Linear + 10.0 mV/°C scale factor
- 0.5°C accuracy guaranteeable (at +25°C)
- Rated for full -55° to +150°C range
- Suitable for remote applications
- Low cost due to wafer-level trimming
- Operates from 4 to 30 volts
- Less than 60 µA current drain
- Low self-heating, 0.08°C in still air
- Nonlinearity only ±1/4°C typical
- Low impedance output, 0.1 Ω for 1 mA load

Choose $R_1 = -V_S/50 \mu A$ V_{OUT} =+1,500 mV at +150°C = +250 mV at +25°C = -550 mV at -55°C

www.national.com

Connection Diagrams

LM35

www.national.com

Absolute Maximum Ratings (Note 10)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	+35V to −0.2V
Output Voltage	+6V to -1.0V
Output Current	10 mA
Storage Temp.;	
TO-46 Package,	-60°C to +180°C
TO-92 Package,	-60°C to +150°C
SO-8 Package,	-65°C to +150°C
TO-220 Package,	-65°C to +150°C
Lead Temp.: TO-46 Package, (Soldering, 10 seconds)	300°C

TO-92 and TO-220 Package, (Soldering, 10 seconds)	260°C
SO Package (Note 12)	
Vapor Phase (60 seconds)	215°C
Infrared (15 seconds)	220°C
ESD Susceptibility (Note 11)	2500V
Specified Operating Temperature F (Note 2)	lange: T_{MIN} to T_{MAX}
LM35, LM35A	-55°C to +150°C
LM35C, LM35CA	-40°C to +110°C
LM35D	0°C to +100°C

LM35

Electrical Characteristics

(Notes 1, 6)

	Conditions	LM35A			LM35CA			T
Parameter			Tested	Design		Tested	Design	Units
		Typical	Limit	Limit	Typical	Limit	Limit	(Max.)
			(Note 4)	(Note 5)		(Note 4)	(Note 5)	
Accuracy	T _A =+25°C	±0.2	±0.5		±0.2	±0.5		°C
Note 7)	T _A =-10°C	±0.3			±0.3		±1.0	°C
	T _A =T _{MAX}	±0.4	±1.0		±0.4	±1.0		°C
	T _A =T _{MIN}	±0.4	±1.0		±0.4		±1.5	°C
Ionlinearity	T _{MIN} ≤T _A ≤T _{MAX}	±0.18		±0.35	±0.15		±0.3	°C
Note 8)								
Sensor Gain	T _{MIN} ST _A ST _{MAX}	+10.0	+9.9,		+10.0		+9.9,	mV/°C
Average Slope)			+10.1				+10.1	
.oad Regulation	T _A =+25°C	±0.4	±1.0		±0.4	±1.0		mV/mA
Note 3) 0≤l _L ≤1 mA	T MINSTASTMAX	±0.5		±3.0	±0.5		±3.0	mV/mA
ine Regulation	T _A =+25°C	±0.01	±0.05		±0.01	±0.05		mV/V
Note 3)	4V≤V _s ≤30V	±0.02		±0.1	±0.02		±0.1	mV/V
Juiescent Current	V _s =+5V, +25°C	56	67		56	67		μA
Note 9)	V s=+5V	105		131	91		114	μA
	V _s =+30V, +25°C	56.2	68		56.2	68		μA
	V _s =+30V	105.5	}	133	91.5		116	μA
hange of	4V≤V _S ≤30V, +25°C	0.2	1.0		0.2	1.0		μA
Juiescent Current	4V≤V _s ≲30V	0.5		2.0	0.5		2.0	μA
Note 3)								
emperature		+0.39		+0.5	+0.39		+0.5	µA/°C
Coefficient of								
Quiescent Current								
Ainimum Temperature	In circuit of	+1.5		+2.0	+1.5		+2.0	°C
or Rated Accuracy	Figure 1, I _L =0							
ong Term Stability	T _=T _{MAX} , for	±0.08			±0.08			°C
	1000 hours							

www.national.com

APPENDIX E PIC CODING

.

41

PIC Coding

#include <16F877A.h>
#device ADC=8
#fuses XT, NOWDT, NOPROTECT, NOPUT,
NOBROWNOUT, NOLVP
#use delay (clock=4000000)
#include <LCD.C>
#include <LCD.C>
#include <string.h>
#use rs232(baud=1200, xmit=PIN_C6,
rcv=PIN_C7)

float adcValue1; float voltage1; float temperature; float adcValue2; float voltage2;

void main()
{
setup_adc_ports(ALL_ANALOG);
setup_adc(ADC_CLOCK_INTERNAL);

while (1)
{
 set_adc_channel(0);
 delay_us(30);
 adcValue1=read_adc();
 delay_us(30);
 voltage1= 5.000*adcValue1/255.000;

set_adc_channel(1); delay_us(30); adcValue2=read_adc(); voltage2= 5.000*adcValue2/255.000;

temperature=voltage2/0.01;

lcd_init(); lcd_putc("\f"); lcd_gotoxy(1,1); lcd_putc("Room Temperature:");

lcd_gotoxy(1,2); printf(lcd_putc, "%f", temperature); lcd_gotoxy(9,2); lcd_putc(" deg C ");

if(adcValue1>102)

{ output_high(pin_E0); putchar(65); if(adcValue2>12.75)

{ output_high(pin_E1); putcher(67);

putchar(67);

else if(adcValue2<12.24)

{ output_high(pin_E2); putchar(68); }

}

else { output_low(pin_E0); putchar(66);

} delay_ms(2000);

} }

APPENDIX F

VISUAL BASIC CODING (EMSYS)

42

Public Class Form1 Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

Public Sub New() MyBase.New()

"This call is required by the Windows Form Designer. InitializeComponent()

'Add any initialization after the InitializeComponent() call

End Sub

Form overrides dispose to clean up the component list. Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean) If disposing Then If Not (components Is Nothing) Then components.Dispose() End If End If MyBase.Dispose(disposing) End Sub

Required by the Windows Form Designer Private components As System.ComponentModel.IContainer

NOTE: The following procedure is required by the Windows Form Designer 'It can be modified using the Windows Form Designer. 'Do not modify it using the code editor. Friend WithEvents tctrContent As System. Windows.Forms.TabControl Friend WithEvents tpgGeneral As System. Windows. Forms. TabPage Friend WithEvents tpgRoof As System. Windows.Forms. TabPage Friend WithEvents tpgwall As System. Windows Forms. TabPage Friend WithEvents tpgwindow As System.Windows.Forms.TabPage Friend WithEvents prgOccupancy As System, Windows, Forms, TabPage Friend WithEvents tpgEquip As System.Windows.Forms.TabPage Friend WithEvents tpgresult As System.Windows.Forms.TabPage Friend WithEvents btnQuit As System.Windows.Forms.Button Friend WithEvents btnreset As System. Windows.Forms.Button Friend WithEvents IstSolarTime As System.Windows.Forms.ListBox Friend WithEvents Label1 As System.Windows.Forms.Label Friend WithEvents txtIndoor As System.Windows.Forms.TextBox Friend WithEvents txtOutdoor As System Windows.Forms.TextBox Friend WithEvents Label2 As System.Windows.Forms.Label Friend WithEvents Label3 As System.Windows.Forms.Label Friend WithEvents IstRoofCons As System Windows Forms ListBox Friend WithEvents Label4 As System. Windows. Forms. Label Friend WithEvents Label5 As System. Windows.Forms.Label Friend WithEvents GroupBox1 As System.Windows.Forms.GroupBox Friend WithEvents Label6 As System. Windows.Forms.Label Friend WithEvents Label7 As System. Windows. Forms. Label Friend WithEvents Label8 As System. Windows.Forms.Label Friend WithEvents Label9 As System Windows Forms Label Friend WithEvents Label10 As System.Windows.Forms.Label Friend WithEvents txtRLength As

System.Windows.Forms.TextBox

Friend WithEvents txtRWidth As System.Windows.Forms.TextBox Friend WithEvents Label11 As System.Windows.Forms.Label Friend WithEvents cboWallCons As System, Windows, Forms, ComboBox Friend WithEvents Label12 As System.Windows.Forms.Label Friend WithEvents txtWlength As System Windows Forms TextBox Friend WithEvents txtWWidth As System Windows.Forms.TextBox Friend WithEvents Label13 As System.Windows.Forms.Label Friend WithEvents Label14 As System.Windows.Forms.Label Friend WithEvents Label15 As System.Windows.Forms.Label Friend WithEvents Label16 As System Windows Forms Label Friend WithEvents cboWDirection As System Windows.Forms.ComboBox Friend WithEvents Label17 As System.Windows.Forms.Label Friend WithEvents Label18 As System Windows Forms Label Friend WithEvents Label19 As System.Windows.Forms.Label Friend WithEvents cboWinType As System, Windows.Forms.ComboBox Friend WithEvents GroupBox2 As System Windows.Forms.GroupBox Friend WithEvents rboClear As System.Windows.Forms.RadioButton Friend WithEvents rboSC As System, Windows, Forms, RadioButton Friend WithEvents rboNoSC As System, Windows, Forms, RadioButton Friend WithEvents rboHeatAbs As System Windows Forms RadioButton Friend WithEvents Label20 As System.Windows.Forms.Label Friend WithEvents GroupBox3 As System.Windows.Forms.GroupBox Friend WithEvents rboNoShade As System, Windows, Forms, RadioButton Friend WithEvents rboBlinds As System, Windows, Forms, RadioButton Friend WithEvents Label21 As System Windows Forms Label Friend WithEvents cboWinDirection As System.Windows.Forms.ComboBox Friend WithEvents Label22 As System.Windows.Forms.Label Friend WithEvents Label23 As System.Windows.Forms.Label Friend WithEvents Label24 As System Windows Forms Label Friend WithEvents Label25 As System.Windows.Forms.Label Friend WithEvents Label26 As System Windows Forms.Label Friend WithEvents Label27 As System.Windows.Forms.Label Friend WithEvents Label28 As System Windows Forms Label Friend WithEvents txtWinWidth As System, Windows, Forms, TextBox Friend WithEvents txtWinLength As System.Windows.Forms.TextBox Friend WithEvents Label29 As System.Windows.Forms.Label Friend WithEvents Label30 As System.Windows.Forms.Label Friend WithEvents Label31 As System.Windows.Forms.Label Friend WithEvents txtNoPeople As System.Windows.Forms.TextBox Friend WithEvents cboTypeAct As System. Windows. Forms. ComboBox Friend WithEvents Label32 As System Windows Forms Label Friend WithEvents Label33 As System.Windows.Forms.Label Friend WithEvents txtComp As System.Windows.Forms.TextBox Friend WithEvents Label34 As System.Windows.Forms.Label Friend WithEvents GroupBox4 As System. Windows. Forms. GroupBox Friend WithEvents rboStandby As System. Windows. Forms. RadioButton Friend WithEvents rbofullcomp As System. Windows. Forms. RadioButton Friend WithEvents Label35 As System Windows Forms Label

Friend WithEvents Label36 As System Windows Forms Label Friend WithEvents txtOthers As

System.Windows.Forms.TextBox

Friend WithEvents Label37 As System.Windows.Forms.Label Friend WithEvents Label38 As System Windows Forms Label Friend WithEvents Label39 As System Windows Forms Label Friend WithEvents Label40 As System.Windows.Forms.Label Friend WithEvents Label41 As System.Windows.Forms.Label Friend WithEvents Label42 As System.Windows.Forms.Label Friend WithEvents Label43 As System Windows Forms Label Friend WithEvents Label44 As System.Windows.Forms.Label Friend WithEvents Label45 As System.Windows.Forms.Label Friend WithEvents Label46 As System Windows Forms. Label Friend WithEvents Label48 As System.Windows.Forms.Label Friend WithEvents Label49 As System.Windows.Forms.Label Friend WithEvents btnNext1 As System.Windows.Forms.Button Friend WithEvents btnBack2 As System Windows.Forms.Button Friend WithEvents btnNext2 As System.Windows.Forms.Button Friend WithEvents btnBack3 As System Windows Forms Button Friend WithEvents btnNext3 As System Windows.Forms.Button Friend WithEvents btnBack4 As System Windows.Forms.Button Friend WithEvents btnNext4 As System.Windows.Forms.Button Friend WithEvents btnBack5 As System Windows Forms Button Friend WithEvents btnNext5 As System Windows Forms Button Friend WithEvents btnBack6 As System.Windows.Forms.Button Friend WithEvents btnCalculate As System.Windows.Forms.Button Friend WithEvents btnBack7 As System.Windows.Forms.Button Friend WithEvents txtQwall As System.Windows.Forms.TextBox

Friend WithEvents txtQRoof As

System. Windows.Forms. TextBox

Friend WithEvents txtQwindow As System.Windows.Forms.TextBox

Friend WithEvents txtQoccupancy As

System.Windows.Forms.TextBox

Friend WithEvents txtQequip As

System.Windows.Forms.TextBox

Friend WithEvents txtQtotal As System.Windows.Forms.TextBox Friend WithEvents txtQKW As System.Windows.Forms.TextBox Friend WithEvents Label50 As System.Windows.Forms.Label Friend WithEvents Label47 As System.Windows.Forms.Label Friend WithEvents Label51 As System.Windows.Forms.Label <System.Diagnostics.DebuggerStepThrough()>Private Sub InitializeComponent()

Me.tctrContent = New System.Windows.Forms.TabControl Me.tpgGeneral = New System.Windows.Forms.TabPage Me.Label23 = New System. Windows.Forms.Label Me.Label22 = New System Windows.Forms.Label Me.Label19 = New System.Windows.Forms.Label Me.btnNext1 = New System.Windows.Forms.Button Me.Label3 = New System.Windows.Forms.Label Me.Label2 = New System.Windows.Forms.Label Me.txtOutdoor = New System.Windows.Forms.TextBox Me.txtIndoor = New System.Windows.Forms.TextBox Me.Label1 = New System.Windows.Forms.Label Me.1stSolarTime = New System.Windows.Forms.ListBox Me.tpgRoof = New System.Windows.Forms.TabPage Me.Label10 = New System.Windows.Forms.Label Me.Label9 = New System.Windows.Forms.Label Me.Label8 = New System.Windows.Forms.Label Me Label7 = New System.Windows.Forms.Label Me.txtRWidth = New System.Windows.Forms.TextBox Me.txtRLength = New System.Windows.Forms.TextBox Me.Label6 = New System.Windows.Forms.Label Me.Label5 = New System.Windows.Forms.Label Me.btnBack2 = New System.Windows.Forms.Button Me.btnNext2 = New System.Windows.Forms.Button Me.Label4 = New System.Windows.Forms.Label Me.lstRoofCons = New System.Windows.Forms.ListBox Me.GroupBox1 = New System.Windows.Forms.GroupBox Me.rboNoSC = New System.Windows.Forms.RadioButton Me.rboSC = New System.Windows.Forms.RadioButton Me.tpgwall = New System. Windows. Forms. TabPage Me.Label17 = New System.Windows.Forms.Label Me.cboWDirection = New System.Windows.Forms.ComboBox Me.Label16 = New System.Windows.Forms.Label Me.Label15 = New System.Windows.Forms.Label Me.Label14 = New System.Windows.Forms.Label Me.Label13 = New System, Windows, Forms, Label Me.txtWWidth = New System.Windows.Forms.TextBox Me.txtWlength = New System.Windows.Forms.TextBox Me.Label12 = New System.Windows.Forms.Label Me.cboWallCons = New System.Windows.Forms.ComboBox Me.Label11 = New System.Windows.Forms.Label Me.btnBack3 = New System.Windows.Forms.Button Me.btnNext3 = New System Windows Forms Button Me.tpgwindow = New System.Windows.Forms.TabPage Me.Label25 = New System.Windows.Forms.Label Me.Label26 = New System, Windows.Forms.Label Me.Label27 = New System. Windows.Forms.Label Me.Label28 = New System.Windows.Forms.Label Me.txtWinWidth = New System.Windows.Forms.TextBox Me.txtWinLength = New System.Windows.Forms.TextBox Me.Label24 = New System.Windows.Forms.Label Me.Label21 = New System.Windows.Forms.Label Me.cboWinDirection = New System.Windows.Forms.ComboBox Me.GroupBox3 = New System. Windows.Forms.GroupBox Me.rboBlinds = New System.Windows.Forms.RadioButton Me.rboNoShade = New System.Windows.Forms.RadioButton Me.Label20 = New System.Windows.Forms.Label Me.cboWinType = New System, Windows Forms. ComboBox Me.Label18 = New System, Windows, Forms, Label Me.btnBack4 = New System.Windows.Forms.Button Me.btnNext4 = New System.Windows.Forms.Button Me.GroupBox2 = New System. Windows.Forms.GroupBox Me.rboHeatAbs = New System.Windows.Forms.RadioButton Me.rboClear = New System.Windows.Forms.RadioButton Me.prgOccupancy = New System.Windows.Forms.TabPage Me.cboTypeAct = New System.Windows.Forms.ComboBox Me.txtNoPeople = New System.Windows.Forms.TextBox Me.Label31 = New System.Windows.Forms.Label Me.Label30 = New System.Windows.Forms.Label Me.Label29 = New System.Windows.Forms.Label Me.btnBack5 = New System.Windows.Forms.Button Me.btnNext5 = New System.Windows.Forms.Button Me.tpgEquip = New System.Windows.Forms.TabPage Me.Label36 = New System.Windows.Forms.Label Me.txtOthers = New System.Windows.Forms.TextBox Me.Label35 = New System.Windows.Forms.Label Me.GroupBox4 = New System.Windows.Forms.GroupBox Me.rbofullcomp = New System.Windows.Forms.RadioButton Me.rboStandby = New System.Windows.Forms.RadioButton Me.Label34 = New System.Windows.Forms.Label Me.txtComp = New System.Windows.Forms.TextBox Me.Label33 = New System.Windows.Forms.Label Me.Label32 = New System. Windows.Forms.Label Me.btnBack6 = New System.Windows.Forms.Button Me.btnCalculate = New System.Windows.Forms.Button Me.tpgresult = New System.Windows.Forms.TabPage Me.Label47 = New System.Windows.Forms.Label Me.Label49 = New System.Windows.Forms.Label Me.txtQKW = New System.Windows.Forms.TextBox Me.Label48 = New System.Windows.Forms.Label Me.Label46 = New System.Windows.Forms.Label Me.Label45 = New System Windows Forms Label Me.Label44 = New System.Windows.Forms.Label Me.Label43 = New System.Windows.Forms.Label Me.Label42 = New System.Windows.Forms.Label Me.Label40 = New System.Windows.Forms.Label Me.Label39 = New System.Windows.Forms.Label

Me.Label38 = New System.Windows.Forms.Label Me.Label37 = New System.Windows.Forms.Label Me.txtQtotal = New System.Windows.Forms.TextBox Me.txtQequip = New System.Windows.Forms.TextBox Me.txtQoccupancy = New System. Windows.Forms.TextBox Me.txtQwindow = New System.Windows.Forms.TextBox Me.txtQRoof = New System Windows.Forms.TextBox Me.txtQwall = New System.Windows.Forms.TextBox Me.btnBack7 = New System.Windows.Forms.Button Me.Label41 = New System.Windows.Forms.Label Me.btnQuit = New System.Windows.Forms.Button Me, btnreset = New System. Windows. Forms. Button Me.Label50 = New System.Windows.Forms.Label Me.Label51 = New System.Windows.Forms.Label Me.tctrContent.SuspendLayout() Me.tpgGeneral.SuspendLayout() Me.tpgRoof.SuspendLayout() Me.GroupBox1.SuspendLayout() Me.tpgwall.SuspendLayout() Me.tpgwindow.SuspendLayout() Me.GroupBox3.SuspendLayout() Me.GroupBox2.SuspendLayout() Me.prgOccupancy.SuspendLayout() Me.tpgEquip.SuspendLayout() Me.GroupBox4.SuspendLayout() Me.tpgresult.SuspendLayout() Me.SuspendLayout()

'tctrContent

Me.tctrContent.Controls.Add(Me.tpgGeneral) Me.tctrContent.Controls.Add(Me.tpgRoof) Me.tctrContent.Controls.Add(Me.tpgwindow) Me.tctrContent.Controls.Add(Me.tpgwindow) Me.tctrContent.Controls.Add(Me.tpgEquip) Me.tctrContent.Controls.Add(Me.tpgEquip) Me.tctrContent.Controls.Add(Me.tpgresult) Me.tctrContent.Location = New System.Drawing.Point(32, 80) Me.tctrContent.Name = "tctrContent" Me.tctrContent.SelectedIndex = 0 Me.tctrContent.Size = New System.Drawing.Size(496, 312) Me.tctrContent.TabIndex = 0

'tpgGeneral

Me.tpgGeneral.BackColor = System, Drawing, Color, LavenderBlush Me.tpgGeneral.Controls.Add(Me.Label23) Me.tpgGeneral.Controis.Add(Me.Label22) Me.tpgGeneral.Controls.Add(Me.Label19) Me.tpgGeneral.Controls.Add(Me.btnNext1) Me.tpgGeneral.Controls.Add(Me.Label3) Me.tpgGeneral.Controls.Add(Me.Label2) Me.tpgGeneral.Controls.Add(Me.txtOutdoor) Me.tpgGeneral.Controls.Add(Me.txtIndoor) Me.tpgGeneral.Controls.Add(Me.Label1) Me.tpgGeneral.Controls.Add(Me.lstSolarTime) Me.tpgGeneral.Location = New System.Drawing.Point(4, 29) Me.tpgGeneral.Name = "tpgGeneral" Me.tpgGeneral.Size = New System.Drawing.Size(488, 279) Me.tpgGeneral.TabIndex = 0 Me.tpgGeneral.Text = "General"

Label23

Mc.Label23.Location = New System.Drawing.Point(384, 144) Mc.Label23.Name = "Label23" Mc.Label23.Size = New System.Drawing.Size(56, 24) Mc.Label23.TabIndex = 10 Mc.Label23.Text = "Celcius"

Label22

Me.Label22.Location = New System.Drawing.Point(384, 72) Me.Label22.Name = "Label22" Me.Label22.Size = New System.Drawing.Size(56, 24) Me.Label22.TabIndex = 9 Me.Label22.Text = "Celcius"

'Label19

Me.Label19.Font = New System.Drawing.Font("Microsoft Sans Serif", 9.75!, System.Drawing.FontStyle.Underline, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label19.Location = New System.Drawing.Point(24, 16) Me.Label19.Name = "Label19" Me.Label19.Size = New System.Drawing.Size(104, 16) Me.Label19.TabIndex = 8 Me.Label19.Text = "General Details "

btnNext1

Me.btnNext1.BackColor = System.Drawing.Color.SandyBrown Me.btnNext1.Location = New System.Drawing.Point(408, 248) Me.btnNext1.Name = "btnNext1" Me.btnNext1.Size = New System.Drawing.Size(72, 24) Me.btnNext1.TabIndex = 6 Me.btnNext1.Text = "Next"

'Label3

Me.Label3.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label3.Location = New System.Drawing.Point(216, 112) Me.Label3.Name = "Label3" Me.Label3.Size = New System.Drawing.Size(232, 24) Me.Label3.TabIndex = 5 Me.Label3.Text = "Outdoor Temperature (Celcius):"

'Label2

Me.Label2.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label2.Location = New System.Drawing.Point(216, 40) Me.Label2.Name = "Label2" Me.Label2.Size = New System.Drawing.Size(224, 24) Me.Label2.TabIndex = 4 Me.Label2.Text = "Indoor Temperature (Celcius) :"

'txtOutdoor

Me.txtOutdoor.Location = New System.Drawing.Point(216, 144) Me.txtOutdoor.Name = "txtOutdoor" Me.txtOutdoor.Size = New System.Drawing.Size(160, 25) Me.txtOutdoor.TabIndex = 3 Me.txtOutdoor.Text = ""

'txtIndoor

Me.txtIndoor.Location = New System.Drawing.Point(216, 72) Me.txtIndoor.Name = "txtIndoor" Me.txtIndoor.Size = New System.Drawing.Size(160, 25) Me.txtIndoor.TabIndex = 2 Me.txtIndoor.Text = ""

'Label1

Me.Label1.Location = New System.Drawing.Point(32, 40)

Me.Label1.Name = "Label1" Me.Label1.Size = New System.Drawing.Size(104, 24) Me.Label1.TabIndex = 1 Me.Label1.Text = "Solar Time :"

'lstSolarTime

Me.lstSolarTime.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.lstSolarTime.ItemHeight = 18 Me.lstSolarTime.items.AddRange(New Object() {"0100", "0200", "0300", "0400", "0500", "0600", "0700", "0800", "0900", "1000", "1100", "1200", "1300", "1400", "1700", "1600", "1700", "1800", "1900", "2000", "2100", "2200", "2300", "2400"}) Me.lstSolarTime.Location = New System.Drawing.Point(32, 64) Me.lstSolarTime.Size = New System.Drawing.Size(104, 130) Me.lstSolarTime.TabIndex = 0

'tpgRoof

Me.tpgRoof.BackColor = System.Drawing.Color.LavenderBlush Me.tpgRoof.Controls.Add(Me.Label10) Me.tpgRoof.Controls.Add(Me.Label9) Me.tpgRoof.Controls.Add(Me.Label8) Me.tpgRoof.Controls.Add(Me.Label7) Me.tpgRoof.Controls.Add(Me.txtRWidth) Me.tpgRoof.Controls.Add(Me.txtRLength) Me.tpgRoof.Controls.Add(Me.Label6) Me.tpgRoof.Controls.Add(Me.Label5) Me.tpgRoof.Controls.Add(Me.btnBack2) Me.tpgRoof.Controls.Add(Me.btnNext2) Me.tpgRoof.Controls.Add(Me.Label4) Me.tpgRoof.Controls.Add(Me.lstRoofCons) Me.tpgRoof.Controls.Add(Me.GroupBox1) Me.tpgRoof.Location = New System.Drawing.Point(4, 22) Me.tpgRoof.Name = "tpgRoof" Me.tpgRoof.Size = New System.Drawing.Size(488, 286) Me.tpgRoof.TabIndex = 1Me.tpgRoof.Text = "Roof"

'Label10

Me.Label10.Location = New System.Drawing.Point(400, 168) Me.Label10.Name = "Label10" Me.Label10.Size = New System.Drawing.Size(64, 24) Me.Label10.TabIndex = 18 Me.Label10.Text = "meter"

'Label9

Me.Label9.Location = New System.Drawing.Point(400, 136) Me.Label9.Name = "Label9" Me.Label9.Size = New System.Drawing.Size(56, 24) Me.Label9.TabIndex = 17 Me.Label9.Text = "meter"

'Label8

Me.Label8.Location = New System.Drawing.Point(256, 168) Me.Label8.Name = "Label8" Me.Label8.Size = New System.Drawing.Size(64, 24) Me.Label8.TabIndex = 16 Me.Label8.Text = "Width :"

'Label7

Me.Label7.Location = New System Drawing Point(256, 136) Me.Label7.Name = "Label7" Me.Label7.Size = New System.Drawing.Size(64, 24) Me.Label7.TabIndex = 15 Me.Label7.Text = "Length :"

'txtRWidth

Me.txtRWidth.Location = New System.Drawing.Point(320, 168) Me.txtRWidth.Name = "txtRWidth" Me.txtRWidth.Size = New System.Drawing.Size(72, 25) Me.txtRWidth.TabIndex = 14 Me.txtRWidth.Text = ""

'txtRLength

Me.txtRLength.Location = New System.Drawing.Point(320, 136) Me.txtRLength.Name = "txtRLength" Me.txtRLength.Size = New System.Drawing.Size(72, 25) Me.txtRLength.TabIndex = 13 Me.txtRLength.Text = ""

'Label6

Me.Label6.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Underline, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label6.Location = New System.Drawing.Point(256, 112) Me.Label6.Name = "Label6" Me.Label6.Size = New System.Drawing.Size(104, 16) Me.Label6.TabIndex = 12 Me.Label6.Text = "Ceilig Size (meter)"

'Label5

Me.Label5.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Underline, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label5.Location = New System.Drawing.Point(32, 112) Me.Label5.Name = "Label5" Me.Label5.Size = New System.Drawing.Size(192, 16) Me.Label5.TabIndex = 10 Me.Label5.Text = "Ceiling Construction"

'btnBack2

Me.btnBack2.BackColor = System.Drawing.Color.SandyBrown Me.btnBack2.Location = New System.Drawing.Point(320, 248) Me.btnBack2.Name = "btnBack2" Me.btnBack2.Size = New System.Drawing.Size(72, 24) Me.btnBack2.TabIndex = 9 Me.btnBack2.Text = "Back"

'btnNext2

Me.btnNext2.BackColor = System.Drawing.Color.SandyBrown Me.btnNext2.Location = New System.Drawing.Point(400, 248) Me.btnNext2.Name = "btnNext2" Me.btnNext2.Size = New System.Drawing.Size(72, 24) Me.btnNext2.Tabindex = 8 Me.btnNext2.Text = "Next"

'Label4

Me.Label4.Font = New System.Drawing.Font("Microsoft Sans Serif", 9.75!, System.Drawing.FontStyle.Underline, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Mc.Label4.Location = New System.Drawing.Point(24, 16) Me.Label4.Name = "Label4" Me.Label4.Size = New System.Drawing.Size(216, 16) Me.Label4.TabIndex = 1 Me.Label4.Text = "Description Of Roof Construction"

'lstRoofCons

Me.lstRoofCons.ItemHeight = 20 Me.lstRoofCons.Items.AddRange(New Object() {"Steel sheet with 1 in. (or 2 in.) insulation", "4 in. heavyweight concrete", "Roof terrace system", "6 in. heavyweight concrete with 1 in. (or 2 in.) insulation"}) Me.lstRoofCons.Location = New System.Drawing.Point(24, 40) Me.lstRoofCons.Name = "IstRoofCons" Me.lstRoofCons.Size = New System.Drawing.Size(320, 44) Me.lstRoofCons.TabIndex = 0

'GroupBox1

Me.GroupBox1.Controls.Add(Me.rboNoSC) Me.GroupBox1.Controls.Add(Me.rboSC) Me.GroupBox1.Location = New System.Drawing.Point(32, 128) Me.GroupBox1.Name = "GroupBox1" Me.GroupBox1.Size = New System.Drawing.Size(216, 72) Me.GroupBox1.TabIndex = 11 Me.GroupBox1.TabStop = False

'rboNoSC

Me.rboNoSC.Location = New System.Drawing.Point(16, 40) Me.rboNoSC.Name = "rboNoSC" Me.rboNoSC.Size = New System.Drawing.Size(160, 24) Me.rboNoSC.TabIndex = 1 Me.rboNoSC.Text = "Without Suspended Ceiling"

'rboSC

Me.rboSC.Checked = True Me.rboSC.Location = New System.Drawing.Point(16, 16) Me.rboSC.Name = "rboSC" Me.rboSC.Size = New System.Drawing.Size(192, 24) Me.rboSC.TabIndex = 0 Me.rboSC.TabStop = True Me.rboSC.Text = "With Suspended Ceiling"

'tpgwall

Me.tpgwall.BackColor = System.Drawing.Color.LavenderBlush Me.tpgwall.Controls.Add(Me.Label17) Me.tpgwall.Controls.Add(Me.cboWDirection) Me.tpgwall.Controls.Add(Me.Label16) Me.tpgwall.Controls.Add(Me.Label15) Me.tpgwall.Controls.Add(Me.Label14) Me.tpgwall.Controls.Add(Me.Label13) Me.tpgwall.Controls.Add(Me.txtWWidth) Me.tpgwall.Controls.Add(Me.txtWlength) Me.tpgwall.Controls.Add(Me.Label12) Me.tpgwall.Controls.Add(Me.cboWallCons) Me.tpgwall.Controls.Add(Me.Label11) Me.tpgwall.Controls.Add(Me.btnBack3) Me.tpgwall.Controls.Add(Me.btnNext3) Me.tpgwall.Location = New System.Drawing.Point(4, 22) Me.tpgwall.Name = "tpgwali" Me.tpgwall.Size = New System.Drawing.Size(488, 286) Me.tpgwall.TabIndex = 2 Me.tpgwall.Text = "Wall"

'Label17

Me.Label17.Location = New System.Drawing.Point(32, 184) Me.Label17.Name = "Label17" Me.Label17.Size = New System.Drawing.Size(80, 16) Me.Label17.TabIndex = 22 Me.Label17.Text = "Direction :"

'cboWDirection

Me.cboWDirection.Items.AddRange(New Object() {"North", "North East", "East", "South East", "South", "South West", "West", "North West"}) Me.cboWDirection.Location = New System.Drawing.Point(120, 176) Me.cboWDirection.Name = "cboWDirection" Me.cboWDirection.Size = New System.Drawing.Size(128, 28) Me.cboWDirection.TabIndex = 21

'Label16

Me.Label16.Location = New System.Drawing.Point(208, 144) Me.Label16.Name = "Label16" Me.Label16.Size = New System.Drawing.Size(48, 24) Me.Label16.TabIndex = 20 Me.Label16.Text = "meter"

'Label15

Me.Label15.Location = New System.Drawing.Point(208, 112) Me.Label15.Name = "Label15" Me.Label15.Size = New System.Drawing.Size(48, 24) Me.Label15.TabIndex = 19 Me.Label15.Text = "meter"

'Label14

Me.Label14.Location = New System.Drawing.Point(56, 152) Me.Label14.Name = "Label14" Me.Label14.Size = New System.Drawing.Size(64, 16) Me.Label14.TabIndex = 18 Me.Label14.Text = "Width :"

'Label13

Me.Label13.Location = New System.Drawing.Point(48, 120) Me.Label13.Name = "Label13" Me.Label13.Size = New System.Drawing.Size(64, 24) Me.Label13.TabIndex = 17 Me.Label13.Text = "Length :"

'txtWWidth

Me.txtWWidth.Location = New System.Drawing.Point(120, 144) Me.txtWWidth.Name = "txtWWidth" Me.txtWWidth.Size = New System.Drawing.Size(80, 25) Me.txtWWidth.TabIndex = 16 Me.txtWWidth.Text = ""

'txtWlength

Me.txtWlength.Location = New System.Drawing.Point(120, 112) Me.txtWlength.Name = "txtWlength" Me.txtWlength.Size = New System.Drawing.Size(80, 25) Me.txtWlength.TabIndex = 15 Me.txtWlength.Text = ""

'Label12

Me.Label12.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Underline, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label12.Location = New System.Drawing.Point(24, 88) Me.Label12.Name = "Label12" Me.Label12.Size = New System.Drawing.Size(176, 16) Me.Label12.TabIndex = 14 Me.Label12.Text = "Wall Size (meter)"

'cboWallCons

Me.cboWallCons.Items.AddRange(New Object() {"4 in. face brick + (light or heavyweight concrete block)", "Heavyweight concrete wall + (finish)"}) Me.cboWallCons.Location = New System.Drawing.Point(24, 40) Me.cboWallCons.Name = "cboWallCons" Me.cboWallCons.Size = New System.Drawing.Size(304, 28) Me.cboWallCons.TabIndex = 13

'Label11

Me.Label11.Font = New System.Drawing.Font("Microsoft Sans Serif", 9.75!, System.Drawing.FontStyle.Underline, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label11.Location = New System.Drawing.Point(24, 16) Me.Label11.Name = "Label11" Me.Label11.Size = New System.Drawing.Size(200, 16) Me.Label11.TabIndex = 12 Me.Label11.Text = "Description Of Wall Construction"

btnBack3

Me.btnBack3.BackColor = System.Drawing.Color.SandyBrown Me.btnBack3.Location = New System.Drawing.Point(320, 248) Me.btnBack3.Name = "btnBack3" Me.btnBack3.Size = New System.Drawing.Size(72, 24) Me.btnBack3.TabIndex = 11 Me.btnBack3.Text = "Back"

btnNext3

Me.btnNext3.BackColor = System.Drawing.Color.SandyBrown Me.btnNext3.Location = New System.Drawing.Point(400, 248) Me.btnNext3.Name = "btnNext3" Me.btnNext3.Size = New System.Drawing.Size(72, 24) Me.btnNext3.TabIndex = 10 Me.btnNext3.Text = "Next"

'tpgwindow

Me.tpgwindow.BackColor = System.Drawing.Color.LavenderBlush Me.tpgwindow.Controls.Add(Me.Label25) Me.tpgwindow.Controls.Add(Me.Label26) Me.tpgwindow.Controls.Add(Me.Label27) Me.tpgwindow.Controls.Add(Me.Label28) Me.tpgwindow.Controls.Add(Me.txtWinWidth) Me.tpgwindow.Controls.Add(Me.txtWinLength) Me.tpgwindow.Controls.Add(Me.Label24) Me.tpgwindow.Controls.Add(Me.Label21) Me.tpgwindow.Controls.Add(Me.cboWinDirection) Me.tpgwindow.Controls.Add(Me.GroupBox3) Me.tpgwindow.Controls.Add(Me.Label20) Me.tpgwindow.Controls.Add(Me.cboWinType) Me.tpgwindow.Controls.Add(Me.Label18) Me.tpgwindow.Controls.Add(Me.btnBack4) Me.tpgwindow.Controls.Add(Me.btnNext4) Me.tpgwindow.Controls.Add(Me.GroupBox2) Me.tngwindow.Location = New System.Drawing.Point(4, 22) Me.tpgwindow.Name = "tpgwindow" Me.tpgwindow.Size = New System.Drawing.Size(488, 286) Me.tpgwindow.TabIndex = 3 Me.tpgwindow.Text = "Window"

'Label25

Me.Label25.Location = New System.Drawing.Point(368, 144) Me.Label25.Name = "Label25" Me.Label25.Size = New System.Drawing.Size(48, 24) Me.Label25.TabIndex = 31 Me.Label25.Text = "meter"

'Label26

Me.Label26.Location = New System.Drawing.Point(368, 112) Me.Label26.Name = "Label26" Me.Label26.Size = New System.Drawing.Size(48, 24) Me.Label26.TabIndex = 30 Me.Label26.Text = "meter"

'Label27

Me.Label27.Location = New System.Drawing.Point(208, 144) Me.Label27.Name = "Label27" Me.Label27.Size = New System.Drawing.Size(64, 24) Me.Label27.TabIndex = 29 Me.Label27.Text = "Width :"

'Label28

Mc.Label28.Location = New System.Drawing.Point(200, 112) Mc.Label28.Name = "Label28" Mc.Label28.Size = New System.Drawing.Size(64, 24) Mc.Label28.TabIndex = 28 Mc.Label28.Text = "Length :"

'txtWinWidth

Me.txtWinWidth.Location = New System.Drawing.Point(288, 144) Me.txtWinWidth.Name = "txtWinWidth" Me.txtWinWidth.Size = New System.Drawing.Size(72, 25) Me.txtWinWidth.TabIndex = 27 Me.txtWinWidth.Text = ""

'txtWinLength

Me.txtWinLength.Location = New System.Drawing.Point(288, 112) Me.txtWinLength.Name = "txtWinLength" Me.txtWinLength.Size = New System.Drawing.Size(72, 25) Me.txtWinLength.TabIndex = 26 Me.txtWinLength.Text = ""

'Label24

Me.Label24.Font = New System Drawing Font("Trebuchet MS", 9.75!, System Drawing FontStyle.Underline, System Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label24.Location = New System Drawing.Point(200, 80) Me.Label24.Name = "Label24" Me.Label24.Size = New System.Drawing.Size(144, 24) Me.Label24.TabIndex = 25 Me.Label24.Text = "Window Size (meter)"

Label21

Me.Label21.Location = New System.Drawing.Point(200, 40) Me.Label21.Name = "Label21" Me.Label21.Size = New System.Drawing.Size(80, 24) Me.Label21.TabIndex = 24 Me.Label21.Text = "Direction :"

'cboWinDirection

Me.cboWinDirection.Items.AddRange(New Object() {"North", "North East", "East", "South East", "South", "South West", "West", "North West"})
```
Me.cboWinDirection.Location = New
System.Drawing.Point(288, 40)
Me.cboWinDirection.Name = "cboWinDirection"
Me.cboWinDirection.Size = New System.Drawing.Size(112, 28)
Me.cboWinDirection.TabIndex = 23
```

'GroupBox3

Me.GroupBox3.Controls.Add(Me.rboBlinds) Me.GroupBox3.Controls.Add(Me.rboNoShade) Me.GroupBox3.Location = New System.Drawing.Point(24, 176) Me.GroupBox3.Name = "GroupBox3" Me.GroupBox3.Size = New System.Drawing.Size(152, 80) Me.GroupBox3.TabIndex = 16 Me.GroupBox3.TabStop = False

'rboBlinds

Me.rboBlinds.Location = New System.Drawing.Point(16, 48) Me.rboBlinds.Name = "rboBlinds" Me.rboBlinds.TabIndex = 1 Me.rboBlinds.Text = "With Blinds"

'rboNoShade

Me.rboNoShade.Checked = True Me.rboNoShade.Location = New System.Drawing.Point(16, 16) Me.rboNoShade.Name = "rboNoShade" Me.rboNoShade.Size = New System.Drawing.Size(120, 24) Me.rboNoShade.TabIndex = 0Me.rboNoShade.TabStop = True Me.rboNoShade.Text = "No Shading"

'Label20

Me.Label20.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Underline, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label20.Location = New System.Drawing.Point(24, 152) Me.Label20.Name = "Label20" Me.Label20.Size = New System.Drawing.Size(120, 24) Me.Label20.TabIndex = 15 Me.Label20.Text = "Shading Effects :"

'cboWinType

Me.cboWinType.Items.AddRange(New Object() {"Single Glass", "Double Glass"}) Me.cboWinType.Location = New System.Drawing.Point(24, 40) Me.cboWinType.Name = "cboWinType" Me.cboWinType.Size = New System.Drawing.Size(128, 28) Me.cboWinType.TabIndex = 13

'Label18

Me.Label18.Font = New System.Drawing.Font("Microsoft Sans Serif", 9.75!, System.Drawing.FontStyle.Underline, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label18.Location = New System.Drawing.Point(24, 16) Me.Label18.Name = "Label18" Me,Label18.Size = New System.Drawing.Size(104, 16) Me.Label18.TabIndex = 12 Me.Label18.Text = "Type of Glazing :"

'btnBack4

Me.btnBack4.BackColor = System.Drawing.Color.SandyBrown Me.btnBack4.Location = New System.Drawing.Point(320, 248) Me.btnBack4.Name = "btnBack4"

Me.btnBack4.Size = New System.Drawing.Size(72, 24)

Me.btnBack4.TabIndex = 11 Me.btnBack4.Text = "Back"

btnNext4

Me.btnNext4.BackColor = System.Drawing.Color.SandyBrown Me.btnNext4.Location = New System.Drawing.Point(400, 248) Me.btnNext4.Name = "btnNext4" Me.btnNext4.Size = New System.Drawing.Size(72, 24) Me.btnNext4.TabIndex = 10 Me.btnNext4.Text = "Next"

'GroupBox2

Me.GroupBox2.Controls.Add(Me.rboHeatAbs) Me.GroupBox2.Controls.Add(Me.rboClear) Me.GroupBox2.Location = New System.Drawing.Point(24, 72) Me.GroupBox2.Name = "GroupBox2" Me.GroupBox2.Size = New System.Drawing.Size(152, 72) Me.GroupBox2.TabIndex = 14Me.GroupBox2.TabStop = False

'rboHeatAbs

Me.rboHeatAbs.Location = New System.Drawing.Point(16, 40) Me.rboHeatAbs.Name = "rboHeatAbs" Me.rboHeatAbs.Size = New System.Drawing.Size(128, 16) Me.rboHeatAbs.TabIndex = 1 Me.rboHeatAbs.Text = "Heat Absorbing"

'rboClear

Me.rboClear.Checked = True Me.rboClear.Location = New System.Drawing.Point(16, 16) Me.rboClear.Name = "rboClear" Me.rboClear.Size = New System.Drawing.Size(96, 16) Me.rboClear.TabIndex = 0Me.rboClear.TabStop = True Me.rboClear.Text = "Clear"

'prgOccupancy

Me.prgOccupancy.BackColor = System.Drawing.Color.LavenderBlush Me.prgOccupancy.Controls.Add(Me.cboTypeAct) Me.prgOccupancy.Controls.Add(Me.txtNoPeople) Me.prgOccupancy.Controls.Add(Me.Label31) Me.prgOccupancy.Controls.Add(Me.Label30) Me.prgOccupancy.Controls.Add(Me.Label29) Me.prgOccupancy.Controls.Add(Me.btnBack5) Me.prgOccupancy.Controls.Add(Me.btnNext5) Me.prgOccupancy.Location = New System.Drawing.Point(4, 22) Me.prgOccupancy.Name = "prgOccupancy" Me.prgOccupancy.Size = New System.Drawing.Size(488, 286) Me.prgOccupancy.TabIndex = 4 Me.prgOccupancy.Text = "Occupancy"

'cboTypeAct

Me.cboTypeAct.Items.AddRange(New Object() {"Very light office work", "Moderately active office work"}) Me.cboTypeAct.Location = New System.Drawing.Point(160, 80) Me.cboTypeAct.Name = "cboTypeAct" Me.cboTypeAct.Size = New System.Drawing.Size(160, 28) Me.cboTypeAct.TabIndex = 16

'txtNoPeople

Me.txtNoPeople.Location = New System.Drawing.Point(160, 48) Me.txtNoPeople.Name = "txtNoPeople"

Me.txtNoPeople.Size = New System.Drawing.Size(48, 25) Me.txtNoPeople.TabIndex = 15 Me.txtNoPeople.Text = ""

'Label31

Me.Label31.Font = New System.Drawing.Font("Trebuchet MS", 11.25!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label31.Location = New System.Drawing.Point(24, 88) Me.Label31.Name = "Label31" Me.Label31.Size = New System.Drawing.Size(152, 24) Me.Label31.TabIndex = 14 Me.Label31.Text = "Type of Activity :"

'Label30

Me.Label30.Font = New System Drawing.Font("Trebuchet MS", 11.25!, System Drawing.FontStyle.Regular, System Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label30.Location = New System.Drawing.Point(40, 48) Me.Label30.Name = "Label30" Me.Label30.Size = New System.Drawing.Size(128, 24) Me.Label30.TabIndex = 13 Me.Label30.Text = "No. of People :"

'Label29

Me.Label29.Font = New System.Drawing.Font("Microsoft Sans Serif", 9.75!, System.Drawing.FontStyle.Underline, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label29.Location = New System.Drawing.Point(24, 16) Me.Label29.Name = "Label29" Me.Label29.Size = New System.Drawing.Size(80, 16) Me.Label29.TabIndex = 12 Me.Label29.Text = "Occupancy"

btnBack5

Me.btnBack5.BackColor = System.Drawing.Color.SandyBrown Me.btnBack5.Location = New System.Drawing.Point(320, 248) Me.btnBack5.Name = "btnBack5" Me.btnBack5.Size = New System.Drawing.Size(72, 24) Me.btnBack5.TabIndex = 11 Me.btnBack5.Text = "Back"

'btnNext5

Me.btnNext5.BackColor = System.Drawing.Color.SandyBrown Me.btnNext5.Location = New System.Drawing.Point(400, 248) Me.btnNext5.Name = "btnNext5" Me.btnNext5.Size = New System.Drawing.Size(72, 24) Me.btnNext5.TabIndex = 10 Me.btnNext5.Text = "Next"

'tpgEquip

Me.tpgEquip.BackColor = System.Drawing.Color.LavenderBlush Me.tpgEquip.Controls.Add(Me.Label36) Me.tpgEquip.Controls.Add(Me.Label35) Me.tpgEquip.Controls.Add(Me.Label35) Me.tpgEquip.Controls.Add(Me.Label34) Me.tpgEquip.Controls.Add(Me.Label34) Me.tpgEquip.Controls.Add(Me.Label33) Me.tpgEquip.Controls.Add(Me.Label32) Me.tpgEquip.Controls.Add(Me.Label32) Me.tpgEquip.Controls.Add(Me.btnBack6) Me.tpgEquip.Controls.Add(Me.btnBack6) Me.tpgEquip.Controls.Add(Me.btnCalculate) Me.tpgEquip.Location = New System.Drawing.Point(4, 22) Me.tpgEquip.Name = "tpgEquip" Me.tpgEquip.Size = New System.Drawing.Size(488, 286) Me.tpgEquip.TabIndex = 5 Me.tpgEquip.Text = "Equipment Load"

'Label36

Mc.Label36.Location = New System.Drawing.Point(192, 120) Mc.Label36.Name = "Label36" Mc.Label36.Size = New System.Drawing.Size(48, 32) Mc.Label36.TabIndex = 19 Mc.Label36.Text = "Watts"

'txtOthers

Me.txtOthers.Location = New System.Drawing.Point(120, 120) Me.txtOthers.Name = "txtOthers" Me.txtOthers.Size = New System.Drawing.Size(64, 25) Me.txtOthers.TabIndex = 18 Me.txtOthers.Text = ""

Label35

Me.Label35.Location = New System.Drawing.Point(48, 120) Me.Label35.Name = "Label35" Me.Label35.Size = New System.Drawing.Size(64, 24) Me.Label35.TabIndex = 17 Me.Label35.Text = "Others :"

'GroupBox4

Me.GroupBox4.Controls.Add(Me.rbofullcomp) Me.GroupBox4.Controls.Add(Me.rboStandby) Me.GroupBox4.Location = New System.Drawing.Point(304, 40) Me.GroupBox4.Name = "GroupBox4" Me.GroupBox4.Size = New System.Drawing.Size(176, 80) Me.GroupBox4.TabIndex = 16 Me.GroupBox4.TabStop = False

'rbofullcomp

Me.rbofullcomp.Location = New System.Drawing.Point(16, 40) Me.rbofullcomp.Name = "rbofullcomp" Me.rbofullcomp.Size = New System.Drawing.Size(152, 24) Me.rbofullcomp.TabIndex = 1 Me.rbofullcomp.Text = "Full Consumption"

'rboStandby

Me.rboStandby.Checked = True Me.rboStandby.Location = New System.Drawing.Point(16, 16) Me.rboStandby.Name = "rboStandby" Me.rboStandby.Size = New System.Drawing.Size(112, 24) Me.rboStandby.TabIndex = 0 Me.rboStandby.TabStop = True Me.rboStandby.Text = "Stand By"

'Label34

Me.Label34.Location = New System.Drawing.Point(208, 48) Me.Label34.Name = "Label34" Me.Label34.Size = New System.Drawing.Size(96, 32) Me.Label34.TabIndex = 15 Me.Label34.Text = "Condition :"

'txtComp

Me.txtComp.Location = New System.Drawing.Point(120, 48) Me.txtComp.Name = "txtComp" Me.txtComp.Size = New System.Drawing.Size(56, 25) Me.txtComp.TabIndex = 14

Me.txtComp.Text = ""

'Label33

Mc.Label33.Font = New System.Drawing.Font("Microsoft Sans Serif", 9.75!, System.Drawing.FontStyle.Underline, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label33.Location = New System.Drawing.Point(24, 16) Me.Label33.Name = "Label33" Me.Label33.Size = New System.Drawing.Size(112, 16) Me.Label33.TabIndex = 13 Me.Label33.Text = "Equipment Load"

'Label32

Me.Label32.Location = New System.Drawing.Point(24, 48) Me.Label32.Name = "Label32" Me.Label32.Size = New System.Drawing.Size(88, 16) Me.Label32.TabIndex = 12 Me.Label32.Text = "No. of PCs :"

'btnBack6

Me.btnBack6.BackColor = System.Drawing.Color.SandyBrown Me.btnBack6.Location = New System.Drawing.Point(312, 248) Me.btnBack6.Name = "btnBack6" Me.btnBack6.Size = New System.Drawing.Size(72, 24) Me.btnBack6.TabIndex = 11 Me.btnBack6.Text = "Back"

'btnCalculate

Me.btnCalculate.BackColor = System.Drawing.Color.DarkRed Me.btnCalculate.Font = New System.Drawing.Font("Trebuchet MS", 12.0!, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.btnCalculate.ForeColor = System.Drawing.SystemColors.ControlLightLight Me.btnCalculate.Location = New System.Drawing.Point(392, 240) Me.btnCalculate.Name = "btnCalculate" Me.btnCalculate.Size = New System.Drawing.Size(88, 32) Me.btnCalculate.TabIndex = 10

Me.btnCalculate.Text = "Calculate"

'tpgresult

Me.tpgresult.BackColor = System.Drawing.SystemColors.Menu Me.tpgresult.Controls.Add(Me.Label47) Me.tpgresult.Controls.Add(Me.Label49) Me.tpgresult.Controls.Add(Me.txtQKW) Me.tpgresult.Controls.Add(Me.Label48) Me.tpgresult.Controls.Add(Me.Label46) Me.tpgresult.Controls.Add(Me.Label45) Me.tpgresult.Controls.Add(Me.Label44) Me.tpgresult.Controls.Add(Me.Label43) Me.tpgresult.Controls.Add(Me.Label42) Me.tpgresult.Controls.Add(Me.Label40) Me.tpgresult.Controls.Add(Me.Label39) Me.tpgresult.Controls.Add(Me.Label38) Me.tpgresult.Controls.Add(Me.Label37) Me.tpgresult.Controls.Add(Me.txtQtotal) Me.tpgresult.Controls.Add(Me.txtQequip) Me.tpgresult.Controls.Add(Me.txtQoccupancy) Me.tpgresult.Controls.Add(Me.txtQwindow) Me.tpgresult.Controls.Add(Me.txtQRoof) Me.tpgresult.Controls.Add(Me.txtQwall) Me tpgresult.Controls.Add(Me.btnBack7) Me.tpgresult.Controls.Add(Me.Label41) Me.tpgresult.Location = New System.Drawing.Point(4, 29)

Me.tpgresult.Name = "tpgresult" Me.tpgresult.Size = New System.Drawing.Size(488, 279) Me.tpgresult.TabIndex = 6 Me.tpgresult.Text = "Result"

'Label47

Me.Label47.Location = New System.Drawing.Point(256, 152) Me.Label47.Name = "Label47" Me.Label47.Size = New System.Drawing.Size(64, 16) Me.Label47.TabIndex = 32 Me.Label47.Text = "BTU/hr"

'Label49

Me.Label49.Location = New System.Drawing.Point(360, 160) Me.Label49.Name = "Label49" Me.Label49.Size = New System.Drawing.Size(104, 16) Me.Label49.TabIndex = 31 Me.Label49.Text = "Total Watts :"

'txtQKW

Me.txtQKW.Location = New System.Drawing.Point(368, 184) Me.txtQKW.Name = "txtQKW" Me.txtQKW.Size = New System.Drawing.Size(88, 25) Me.txtQKW.TabIndex = 30 Me.txtQKW.Text = ""

Label48

Me.Label48.BackColor = System.Drawing.Color.White Me.Label48.Location = New System.Drawing.Point(256, 184) Me.Label48.Name = "Label48" Me.Label48.Size = New System.Drawing.Size(64, 16) Me.Label48.TabIndex = 29 Me.Label48.Text = "BTU/hr"

'Label46

Me.Label46.Location = New System.Drawing.Point(256, 120) Me.Label46.Name = "Label46" Me.Label46.Size = New System.Drawing.Size(64, 16) Me.Label46.TabIndex = 27 Me.Label46.Text = "BTU/hr"

'Label45

Me.Label45.Location = New System.Drawing.Point(256, 88) Me.Label45.Name = "Label45" Me.Label45.Size = New System.Drawing.Size(72, 16) Me.Label45.TabIndex = 26 Me.Label45.Text = "BTU/hr"

'Label44

Me.Label44.Location = New System.Drawing.Point(256, 56) Me.Label44.Name = "Label44" Me.Label44.Size = New System.Drawing.Size(64, 24) Me.Label44.TabIndex = 25 Me.Label44.Text = "BTU/hr"

'Label43

Me.Label43.Location = New System.Drawing.Point(256, 24) Me.Label43.Name = "Label43" Me.Label43.Size = New System.Drawing.Size(64, 24) Me.Label43.TabIndex = 24 Me.Label43.Text = "BTU/hr" 'Label42

Me.Label42.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label42.Location = New System.Drawing.Point(88, 184) Me.Label42.Name = "Label42" Me.Label42.Size = New System.Drawing.Size(64, 16) Me.Label42.TabIndex = 23 Me.Label42.Text = "Q Total :"

'Label40

Me.Label40.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label40.Location = New System.Drawing.Point(56, 120) Me.Label40.Name = "Label40" Me.Label40.Size = New System.Drawing.Size(96, 16) Me.Label40.TabIndex = 21 Me.Label40.Text = "Q Occupancy :"

'Label39

Me.Label39.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label39.Location = New System.Drawing.Point(72, 88) Me.Label39.Name = "Label39" Me.Label39.Size = New System.Drawing.Size(80, 16) Me.Label39.TabIndex = 20 Me.Label39.Text = "Q Window :"

'Label38

Me.Label38.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label38.Location = New System.Drawing.Point(96, 56) Me.Label38.Name = "Label38" Me.Label38.Size = New System.Drawing.Size(64, 16) Me.Label38.TabIndex = 19 Me.Label38.Text = "Q Wall :"

'Label37

Me.Label37.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label37.Location = New System.Drawing.Point(88, 24) Me.Label37.Name = "Label37" Me.Label37.Size = New System.Drawing.Size(64, 16) Me.Label37.TabIndex = 18 Me.Label37.Text = "Q Roof :"

'txtQtotal

Me.txtQtotal.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.txtQtotal.Location = New System.Drawing.Point(160, 184) Me.txtQtotal.Name = "txtQtotal" Me.txtQtotal.Size = New System.Drawing.Size(88, 23) Me.txtQtotal.TabIndex = 17 Me.txtQtotal.Text = ""

'txtQequip

Me.txtQequip.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.txtQequip.Location = New System.Drawing.Point(160, 152) Me.txtQequip.Name = "txtQequip" Me.txtQequip.Size = New System.Drawing.Size(88, 23) Me.txtQequip.TabIndex = 16 Me.txtQequip.Text = ""

'txtQoccupancy

Me.txtQoccupancy.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.txtQoccupancy.Location = New System.Drawing.Point(160, 120) Me.txtQoccupancy.Name = "txtQoccupancy" Me.txtQoccupancy.Size = New System.Drawing.Size(88, 23) Me.txtQoccupancy.TabIndex = 15 Me.txtQoccupancy.Text = ""

'txtQwindow

Me.txtQwindow.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.txtQwindow.Location = New System.Drawing.Point(160, 88) Me.txtQwindow.Name = "txtQwindow" Me.txtQwindow.Size = New System.Drawing.Size(88, 23) Me.txtQwindow.TabIndex = 14 Me.txtQwindow.Text = ""

'txtQRoof

Me.txtQRoof.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.txtQRoof.Location = New System.Drawing.Point(160, 24) Me.txtQRoof.Name = "txtQRoof" Me.txtQRoof.Size = New System.Drawing.Size(88, 23) Me.txtQRoof.TabIndex = 13 Me.txtQRoof.Text = ""

'txtQwall

Me.txtQwall.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.txtQwall.Location = New System.Drawing.Point(160, 56) Me.txtQwall.Name = "txtQwall" Me.txtQwall.Size = New System.Drawing.Size(88, 23) Me.txtQwall.TabIndex = 12 Me.txtQwall.Text = ""

btnBack7

Me.btnBack7.BackColor = System.Drawing.SystemColors.Control Me.btnBack7.Location = New System.Drawing.Point(400, 248) Me.btnBack7.Name = "btnBack7" Me.btnBack7.Size = New System.Drawing.Size(72, 24) Me.btnBack7.TabIndex = 11 Me.btnBack7.Text = "Back"

'Label41

Me.Label41.Font = New System.Drawing.Font("Trebuchet MS", 9.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label41.Location = New System.Drawing.Point(24, 152) Me.Label41.Name = "Label41" Me.Label41.Size = New System.Drawing.Size(128, 16) Me.Label41.TabIndex = 22 Me.Label41.Text = "Q Equipment Load :"

'btnQuit

Me.btnQuit.BackColor = System.Drawing.Color.Salmon Me.btnQuit.Location = New System.Drawing.Point(440, 408) Me.btnQuit.Name = "btnQuit" Me.btnQuit.Size = New System.Drawing.Size(80, 24) Me.btnQuit.TabIndex = 1 Me.btnQuit.Text = "Quit"

^{*}btnreset

Me.btnreset.BackColor = System.Drawing.Color.Tomato Me.btnreset.Location = New System.Drawing.Point(352, 408) Me.btnreset.Name = "btnreset" Me.btnreset.Size = New System.Drawing.Size(80, 24) Me.btnreset.TabIndex = 2 Me.btnreset.Text = "Reset"

'Label50

Me.Label50.BackColor = System.Drawing.Color.Thistle Me.Label50.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D Me.Label50.Font = New System.Drawing.Font("Arial Narrow", 20.25!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label50.ForeColor = System.Drawing.SystemColors.InfoText Me.Label50.Location = New System.Drawing.Point(192, 16) Me.Label50.Name = "Label50" Me.Label50.Size = New System.Drawing.Size(168, 40) Me.Label50.TabIndex = 3 Me.Label50.Text = "EMSys" Me.Label50.TextAlign = System.Drawing.ContentAlignment.MiddleCenter

'Label51

Me.Label51.Font = New System.Drawing.Font("Arial Narrow", 9.75!, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.Label51.Location = New System.Drawing.Point(8, 424) Me.Label51.Name = "Label51" Me.Label51.Size = New System.Drawing.Size(192, 24) Me.Label51.TabIndex = 4 Me.Label51.Text = "By Solihah and Dr.Balbir Singh"

Forml

Me.AutoScaleBaseSize = New System.Drawing.Size(7, 18) Me.BackColor = System.Drawing.Color.Plum Me.ClientSize = New System.Drawing.Size(570, 448) Me.Controls.Add(Me.Label51) Me.Controls.Add(Me.Label50) Me.Controls.Add(Me.btnreset) Me.Controls.Add(Me.btnQuit) Me.Controls.Add(Me.tctrContent) Me.Font = New System.Drawing.Font("Trebuchet MS", 11.25!, System Drawing FontStyle Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.FormBorderStyle = System.Windows.Forms.FormBorderStyle.FixedToolWindow Me.Name = "Form1" Me.Text = " Cooling Load Calculator" Me.tctrContent.ResumeLayout(False) Me.tpgGeneral,ResumeLayout(False)

Me.tpgRoof.ResumeLayout(False) Me.GroupBox1.ResumeLayout(False) Me.tpgwall.ResumeLayout(False) Me.tpgwindow.ResumeLayout(False) Me.GroupBox3.ResumeLayout(False) Me.GroupBox2.ResumeLayout(False) Me.tpgEquip.ResumeLayout(False) Me.tpgEquip.ResumeLayout(False) Me.tpgresult.ResumeLayout(False) Me.ResumeLayout(False)

Ellu Sub	End	Sub
----------	-----	-----

r,	Database connectionDatabase connectionDatabase connectionDatabase connection
Public cnn	Data As New OleDb.OleDbConnection()
Public Con	As String = Application.StartupPath
1	Variable DeclarationVariable
Dim Tfarei	a As Double 'Temp Diff
Dim Stime	As Double 'Solar Time
Dim Den 1	D Pllushe Oract As Double Deef Attribute
Dim Well	Wall Jushia Qual As Double Root Altribute
Dim SUCE	CLE SC OWer As Double Window Attribute
Dim Sridi	CLF, SC, QWIN AS DOUDIE WINDOW Attribute
DIII LS, Q	Occupancy As Double Occupancy Attribute
Dim QEqu	ip As Double 'Equipment load Attribute
·	Variable Program Logic Flow
	- •
Public skip	tabs As Boolean
,	Error Margan Country
	Error Message Control
Private Sul	MsgErrorEmpty()
MsoBox("1	Please fill in all fields before proceed "
	wwww and in all living UVIUIV PIUVUUL
Meakovyt	le Exclamation "Invalid Data Processing"
MsgBoxSty End Sub	yle.Exclamation, "Invalid Data Processing")
MsgBoxSty End Sub Private Sub	yle.Exclamation, "Invalid Data Processing")
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub	yle.Exclamation, "Invalid Data Processing") MsgErrorNotcompatible() Please fill in the correct Data Type.", yle.Exclamation, "Error Data Processing")
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub	yle.Exclamation, "Invalid Data Processing") MsgErrorNotcompatible() Please fill in the correct Data Type.", yle.Exclamation, "Error Data Processing") Button Next procedure
MsgBoxSty End Sub Private Sub MsgBox("I MsgBoxSty End Sub 	yle.Exclamation, "Invalid Data Processing") MsgErrorNotcompatible() Please fill in the correct Data Type.", yle.Exclamation, "Error Data Processing") Button Next procedure btnNext1 Click(ByVal sender As System.Object
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub 	 b MsgErrorNotcompatible() c) MsgErrorNotcompatible() c) Please fill in the correct Data Type.", yle.Exclamation, "Error Data Processing") c) Button Next procedure
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub 	 yle.Exclamation, "Invalid Data Processing") MsgErrorNotcompatible() Please fill in the correct Data Type.", yle.Exclamation, "Error Data Processing") Button Next procedure btnNext1_Click(ByVal sender As System.Object, System.EventArgs) Handles btnNext1.Click ingTabs()
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub 	<pre>yle.Exclamation, "Invalid Data Processing") MsgErrorNotcompatible() Please fill in the correct Data Type.", yle.Exclamation, "Error Data Processing")Button Next procedure btnNext1_Click(ByVal sender As System.Object, System.EventArgs) Handles btnNext1.Click ingTabs() = False Then</pre>
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub Private Sub Private Sub ByVal e As errorCheck If skiptabs	<pre>yle.Exclamation, "Invalid Data Processing") > MsgErrorNotcompatible() Please fill in the correct Data Type.", yle.Exclamation, "Error Data Processing")Button Next procedure btnNext1_Click(ByVal sender As System.Object, s System.EventArgs) Handles btnNext1.Click ingTabs() = False Then</pre>
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub 	<pre>yle.Exclamation, "Invalid Data Processing") > MsgErrorNotcompatible() Please fill in the correct Data Type.", yle.Exclamation, "Error Data Processing")Button Next procedure btnNext1_Click(ByVal sender As System.Object, system.EventArgs) Handles btnNext1.Click ingTabs() = False Then</pre>
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub Private Sub ByVal e As errorCheck If skiptabs Exit Sub End If	<pre>vyle.Exclamation, "Invalid Data Processing") > MsgErrorNotcompatible() Please fill in the correct Data Type.", yle.Exclamation, "Error Data Processing")Button Next procedure</pre>
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub 	<pre>vyle.Exclamation, "Invalid Data Processing") > MsgErrorNotcompatible() Please fill in the correct Data Type.", yle.Exclamation, "Error Data Processing")Button Next procedure</pre>
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub Private Sub ByVal e As errorCheck If skiptabs Exit Sub End If tetrContent	<pre>vyle.Exclamation, "Invalid Data Processing") > MsgErrorNotcompatible() Please fill in the correct Data Type.", yle.Exclamation, "Error Data Processing")</pre>
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub Private Sub ByVal e As errorCheck If skiptabs Exit Sub End If tctrContent tctrContent End Sub	<pre>vyle.Exclamation, "Invalid Data Processing") > MsgErrorNotcompatible() Please fill in the correct Data Type.", yle.Exclamation, "Error Data Processing")Button Next procedure btnNext1_Click(ByVal sender As System.Object, system.EventArgs) Handles btnNext1.Click ingTabs() = False Then .TabPages(1).Enabled = True .SelectedIndex = 1</pre>
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub Private Sub ByVal e As errorCheck If skiptabs Exit Sub End If tetrContent tetrContent End Sub Private Sub	<pre>vyle.Exclamation, "Invalid Data Processing") >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub Private Sub ByVal e As errorCheck If skiptabs Exit Sub End If tctrContent tctrContent End Sub Private Sub ByVal e As	yle.Exclamation, "Invalid Data Processing") MsgErrorNotcompatible() Please fill in the correct Data Type.", yle.Exclamation, "Error Data Processing")Button Next procedure
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub Private Sub ByVal e As errorCheck If skiptabs Exit Sub End If tetrContent tetrContent End Sub Private Sub ByVal e As errorCheck	<pre>vyle.Exclamation, "Invalid Data Processing") > MsgErrorNotcompatible() Please fill in the correct Data Type.", yle.Exclamation, "Error Data Processing")</pre>
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub Private Sub ByVal e As errorCheck If skiptabs Exit Sub End If tctrContent tctrContent End Sub Private Sub ByVal e As errorCheck If skiptabs	<pre>vyle.Exclamation, "Invalid Data Processing") >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub Private Sub ByVal e As errorCheck Exit Sub End If tctrContent Exit Sub End If tctrContent End Sub Private Sub ByVal e As errorCheck [f skiptabs	<pre>vyle.Exclamation, "Invalid Data Processing") >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub Private Sub ByVal e As errorCheck If skiptabs End If tetrContent tetrContent tetrContent End Sub Private Sub ByVal e As errorCheck If skiptabs errorCheck If skiptabs	<pre>vyle.Exclamation, "Invalid Data Processing") >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub Private Sub ByVal e As errorCheck If skiptabs Exit Sub End If tctrContent End Sub Private Sub ByVal e As errorCheck If skiptabs Exit Sub Ent If	<pre>vyle.Exclamation, "Invalid Data Processing") >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub Private Sub ByVal e As errorCheck If skiptabs Exit Sub End If tetrContent tetrContent Exit Sub Private Sub ByVal e As errorCheck If skiptabs Exit Sub End If tetrContent Exit Sub End If	<pre>vyle.Exclamation, "Invalid Data Processing") >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
MsgBoxSt End Sub Private Sub MsgBox("I MsgBoxSt End Sub Private Sub ByVal e As errorCheck Exit Sub End If tctrContent tctrContent End Sub Private Sub ByVal e As errorCheck If skiptabs Exit Sub End If tctrContent fskiptabs Exit Sub End If	<pre>vyle.Exclamation, "Invalid Data Processing") >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>

Private Sub btnNext3_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnNext3.Click errorCheckingTabs() If skiptabs = False Then Exit Sub End If tctrContent.TabPages(3).Enabled = True tctrContent.SelectedIndex = 3 End Sub

Private Sub btnNext4_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnNext4.Click errorCheckingTabs() If skiptabs = False Then Exit Sub End If tctrContent.TabPages(4).Enabled = True tctrContent.SelectedIndex = 4 End Sub

Private Sub btnNext5_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnNext5.Click errorCheckingTabs() If skiptabs = False Then Exit Sub End If tctrContent.TabPages(5).Enabled = True tctrContent.SelectedIndex = 5 End Sub

Private Sub btnCalculate_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnCalculate.Click errorCheckingTabs() If skiptabs = False Then Exit Sub End If tctrContent.TabPages(6).Enabled = True

'-----Calculation Part-----tabGeneralCalculation() tabroofcalculation() tabwallcalculation() tabwincalculation() tabOccupancycalculation() tabEquipcalculation()

'------Result Display-----tctrContent.TabPages(6).Enabled = True txtQRoof.Text = Format(Qroof, "0.000") txtQwall.Text = Format(Qwall, "0.000") txtQwindow.Text = Format(QWin, "0.000") txtQoccupancy.Text = Format(QCcupancy, "0.000") txtQequip.Text = Format(QEquip, "0.000")

txtQtotal.Text = Format(Qroof + Qwall + QWin + QOccupancy + QEquip, "0.000") txtQKW.Text = Format(Val(txtQtotal.Text) * (0.293), "0.000") tctrContent.SelectedIndex = 6

End Sub

'-----Button Back Procedure------

Private Sub btnBack2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnBack2.Click tctrContent.SelectedIndex = 0 End Sub Private Sub btnBack3_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnBack3.Click tctrContent.SelectedIndex = 1 End Sub

Private Sub btnBack4_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnBack4.Click tctrContent.SelectedIndex = 2 End Sub

Private Sub btnBack5_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnBack5.Click tctrContent.SelectedIndex = 3 End Sub

Private Sub btnBack6_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnBack6.Click tctrContent.SelectedIndex = 4 End Sub

Private Sub btnBack7_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnBack7.Click tctrContent.SelectedIndex = 5 End Sub

------Main Form Control------Private Sub btnQuit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnQuit.Click Me.Close() End Sub

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

------Tabstrips Control -----tctrContent.TabPages(0).Enabled = True tctrContent.TabPages(1).Enabled = False tctrContent.TabPages(2).Enabled = False tctrContent.TabPages(3).Enabled = False tctrContent.TabPages(4).Enabled = False tctrContent.TabPages(5).Enabled = False tctrContent.TabPages(6).Enabled = False

'-----Connection String Declaration-----cnnData.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" & _____" "Data Source=" & Con & "\data.mdb;" End Sub

Private Sub errorCheckingTabs() skiptabs = True If tetrContent.SelectedIndex = 0 Then If txtIndoor.Text = "" Or txtOutdoor.Text = "" Or lstSolarTime.SelectedIndex = -1 Then MsgErrorEmpty() skiptabs = False ElseIf IsNumeric(txtIndoor.Text) = False Or IsNumeric(txtOutdoor.Text) = False Then MsgErrorNotcompatible() skiptabs = False End If Elself tctrContent.SelectedIndex = 1 Then If lstRoofCons.SelectedIndex = -1 Or txtRWidth.Text = "" Or txtRLength.Text = "" Then MsgErrorEmpty() skiptabs = False ElseIf IsNumeric(txtRLength.Text) = False Or IsNumeric(txtRWidth.Text) = False Then MsgErrorNotcompatible()

skiptabs = False End If FiseIf tctrContent.SelectedIndex = 2 Then If cboWallCons.SelectedIndex = -1 Or cboWDirection.SelectedIndex = -1 Or txtWlength.Text = "" Or txtWWidth.Text = "" Then MsgErrorEmpty() skiptabs = False ElseIf IsNumeric(txtWlength.Text) = False Or IsNumeric(txtWWidth.TabIndex) = False Then MsgErrorNotcompatible() skiptabs = False End If ElseIf tctrContent.SelectedIndex = 3 Then If cboWinType.SelectedIndex = -1 Or cboWinDirection.SelectedIndex = -1 Or txtWinLength.Text = "" Or txtWinWidth.Text = "" Then MsgErrorEmpty() skiptabs = False Elself IsNumeric(txtWinLength.Text) = False Or IsNumeric(txtWinWidth,Text) = False Then MsgErrorNotcompatible() skiptabs = False End If ElseIf tctrContent.SelectedIndex = 4 Then If cboTypeAct.SelectedIndex = -1 Or txtNoPeople.Text = "" Then MsgErrorEmpty() skiptabs = False ElseIf IsNumeric(txtNoPeople.Text) = False Then MsgErrorNotcompatible() skiptabs = False End If Eiself tctrContent.SelectedIndex = 5 Then If txtComp.Text = "" Or txtOthers.Text = "" Then MsgErrorEmpty() skiptabs = False ElseIf IsNumeric(txtComp.Text) = False Or IsNumeric(txtOthers.Text) = False Then MsgErrorNotcompatible() skiptabs = False End If End If End Sub Private Sub tabGeneralCalculation() Tfaren = 9 / 5 * (Val(txtOutdoor.Text) - Val(txtIndoor.Text)) Stime = IstSolarTime.SelectedIndex + 1 End Sub Private Sub tabroofcalculation() Dim dsroof As New DataSet() Dim odaRoof As New OleDb.OleDbDataAdapter() Dim RselectSQI As String If rboSC.Checked = True Then RselectSQI = "SELECT [Roof No], [" & Stime & "], [Uvalue] FROM RoofWSus" odaRoof.SelectCommand = New OleDb.OleDbCommand(RselectSQl, cnnData) dsroof, Tables, Add("RoofWSus") odaRoof.FillSchema(dsroof, SchemaType.Mapped, "RoofWSus") odaRoof.Fill(dsroof, "RoofWSus") RCLTD = dsroof.Tables("RoofWSus").Rows(lstRoofCons.SelectedIndex).It emArray(1) RUvalue = dsroof.Tables("RoofWSus").Rows(lstRoofCons.SelectedIndex).It emArray(2)

Elself rboNoSC.Checked = True Then

RselectSQI = "SELECT [Roof No], [" & Stime & "], [Uvalue] FROM RoofWOSus" odaRoof.SelectCommand = New OleDb.OleDbCommand(RselectSQI, cnnData) dsroof.Tables.Add("RoofWOSus") odaRoof.FillSchema(dsroof, SchemaType.Mapped, "RoofWOSus") odaRoof.Fill(dsroof, "RoofWOSus")

RCLTD = dsroof Tables("RoofWOSus").Rows(lstRoofCons.SelectedIndex). ItemArray(1) RUvalue = dsroof Tables("RoofWOSus").Rows(lstRoofCons.SelectedIndex). ItemArray(2) MsgBox(RCLTD & ", " & RUvalue) End If

Qroof = RUvalue * (Val(txtRLength.Text) * Val(txtRWidth.Text) * 10.7584) * (RCLTD - Tfaren)

End Sub

Private Sub tabwallcalculation() Dim odaWall As New OleDb.OleDbDataAdapter() Dim dswall As New DataSet() Dim wallSelectSql As String Dim Walldirection As Integer

Walldirection = cboWDirection.SelectedIndex

If cboWaliCons.SelectedIndex = 0 Then WallUvalue = 0.319 ElseIf cboWallCons.SelectedIndex = 1 Then WallUvalue = 0.585 End If

wallSelectSql = "SELECT direction, [" & Stime & "] FROM WallGE" odaWall.SelectCommand = New OleDb.OleDbCommand(wallSelectSql, cnnData) dswall.Tables.Add("WallGE") odaWall.FillSchema(dswall, SchemaType.Mapped, "WallGE") odaWall.Fill(dswall, "WallGE")

WallGE = dswall.Tables("WallGE").Rows(Walldirection).ItemArray(1) Qwall = WallUvalue * (Val(txtWlength.Text) * Val(txtWWidth.Text) * 10.7584) * (WallGE - Tfaren) End Sub

Private Sub tabwincalculation() Dim odawindow As New OleDb.OleDbDataAdapter() Dim dswindow As New DataSet() Dim WinSelectSQI As String

If cboWinDirection.SelectedIndex = 0 Then SHGF = 47 ElseIf cboWinDirection.SelectedIndex = 1 Or cboWinDirection.SelectedIndex = 7 Then SHGF = 184 ElseIf cboWinDirection.SelectedIndex = 2 Or cboWinDirection.SelectedIndex = 6 Then SHGF = 217 ElseIf cboWinDirection.SelectedIndex = 3 Or cboWinDirection.SelectedIndex = 5 Then SHGF = 124 ElseIf cboWinDirection.SelectedIndex = 4 Then SHGF = 42 End If

If rboClear.Checked = True Then If rboNoShade.Checked = True Then If cboWinType.SelectedIndex = 0 Then SC = 0.94Elself cboWinType.SelectedIndex = 1 Then SC = 0.81End If Elself rboBlinds.Checked = True Then If cboWinType.SelectedIndex = 0 Then SC = 0.74Elself cboWinType.SelectedIndex = 1 Then SC = 0.62End If End If Elself rboHeatAbs.Checked = True Then If rboNoShade.Checked = True Then If cboWinType.SelectedIndex = 0 Then SC = 0.69Elself cboWinType.SelectedIndex = 1 Then SC = 0.55End If ElseIf rboBlinds.Checked = True Then If cboWinType.SelectedIndex = 0 Then SC = 0.57Elself cboWinType.SelectedIndex = 1 Then SC = 0.39End If End If End If WinSelectSQ1 = "SELECT Direction, [" & Stime & "] FROM

CLF" odawindow.SelectCommand = New OleDb.OleDbCommand(WinSelectSQl, cnnData) dswindow.Tables.Add("CLF") odawindow.FillSchema(dswindow, SchemaType.Mapped, "CLF") odawindow.Fill(dswindow, "CLF")

CLF =

dswindow.Tables("CLF").Rows(cboWinDirection.SelectedIndex) .ItemArray(1) QWin = SHGF * SC * CLF * (Val(txtWinLength.Text) * Val(txtWinWidth.Text) * 10.7584)

End Sub

Private Sub tabOccupancycalculation() If cboTypeAct.SelectedIndex = 0 Then LS = 410 ElseIf cboTypeAct.SelectedIndex = 1 Then LS = 450 End If QOccupancy = LS * Val(txtNoPeople.Text) End Sub

Private Sub tabEquipcalculation() Dim PCwat As Double

If rboStandby.Checked = True Then PCwat = Val(txtComp.Text) * 15 ElseIf rbofullcomp.Checked = True Then PCwat = Val(txtComp.Text) * 75 End If

QEquip = (PCwat + Val(txtOthers.Text)) / 0.293 End Sub

Private Sub btnreset Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnreset.Click txtIndoor Text = txtOutdoor.Text = "" IstSolarTime.SelectedIndex = -1 lstRoofCons.SelectedIndex = -1 txtRWidth.Text = " txtRLength.Text = "" cboWallCons.SelectedIndex = -1 cboWDirection.SelectedIndex = -1 txtWlength.Text = "" txtWWidth.Text = "" cboWinType.SelectedIndex = -1cboWinDirection SelectedIndex = -1txtWinLength.Text = " txtWinWidth.Text = "" cboTvpeAct.SelectedIndex = -1txtNoPeople.Text = txtComp.Text = "" txtOthers.Text = ""

tctrContent.TabPages(6).Enabled = True txtQRoof.Text = "" txtQwall.Text = "" txtQwindow.Text = "" txtQoccupancy.Text = "" txtQequip.Text = "" txtQtotal.Text = "" txtQKW.Text = ""

tctrContent.TabPages(0).Enabled = True tctrContent.TabPages(1).Enabled = False tctrContent.TabPages(2).Enabled = False tctrContent.TabPages(3).Enabled = False tctrContent.TabPages(4).Enabled = False tctrContent.TabPages(5).Enabled = False tctrContent.TabPages(6).Enabled = False tctrContent.SelectedIndex = 0 End Sub

Private Sub txtQRoof_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles txtQRoof.TextChanged

End Sub

Private Sub tpgresult_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles tpgresult.Click

End Sub

Private Sub txIndoor_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles txIndoor.TextChanged

End Sub End Class

APPENDIX G

VISUAL BASIC CODING (AIR-COND CONTROL)

VERSION 5.00 Object = "{648A5603-2C6E-101B-82B6-00000000014}#1.1#0"; "MSCOMM32.OCX" Begin VB.Form Form1 = "Form1" Caption ClientHeight = 5280 $\begin{array}{rcl} \text{ClientLeft} &=& 60\\ \text{ClientTop} &=& 45 \end{array}$ = 450 ClientWidth = 6315 LinkTopic = "Form1" ScaleHeight = 5280 ScaleWidth = 6315StartUpPosition = 3 'Windows Default Begin VB.Timer Timer1 = 5880 = 0 Left Тор End Begin VB.Frame Frame2 = "Temperature" Caption BeginProperty Font = "Arial" = 12 Name Size = 0 Charset Weight = 400 Underline = -1 'True Italic = 0 'False Strikethrough = 0 'False EndProperty = 2175 Height = 720 Left TabIndex = 4 = 2880 = 5535 Top Width Begin VB.TextBox Text1 Alignment = 2 'Center BeginProperty Font = "MS Sans Serif" Name = 12 Size = 0 Charset Weight = 400 Underline = 0 'False = 0 'False Italic Strikethrough = 0 'False EndProperty Height = 375 = 1320 Left TabIndex = 6= "24" Text = 600 Тор = 495 Width End Begin VB.TextBox temp Height = 375 = 3120 Left = -1 "True Locked = 5 TabIndex = 1440 Top Width = 735 End Begin VB.Label Label2 "Degree Celcius" Caption BeginProperty Font = "Arial" Name = 9.75 Size Charset = 0 = 400 Weight Underline = 0 'False Italic = 0 'False Strikethrough = 0 'False EndProperty

Height = 255 = 4080 Left = 10 TabIndex Тор = 1560 Width = 1335 End Begin VB.Label Label5 = "Default :" Caption BeginProperty Font = "Arial" = 12 Name Size Charset = 0 Weight = 400 Underline = 0 'False = 0 'False Italic Strikethrough = 0 'False EndProperty = 375 Height = 360 Left TabIndex - 9 = 600 Top Width = 975 End Begin VB.Label Label6 Caption = "Degree Celcius" BeginProperty Font = "Arial" = 9.75 Name Size - 0 Charset = 400 Weight Underline = 0 'False = 0 'False Italic Strikethrough = 0 'False EndProperty = 255 Height = 1920 Left TabIndex = 8 = 720 Top = 1335 Width End Begin VB.Label Label7 Caption = "Current Temperature :" BeginProperty Font = "Arial" Name Size = 12 Charset = 0 = 400 Weight Underline = 0 'False Italic = 0 'False Strikethrough = 0 'False EndProperty = 615 Height = 240 Left TabIndex = 7 Тор = 1440 Width = 2535 End End Begin VB.CommandButton button stop BackColor = &H000000FF& = "STOP" Caption = 0 'False Enabled BeginProperty Font = "Arial" = 15.75 Name Size Charset = 0 = 400 Weight Underline = 0 'False = 0 'False Italic Strikethrough = 0 'False

EndProperty Height = 855 Left = 4080 MaskColor = &H00E0E0E0& = 1 'Graphical Style TabIndex = 3= 1440 Top Width = 1455 End Begin VB.Frame Frame1 Caption = "System Status" BeginProperty Font = "Arial" Name = 12 Size = 0 Charset = 400 Weight Underline = -1 'True = 0 'False Italic Strikethrough = 0 'False EndProperty = 1215 Height = 480 Left TabIndex = 0 = 1200 Ton Width = 3255Begin VB.Label system_status_label Alignment = 2 'Center = "STANDBY" Caption BeginProperty Font = "Arial" Name = 18 Size Charset = 0 = 400 Weight = 0 'False Underline = 0 'False Italic Strikethrough = 0 'False EndProperty = 495 Height = 1320 Left TabIndex = 2 Тор = 480 Width = 1695 End Begin VB.Shape system status = &H0000C0C0& = 1 'Opaque BackColor BackStyle BorderColor = &H0000000&= 375 Height = 360 Left Shape = 3 'Circle = 480 Тор Width = 495 End End Begin MSCommLib.MSComm comm = 0 Left = 0 Top = 1005 ExtentX _ExtentY = 1005 Version = 393216 DTREnable = -1 'True End Begin VB.Label Label1 Alignment = 2 'Center Caption = "AIR-COND CONTROL SYSTEM" BeginProperty Font Name = "Arial" Size = 20.25 = 0 Charset = 700 Weight

Underline = 0 'False = 0 'False Italic Strikethrough = 0 False EndProperty - 975 Height Left = 720 TabIndex = 1 = 120Top Width = 5175 End End Attribute VB Name = "Form1" Attribute VB GlobalNameSpace = False Attribute VB Creatable = False Attribute VB_PredeclaredId = True Attribute VB Exposed = False Dim system As Integer Dim stopind As Integer Dim counter As Integer Private Sub button stop Click() If stopind = 0 Then temp.Locked = False temp.Text = "" temp.Locked = True stopind = 1ElseIf stopind = 1 Then temp.Locked = False temp.Text = "" temp.Locked = True Timer1 Enabled = True Timer1.Interval = 2000 GoTo tamat End If If (system > 0) Then system = 0system_status.BackColor = &HFF& system_status_label.Caption = "OFF" button_stop.BackColor = &HC000& button_stop.Caption = "RESET" GoTo tamat End If If (system < 1) Then system = 1system status.BackColor = &HC000& system status label.Caption = "ON" button stop.BackColor = &HFF&

End If

GoTo tamat

tamat:

End Sub

Private Sub Form_Load()

button_stop.Caption = "STOP"

'we set variables for comm port here... DO NOT CHANGE if you
dont know
comm.InputMode = 0 'take ascii as input
comm.CommPort = 1
comm.Settings = "1200,N,8,1"
comm.PortOpen = True 'open port

comm.InputLen = 1 'limitation for input comm.RThreshold = 1 'end of setting com port stopind = 0 'we set all default variables here system = 1 'system_status.BackColor = &HC000& 'system_status_label.Caption = "ON"

end of set variables

End Sub

Private Sub Comm_OnComm() '1st transmitter If stopind = 0 Then Select Case comm.Input Case "A" 'system on system = 1

system = 1 system_status.BackColor = &HC000& system_status_label.Caption = "ON" button_stop.Enabled = True

Case "B" 'system off system = 0 system_status.BackColor = &HFF& system_status_label.Caption = "OFF" temp.Locked = False temp.Text = "" temp.Locked = True

Case "C" 'adcValue2>12.75 temp.Locked = False temp.Text = 22 temp.Locked = True Case "D" 'adcValue<12.24 temp.Locked = False temp.Text = 26 temp.Locked = True

End Select End If End Sub

Private Sub Timer1_Timer()

counter = counter + 1

system_status.BackColor = &HC0C0& system_status_label.Caption = "STANDBY" button_stop.BackColor = &HFF& button_stop.Caption = "STOP"

'If counter = 2 Then Timer1.Enabled = False counter = 0

'End If

stopind = 0

End Sub