
Intelligent Sensor Data Pre-processing Using Continuous
Restricted Boltzmann Machine

by

Emil Zaidan bin Suhaimi

Dissertation submitted in partial fulfillment of

The requirements for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

JUNE 2007

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Intelligent Sensor Data Pre-processing Using Continuous
Restricted Boltzmann Machine

Approved by,

By

Emil Zaidan bin Suhaimi

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

In partial fulfillment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS ENGINEERING)

(BfTNOR HISHAM BIN HAMID)
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2007

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

EMIL ZAIDAN BIN SUHAIMI

111

ACKNOWLEDGEMENT

First and foremost, I would like to thank Allah for His Blessing and giving me the

strength to complete this project. Verily all good comes from Him and all shortcomings

are due to my own weaknesses.

My sincere and heartfelt thanks to my project supervisor, Dr. Nor Hisham bin Hamid, for

his supervision and countless hours spent in sharing his Icnowledge and valuable

experiences in order to make sure my project is done successfully. His MATLAB

implementation of CRBM, which was modified for this project, is an essential component

of the simulation process. As a supervisor, he has been a source of motivation towards

the completion of this project.

Many thanks to Miss Illani M Nawi, the Final Year Research Project Coordinator, who

kindly made the arrangement to provide the students with the necessary tools and

materials for research works. A large measure of gratitude also goes to the all lecturers

and laboratory technicians who had helped me in completing this project.

I would also like to express a special thank to my family members for their priceless

support, encouragement, constant love, valuable advices, and their understanding of me.

Without all of them, I would not be where I am right now.

Last but not least, thanks to all my friends who have involved directly and indirectly in

making my research project a success.

iv

ABSTRACT

The objective of the project is to finda solution to pre-process noisy signalfor sensors in

Lab-on-a-Chip (LOC) and System-on-Chip (SOC) technologies. This solution must be

able to process continuous-time, analogue sensor signals directly. It must also be

amenable to hardware implementation, with low power consumption. This solution is

found in the Continuous Restricted Boltzmann Machine (CRBM), which is a type of

Artificial Neural Network which exhibits probabilistic and stochastic behavior. CRBM

utilizes continuous stochastic neurons, where Gaussian noise is applied to the inputofthe

neurons. The noise inputs cause neurons to have continuous-valued, probabilistic

outputs. The use ofstochastic neurons in CRBMgives it modelingflexibility that is useful
with real data. The training algorithm of CRBM requires only addition c;nd

multiplication, which is computationally inexpensive in hardware and software. The

ability of CRBM to model any given data set is shown by training the CRBM on various

data sets reflecting real-world data. In this study, CRBM is shown to be suitable to be

implemented in LOC andSOC applications aforementioned.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL ii

CERTIFICATION OF ORIGINALITY Hi

ACKNOWLEDGEMENT iv

ABSTRACT v

CHAPTER 1

1.0 INTRODUCTION 1

1.1 Background Study 1

1.2 Problem Statement 2

1.3 Objective and Scope of Studies 3

CHAPTER 2

2.0 LITERATURE REVIEW 4

2.1 Artificial Neural Network 4

2.2 Basic Model of a Neuron 6

2.3 Learning in Artificial Neural Network 7

2.4 Continuous Restricted Boltzmann Machine 9

2.5 Lab-on-a-Chip (LOC) & System-on-Chip SOC) 11

2.6 Adaptive, Integrated Sensor Pre-processing in LOC & SOC 13

CHAPTER 3

3.0 METHODOLOGY 19

CHAPTER 4

4.0 RESULTS AND DISCUSSION 23

CHAPTER 5

5.0 CONCLUSION & RECOMMENDATIONS 26

5.1 Conclusion 26

5.2 Future Work & Recommendation 27

REFERENCES 28

APPENDICES 30

Appendix I: Continuous Restricted Boltzmann Machine MATLAB Code

Appendix II: Result of Testing the MATLAB Code

LIST OF FIGURES

Figure 2.1 Artificial Neural Network architecture 3

Figure 2.2 Basic neuron model 6

Figure 2.3 CRBM architecture, with no self-feedback and restricted & symmetric

connection 9

Figure 2.4 Continuous stochastic neurons employed by CRBM 10

Figure 2.5 Patient Monitoring System 12

Figure 2.6 Patient Monitoring System (with Sensor Pre-processing Unit) i3

Figure 2.7 Classification done by the Sensor Pre-processing System 13

Figure 2.8 Sensor Pre-Processing Unit 15

Figure 2.9 Readings of Sensors 16

Figure 2.10 Training of CRBM 17

Figure 2.11- Weight change shows that 2 neurons are 'actively learning' 17

Figure 3.1 CRBM simulation workflow 20

Figure 3.2 Datasets with 20 samples used to train CRBM 22

Figure 4.1 The output of CRBM trained with data set with non-symmetric clusters 23

Figure 4.2 The output of CRBM trained with data set with vertically-arranged

clusters 24

Figure 4.3 The output of CRBM trained with data set with horizontally-arranged

clusters •• 24

Figure 4.4 Training done with horizontally-arranged clusters 25

LIST OF ABBREVIATIONS

ANN Artificial Neural Network

CRBM Continuous Restricted Boltzmann Machine

LOC Lab-on-a-Chip

SOC System-on-Chip :

SLP Single-layer Perceptron

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Development in Lab~on-a-Chip (LOC) and System-on-Chip (SoC) technologies has

increased the interest in electronic health care [1], with applications such as

telemedicine, bioanalysis, patient monitoring and implantable devices. These

biomedical instruments provide constant monitoring of essential physiological

parameters such as temperature, pH, oxygen and pressure [2—5]. For the applications

mentioned, it is advantageous that the instruments be integrated and miniaturized.

However, miniaturization increase the difficulty of extracting useful information from a

far more noisy and unstable measurements. Due to this, there is a need for a "obust,

adaptive algorithm for sensor data pre-processing, which can process continuous-time,

analogue sensor signals directly [6]. This algorithm must be amenable to hardware

implementation, with low power consumption, to meet the requirement of the LOC or

SOC application. One of the candidates for this application is the Continuous Restricted

Boltzmann Machine, a type of Artificial Neural Network.

Artificial Neural Network (ANN) is a computational network consisting of

interconnected processing units called neurons [7]. These processing units are connected

together in a specific way to perform a particular task. Data processing is done

collectively and in parallel by the neurons, different from conventional computer which

is a sequential machine that process data step by step [8]. ANN also possess the ability

to learn, and they are suitable for solve problems which is nonlinear or mathematically

ill-defined.

The Continuous Restricted Boltzmann Machine (CRBM) is a type of Artificial Neural

Network architecture which exhibits probabilistic and stochastic behavior. This is

because CRBM utilizes continuous stochastic neurons, where Gaussian noise is applied

to the input of the neurons. The noise inputs cause neurons to have continuous-valued,

probabilistic outputs. The use of stochastic neurons in CRBM gives it modeling

flexibility that is useful with real data. CRBM has been proven experimentally to be

able to model continuous data successfully with a simple, reliable training algorithm [9],

1.2 PROBLEM STATEMENT

The instruments and sensors used in SoC and LOC applications have to be integrated

directly into the hardware, and this means that they have to be miniaturized. However, it

becomes more difficult to extract useful information from a far more noisy and unstable

measurements. Therefore, a sensor pre-processing system is needed to process the

various sensor signals before it is processed by the main microcontroller of the system.

By doing this, the workload of the microcontroller will be reduced, as the

microcontroller does not need to directly process all the raw sensor data. This task will

be done by the pre-processing units in parallel, thus reducing the overall time the system

needs to complete its tasks.

Due to this, there is a need for a robust, adaptive algorithm for sensor pre-processing,

which can be implemented directly in hardware, with low power consumption. This

algorithms must be able to process continuous-time, analogue sensor signals directly.

One of the candidates for the task of sensor data pre-processing is the Continuous

Restricted Boltzmann Machine (CRBM).

1.3 OBJECTIVE & SCOPE OF STUDY

1.3.1 Objective

The objective of the project is to find a solution to pre-process noisy signal for sensors

in Lab-on-a-Ghip (LOC) & System-on-Chip (SOC) technologies. This solution must be

able to process continuous-time, analogue sensor signals directly. It must also be

amenable to hardware implementation, with low power consumption.

1.3.2 Scope of Study

The project focuses on several subjects:

• Detail familiarization of the Artificial Neural Network, specifically the

Continuous Restricted Boltzmann Machine (CRBM) architecture

• Understanding of the MATLAB implementation of the CRBM

• Training of the CRBM on various data sets

• Finding the initial parameters for the CRBM so that an optimum result will be

obtained.

CHAPTER 2

LITERATURE REVIEW

2.1 ARTIFICIAL NEURAL NETWORK

Artificial Neural Network (ANN) is a computational network consisting of

interconnected processing units called neurons [7], These processing units are

connected together in a specific way to perform a particular task. Data processing is

done collectively and in parallel by the neurons, different from conventional computer

which is a sequential machine that process data step by step [8]. Learning is done in an

ANN by adjusting the weight on the connections between neurons. This follows the

Hebbian Rule, which states that "When an axon ofcell A is near enough to excite cell B

and repeatedly or persistently takespart infiring it, some growth process or metabolic

change takesplace in one or both cells such that A's efficiency, as one ofthe cells firing

B, is increased" [8].

ANN may be classified into three different classes of network architecture: single-

layer feedforward network, multilayer feedforward network, and recurrent network [6],

• In feedforward network (Figure 2.1a), neurons are organized to form layers.

Basically, the layers consist of the input layer and output layer, where the signal

from the input layer are projected onto the output layer, which acts as the

computation nodes.

• In the case of multilayer feedforward network (Figure 2.1b), one or more

hidden layer is present between the input and output layers to produce more

synaptic connections, enabling the network to compute more complex problem.

input

Dlpl.lt

input

uipul

On the other hand, the recurrent network (Figure 2.1c) differs from the other

two by having at least one feedback loop, in which a neuron feeds its output

back to the inputs of other neurons or itself (self-feedback). The presence of

feedback loops improves the performance and learning capability of the

network.

input layer hidden layer output layer

output input

output
input output

output

input output

input layer output layer

input

input Jaye hidden layer ouipui layer

Figure 2.1: Artificial Neural Network architecture
a Single-Layer Feedforward Network
b Multilayer Feedforward Network
c Multilayer Recurrent Network

2.2 BASIC MODEL OF A NEURON

The neuron (Figure 2.2) is the basic unit of an ANN. A neuron typically consists of n

inputsj/s where j ={l,2,3,...,«} . Each input is weighted by the weight factor wtJ

(synaptic weight), and the products of the inputs and weights are summed.

a

<,=£ wos?

The value x, is then passed through a non-linear function #>,(x.) t0 obtain the output

of the neuron, st. The function <pXxi) 's a'so called a transfer function, and can be the

sigmoid function, piecewise linear functions, or step functions [12].

S, -w;

x.

+*s.

Sj'Wu

Figure 2.2: Basic neuron model

The purpose of the nonlinearity function <P/(xt) xs to keep the output of a neuron

bounded. This means that the output is dampened or conditioned, and this keeps it under

control [II]. This stems from the fact that the nonlinear functions used in neurons have

an upper and/or lower limit, such as ±1, ±Yi, or {+1,0}.

2.3 LEARNING IN ARTIFICIAL NEURAL NETWORK

One of the interesting properties of ANN is its ability to learn. Learning is defined as the

process where neural network adapt to inputs and adjust itself to produce a desired

output. During the process of learning, a network will adjust its synaptic weights when

given input so that the value of its output approaches the target output. When the

resulting output is equal to the target output, the network is said to have undergone its

learning process sufficiently [31].

There are several types of learning, each suitable for different kind of ANN. Some of

them are listed below [7][11].

• Supervised learning

In supervised learning, a training data set is prepared, which consists of pairs

of input object, and desired output. The input is applied to the ANN, and the

resulting output is compared with the desired output. If the actual output is

different from the desired output, an error signal will be generated, which is

used to calculate the adjustments for synaptic weights to make actual output

equal the desired output. This is done continuously until the error is

sufficiently small and the output equals the input.

• Unsupervised learning

In unsupervised learning, no target output is set. During training, the ANN will

receive many inputs, and the network will categorize the inputs according to a

set guideline. This guideline determines how the ANN forms groups or classes

for the inputs. When an input is received, the ANN will indicate which class

the input belongs. If a class is not found, a new class will be generated.

• Reinforced learning

This type of learning requires one or more neurons at the output layer and a

"teacher". During training, input is given, and the teacher will give "pass"

indication if the actual output is the same as target output, or "fail" indication

otherwise. For a "fail" signal, the network will adjust its parameters, and the

output is checked again by the teacher. This is repeated until the teacher gives

a "pass" indication. There is no indication whether the outputs are improving

or how close the actual output to the target output. Due to this, the learning

technique must have certain boundaries so that the ANN will not keep trying

to get the correct output indefinitely.

Practically, learning in an ANN is done through the use of learning algorithm. This is a

mathematical tool to specify how an ANN will reach a steady state of its parameters.

The learning algorithm usually consists of an error function, which is usually

expressed in terms of weights, inputs and outputs of a neuron. To reach a steady state,

the ANN will adjust its parameters so that the error will be minimized sufficiently or

reach zero. When a steady state is reached, the ANN has completed its learning phase

[11].

There are many different types of learning algorithm available, and each of the

algorithms suits a certain type of ANN model. Selection of a suitable algorithm is

important so that the ANN model will operate at its full potential.

2.4 CONTINUOUS RESTRICTED BOLTZMANN MACHINE

The Continuous Restricted Boltzmann Machine (CRBM) is a type of Artificial

Neural Network architecture which shows probabilistic and stochastic behavior. This

probabilistic behavior is due to the stochastic neurons inside the architecture. The noise

inputs cause neurons to have continuous-valued, probabilistic outputs.

CRBM is classified as a Recurrent Network due to the presence of feedback loop in the

architecture; however there is no self-feedback in this architecture, as no unit has a

connection with itself. All connections are symmetric, meaning that the weight of the

connection between neuron A and neuron B is equal both ways (Figure 2.3).

wl3

j^/w23 \
Vl) (v2) visible layer

Figure 2.3: CRBM architecture, with no self-feedback and restricted & symmetric connection

The neuron employed by CRBM can be seen in Figure 2.4. The inputs, outputs, and

synaptic weights of the neuron are represented bys., s, and wr respectively. The

output is obtained using the equation

2>,s/+cT.yV,.(0,l)Si = <Pi

Where <p\x) is the sigmoid function

v j

h2) hidden layer

w24

I+Qxp(~aixi)

The stochastic nature of the neurons is due to the Gaussian input noise. This input noise

is represented byn,r= a-AT(0,l), where cr is a constant andAf(0,l), is a Gaussian

random variable with zero mean and unit variance. This input noise follows the

probability distribution:

f-n^
(»,)=P

o42n
exp

la-

S;

Sj •W,

Figure 2.4: Continuous stochastic neurons employed by CRBM

The "restricted" in its name signifies that CRBM does not allow connection between

hidden units, which leads to a more efficient learning process. This is due to the fact that

restriction on the connection will speed up the model significantly. The neurons in the

same layer are not connected to each other, so they are conditionally independent. This

allows neurons on the same layer to be updated in parallel, reducing the processing time.

This restriction also simplifies the mathematical analysis of the model, as the restricted

connection is equivalent to setting a synaptic weight to zero. Furthermore, any decrease

to performance due to restricted connection is insignificant, and it can be compensated

by recruiting extra neurons into the hidden layer of the network [9].

10

CRBM uses the Minimizing-Contrastive-Divergence (MCD) method [9][12] as its

learning algorithm. This method is used to update the weight, w and sigmoid function

variable, a, on each iteration of the CRBM.

a2 ^ ' /°

st and sf denotes the previous state ofthe input and output connected to the weight wr,

while rjw and r\a represents the learning rates of w and a, respectively.

2.5 LAB-ON-A-CHIP (LOC) & SYSTEM-ON-CHIP (SOC)

Lab-on-a-chip (LOC) is a term for devices that integrate (multiple) laboratory functions

on a single chip of only millimeters to a few square centimeters in size. These devices

are capable of handling extremely small fluid volumes down to less than picoliters,

reducing the amount of sample required to do a test. Due to its construction, such

devices are also disposable, making it suitable for clinical applications [13].

System-on-a-chip or system on chip (SoC or SOC) is the integration of all components

of an electronic system into a single integrated circuit. It may contain digital, analog,

mixed-signal, and often radio-frequency functions all on one chip. There are several

advantages of integrating all the components onto a single chip, such as lower cost,

smaller space requirement, and higher system reliability [3][14].

11

Signal
Conditioning

V

Microcontroller

RF

Section
Sensor V — Signal

Conditioning

Inputs from various other

Figure 2.5: Patient Monitoring System

An example of an LOC system is illustrated in Figure 2.5. This system functions as a

Patient Monitoring System. In this system, the various sensors available will measure

the important physiological parameters of a patient, and transmit the information to a

remote location for monitoring. This LOC is packaged in a pill or other shapes that

allow it to be implantable under the skin.

The device will have many sensors measuring the various physiological parameters of

the patient. This data will all be processed by the microcontroller of the system, and

without pre-processing, the microcontroller have to do a lot more work interpreting the

data, and this will slow down the system. The microcontroller will also have to deal

with the noisy data from the sensors, and this will impair the performance of the system.

By having a pre-processing unit on each sensor, the sensor data will be pre-processed

simultaneously, decreasing the workload of the microcontroller and reducing the

processing time of the system. The presence of a pre-processing unit is illustrated in

Figure 2.6, where the unit takes in input from sensor X and sensor Y before giving a

single output to the microcontroller.

12

Sensor

Processing
Unit

V

Microcontroller

RF

Section

Inputs froti various other

Figure 2.6: Patient Monitoring System (with Sensor Pre-processing Unit)

2.6 ADAPTIVE, INTEGRATED SENSOR PRE-PROCESSING IN LOC &
SOC

In the example system, the type of pre-processing done is classification of the readings

of sensor. In this case, two sensors will measure the pH value of blood and body

temperature respectively. The temperature reading is taken as a reference, as the reading

of a pH sensor will vary as temperature changes.

The norma! pH of blood is 7.4, and a deviation of 0.2 either way will indicate that

something is wrong. So the classifier needs to classify between 7.4 (normal) and

otherwise (abnormal). This is illustrated in Figure 2.7.

Blood pH

pH
7.4

Other than

pH
7.4

Output

Normal

> Abnormal!

Figure 2.7: Classification done by the Sensor Pre-processing System

13

To preprocess the sensor data, the sensor pre-processing system needs to able to process

the continuous & analogue temperature and pH measurement, and also accept the noisy

readings of the sensor without any decrease in accuracy of the classification process.

2.6.1 CRBM as Sensor Data Pre-processor

CRBM possess all the qualities needed for the sensor processing of LOC and SOC

application as mentioned above.

• Stochasticity

Being a stochastic model, CRBM modeling ability is superior to deterministic

model. Deterministic model requires accurate arithmetic computation to process

data, which becomes infeasible due to SNR which degrades in noisy environment.

On the other hand, a stochastic model is tolerant to noise, due to the use of internal

noise in the architecture itself.

• Continuous Model

Being a continuous model, CRBM is able to model continuous data faithfully. On

the other hand, discrete-valued models will experience loss of data due to

digitization or sampling process used in such models. Discrete-valued models also

face the problem of noise, as repeated sampling process in such models will

increase the level of noise [4],

• Simple Algorithm

The learning algorithm of CRBM consists of additions and multiplications, which

makes it easy to implement on VLSI. This is different from models employing

mathematical operations such as integrations and derivations, which have more

complex hardware requirement.

• Restricted Connection

CRBM architecture uses a restricted connection, where there is no connection

between neurons on the same layer. This reduces the complexity of the network,

and also reduces the processing time of the network, as neurons on the same layer

are conditionally independent [5], allowing them to update theirstate in parallel.

14

(Sensor x)-

(sensor v)-

Sensing
Environment

L 1

Output to System

Figure 2.8: Sensor Pre-Processing Unit

Figure 2.8 illustrates how CRBM fits into the overall Sensor Pre-Processing Unit The

various stages of this unit are as follows:

• Stage I - Sensors

This stage comprises of the pH and temperature sensors. The sensors will

continuously take the respective readings and input it to the 2nd stage of the

Sensor Pre-Processing Unit

• Stage II - Signal Conditioning Unit

This stage will manipulate the input from the sensors so that they meet the

requirements of the next stage.

• Stage III - CRBM (Visible & Hidden Layers)

This stage will model the data distribution of the input, namely data set of pH

against temperature.

• Stage IV - Output block

This stage consists of a single-layer perceptron (SLP), which acts as a binary

classifier for the output of CRBM. It-will detect the state of the hidden layer of

CRBM. For a certain input data, one of the neuron in the hidden layer will be

activated, and this is detected by the SLP and labeled accordingly.

15

The output of the system will be binary, signifying whether the input detects a normal

pH value or otherwise. The output of the Sensor Processing Unit is used by the Patient

Monitoring System.

2.6.2 Training of CRBM

Before the system is employed, the CRBM must first be trained on data sets which have

a certain data distribution. This data distribution represents the effect of noise on the

readings of the sensors. Figure 2.9a shows the ideal readings of the sensors for pH 7.4

at temperature T. Due to environmental noise, sensor readings will be distributed in

cluster close to the actual reading. Figure 2.9b shows the actual measurement of pH

which forms a cluster. CRBM is trained to model the data distribution of this data set.

Figure 2.9: Readings of Sensors
a Ideal pH 7.4 at temperature T
b Measurements of pH 7.4 against

temperature taken from the sensors,
consisting of]00 data points

16

The training process is shown in Figure 2.10. The training data set is presented to the

CRBM. CRBM uses the data to adjust its weights and noise input parameters according

to the equation in Section 2.4. This parameter adjustment is done many times until the

values of the weights and noise input parameters are stable. When the steady state is

reached, the CRBM is considered to have learned the data distribution of the input data

set. When a set of random data is given to this trained CRBM, it will be able to

reconstruct the data according to the distribution it has been trained for.

Training

•• • •) CRBM .
- Adjust WeigtHw
< Adjust Noise Control Parameter a
• Learning Rale ^ Conslanl

Training Data

Trained wmmnm-*

Random Data \ . \
CRBM

w & a conslafii

Learning Rale Tiero Reconstructed
Data

Figure 2.10: Training of CRBM

After the training of CRBM completes, certain hidden units will be an 'expert' of a data

cluster, meaning that when a data belongs to a certain cluster, the hidden neuron will

have a high activity. This can be seen in the graph of weight change against epoch

(Figure 2.11), where 2 weights are seen to actively change; this corresponds to 2 input

connections to a hidden neuron which is actively modeling the 2 clusters.

fcp=
?^SSz™^SS=3?^ss'

\ \/'

Figure 2.11: Weight change shows that a neuron is 'actively learning'

17

These activities of the experts, when classified, are used by the Sensor Processing Unit

to recognize the cluster representing pH 7.4. This is done by training the SLP to classify

the hidden unit activities of CRBM. First, all weights and noise control parameters of

CRBM are clamped to their current values, and learning rates of CRBM are set to zero

to prevent any learning from taking place. Data sets are then presented to the input of

CRBM, and the activities of hidden layer are mapped by SLP to a known-correct output

classification. The SLP will adjust its weights according to the Delta Rule, and after

training completes, the SLP will be able to classify the output of CRBM.

As an end result, the Sensor Processing Unit will give a HIGH output if presented with

data inside the pH 7.4 cluster, and LOW output if given data outside the cluster. This

information is presented to the system microcontroller for further processing.

CHAPTER 3

METHODOLOGY

In this project, CRBM is implemented in MATLAB, with the code given in Appendix I.

This implementation is separated into several modules, which does the different tasks in

operation of the CRBM. The MATLAB code represents a CRBM with 2 inputs. There

are 12 modules in total, as seen in Appendix I.

The function of several modules is as follows:

• CRBM.m - This is the main module, where all the parameters are set, such as

the initial weights and learning rates for weight and noise parameter.

• SensormodeIa_2cIuster.m - Generates data sets that are used to train the

CRBM. This module creates a data set where the data is distributed in 2 clusters.

• sensor_plot.m - Generates the graph of the training data, presented in 2-

dimension, representing the 2 input of the CRBM.

• aplot.m - Generates the graph of the changing value of noise parameter in the

visible units of CRBM overtime.

• aaplotm - Generates the graph of the changing value of noise parameter in the

hidden units of CRBM overtime.

• bplot.m - Generates the graph of the changing value of weights of connection of

CRBM overtime.

• exam.m - Generates random data sets and presents it to the trained CRBM to

examine the learning ability of the architecture.

19

Start of

Simulation

Define the

training
data set

Define the

training
epoch

CRBM starts training
• Adjust weight
• Adjust noise parameter

Random data generated by
the exam.m module and

presented to the trained
CRBM

/ Display
-*/ training data

\ set

Display
>(changes in Av,

Ah, and Wy

Display
-K reconstructed

data Set

Figure 3.1: CRBM simulation workflow

In order to simulate the training of CRBM, a workflow of the simulation process is

planned, and this is shown in Figure 3.1. First, a data set is chosen for the training. This

data set consists of a set of data points which is clustered according to certain data

distribution. These data sets are plotted on a 2-dimensional graph, representing a reading

of a sensor against another reference sensor.

20

In the MATLAB implementation of the CRBM, these data sets are generated by the

Sensormodela_2c!uster.m module (Appendix I, page 32). By adjusting the values of

the variables x and y (Appendix I, page 30), 2 clusters with different data distribution

can be created. The variables x and y correspond to the coordinates of the center of the 2

clusters on the 2-dimensionaI plot.

Next, the value of epoch is set at the variable num_iter (Appendix I, page 30). This

value determines how long the CRBM is trained. A suitable value must be chosen to

make sure the training period is long enough for the CRBM to succeed in modeling the

distribution of the training data set.

Once the initial parameters are set, the simulation is started by running the MATLAB

program. The CRBM will adjust its weights and noise input parameters until the values

of the weights and noise input parameters are stable. The changing values of the weights

and noise parameters are displayed by MATLAB. When steady state is reached, the

CRBM is considered to have learned the distribution of the input data set.

Lastly, a set of random data is given to this trained CRBM, and CRBM will reconstruct

this data according to the distribution of the training data. MATLAB will display the

reconstructed data plot, and observation is made to see whether CRBM have sufficiently

learned the distribution of the training data set. If the reconstructed data matches the

training data in its distribution, the CRBM is considered to have completed training.

Otherwise, the simulation is repeated by using a different value of epoch.

In these simulations, the parameters that are varied are the training epoch and the

training data set used. All other parameters are kept constant. The complete result can be

found in Appendix II. Three different types of data set are used: non-symmetric clusters,

horizontally-arranged clusters, and vertically-arranged clusters (Figure 3.2).

21

mf
, S'&T»KtaMwatl* jsTMl^R^^j^.tv.^j,sa^.i4, - sSaaTw^?

Figure 3.2: Data sets with 20 samples used to train CRBM
a Non-symmetric clusters
b Vertically-arranged clusters
c Horizontally-arranged clusters

These data sets may represent a particular kind of real-world data. Examples of real-

world data are readings from sensors, such as temperature, pH, oxygen or concentration.

These readings are distributed in such a fashion due to the presence of environmental

noise, and also due to the inherent flaws of the sensors.

The CRBM is trained using a set of data for different values of epoch. A small value

will result in insufficient time for the CRBM to train properly. On the other hand, a

value too large will make the duration of training too long. This is a problem if the

computer where the simulation is done is not powerful enough, causing system

instability. This value of epoch is determined through experiments, and the epoch

needed for the CRBM to train depends on the training data itself.

22

CHAPTER 4

RESULT & DISCUSSION

For a training data set with non-symmetric clusters (Figure 3.1a), it is observed that at

epochal0000, the CRBM has undergone sufficient training, and further increase in

epoch shows no significant improvement (Figure 4.1). This shows that the CRBM has

been trained successfully.

wemssKm^

Figure 4.1: The output of CRBM trained with data set with non-symmetric clusters
a Epoch =10000
b Epoch = 20000
c Epoch = 30000

For a training data set with vertically-arranged clusters (Figure 3.1b), it is observed that

the time taken for proper training is longer than the previous one. The training is still not

completed at epoch=10000. The CRBM completed its training after epoch=20000 and

further increase in epoch shows no significant improvement (Figure 4.2). This longer

duration may be due to the position of the clusters. The two clusters share the same

value for the x-component, due to them being on the same vertical axis. This makes it

harder for the CRBM to classify the clusters, prolonging the training duration.

23

iSS'S.»l.« * *J"

a b c

Figure 4.2: The output of CRBM trained with data set with vertically-arranged clusters
a Epoch =10000
b Epoch = 20000
c Epoch = 30000

For a training data set with horizontally-arranged clusters (Figure 3.1c), it is observed

that the CRBM fails to complete the training even after epoch = 50000 (Figure 4.3).

Increasing the training duration might allow the CRBM to complete training, but

simulation has not been done to test this yet.

•: >•-:">$L;A& y%$.&%«% V f.^'K P-l

•••!,

c d
Figure 4.3: The output of CRBM trained with data set with horizontally-arranged clusters

a Epoch = 10000
b Epoch = 20000
c Epoch =30000
d Epoch = 50000

24

The failure of CRBM to complete training for this data set might be due to the

proximity of the two clusters. It is known that the closer the cluster of data is, the harder

for the CRBM to do classification. To test this, a new data set with a different position

of data cluster is used. Compare the old data set (Figure 4.4 a) with the new one (Figure

4.4 b) with a larger gap between the clusters. It is observed that the CRBM trained with

the new data set completed its training successfully at epoch = 10000, whereas the one

trained with the old one failed to do so. This shows that the closer the clusters of

training data, the harder for the CRBM to classify.

} «•

i.., 5W**1 TJ$P

Figure 4.4: Training done with horizontally-arranged clusters
a Old training data set with small gap between clusters
b New training data set with large gap between clusters
c Output of CRBM trained with old data set after epoch - 10000
d Output of CRBM trained with new data set after epoch = 10000

25

CHAPTER 5

CONCLUSION & RECOMMENDATION

5.1 CONCLUSION

The Continuous Restricted Boltzmann Machine can be implemented to do sensor data

pre-processing tasks in Lab-on-a-Chip & System-on-Chip applications, due to the

CRBM being a probabilistic and stochastic model, and its ability to model continuous

and noisy data. Its simple algorithm and restricted connection also makes CRBM

amenable to hardware implementation, thus making it a suitable choice for LOC and

SOC applications.

CRBM has been trained to model various data distribution expected to be seen in real-

world application. After training, CRBM are able to reconstruct any random data set

given to it according to the distribution it has been trained for, given that suitable initial

parameters are given to the CRBM. The flexibility of CRBM is shown by its ability to

model any data distribution given to it provided it is given a suitable initial parameter.

Through trial and error, the initial parameter setting for CRBM to perform optimally for

the different data sets has been identified.

26

5.2 FUTURE WORK & RECOMMENDATION

As a continuation of this project, the CRBM will be implemented in hardware, as

currently, only simulation has been done on the CRBM MATLAB implementation.

Hardware implementation can be done on FPGA using any hardware description

language such as VHDL or Verilog. Hardware implementation is a natural extension of

this project as the ultimate goal of the project is to implement CRBM in an LOC or SOC

application.

The CRBM also needs to be tested with more real-world data-sets. Currently, the

CRBM are trained on fairly simple data distribution that reflects data sets that is

expected to be seen in real world application. More complex training data sets are

needed to test CRBM and show its full potential as an ANN.

27

REFERENCE

[1] Aguilo, J., Millan, J., and Villa, R., "Micro and nano technologies in medical

applications: a challenge". Proceedings of the International Semiconductor

Conference, Sinaia, Romania, 2001, Vol. 1, pp. 247-255

[2] Zhou, G.X., "Swallowable or implantable body temperature telemeter -

body temperature radio pill". Proceedings of 15th Annual Northeast

Bioengineering Conference, Boston, MA, USA, 1989, pp. 165-166

[3] Evans, D.F., Pye, G., Bramley, R., Clark, A.G., Dyson, T.J., and Hardcastle,

J.D., "Measurement of gastrointestinal pH profiles in normal ambulant human

subjects", Gut, 1988, 29, pp. 1035-1041

[4] Jobst, G., Urban, G., Jachimowicz, A,, Kohl, F., Tilado, O., Lettenbichler. I.,

and Nauer, G., "Thin film Clark-type oxygen sensor based on novel polymer

membrane systems for in vivo and biosensor applications", Biosens.

Bioelectron., 1993,8, pp. 123-128

[5] Mackay, S., "Radio telemetering from within the body", Science, 1961, 134,

pp.1196-1202

[6] Haykin, S., "Neural Networks: A Comprehensive Foundation", Prentice Hall,

New Jersey, 1999.

[7] Wikipedia, "Artificial Neural Network",

http://en.wikipedia.org/wiki/Artificial_neural_network

[8] Graupe, D., "Principles of Artificial Neural Networks" World Scientific

Publication, Singapore, 1997.

28

[9] Chen, H., "Continuous-valued Probabilistic Neural Computation in VLSI",

PhD Thesis, Edinburgh University, UK, 2004.

[10] Wikipedia, "Artificial Neuron", http://en.wikipedia.org/wiki/Artificial_neuron

[11] Kartapoulos, S. V., "Understanding Neural Networks and Fuzzy Logic:

Basic Concepts and Applications", IEEEPress, New York, 1996.

[12] Chen, H. and Murray, A.F., "A Continuous Restricted Boltzmann Machine

with a Hardware-Amenable Learning Algorithm", Proceedings ofthe

International Conference on Artificial Neural Networks (ICANN2002), p358-363,

Madrid, Spain, 2002. [Online] Available:

http://www.ee.nthu.edu.tvv/-hchen/pubs/icann2002.pdf

[13] Living La Vida LOC(a): A Brief Insight into the World of "Lab on a Chip" and

Microfluidics, http://www.scq.ubc.ca/?p=621

[14] System on a Chip (SOC), http://www.siliconfareast.com/soc.htm, 2005

29

APPENDICES

Appendix I - Continuous Restricted Boltzmann Machine MATLAB Code

% Main code

Ca = [-0.20 -0.0 0.40 0.20];

Cb = [0.20 -0.40 0.0 -0.20];

yl = CRBM(1000,ca,Cb,l,0,l,l,0,0,0,0,4);

% CRBM()

function y = CRBMCfigid, Ca, Cb, swl, sw2, sw3, sw4, sdl, sd2, sd3, sd4, numjiid)

num_iter = 10000;

stddev_sample = 0.02;

stddev„sensor_min = 0.02;

stddev_sensor_max = 0.3;

initial_weight = 0.1;

num„sample = 100;

x = [-0.40 -0.40];

y = [0.30 0.20];

[concentration_a, concentration^, visA, visB] = sensormodela_2cluster(num_5ample,
stddev_sample, stddev_sensor_min, stddev_sensor_max, x, y, 1, 1, 1, 1, 0, 0, 0, 0)

[figid] = sensor_plot(visA, visB, figid);

% Global variables

num_vi5 = sizeCvisA, 2);

nunuhid = 4;

mui = 0.02; % learning rate for weight vector of cluster = 0.02

kv =1; % learning rate for 'a' of visible units
kh = 1; % learning rate for 'a' of hidden units

phiL = -1;

phiH = 1;

bh = 0.1; % std dev of Gaussian noise for hidden units
bv = 0.1; % std dev of Gaussian noise for visible units

% initialise the weight

vishid = initial^weight. ""randn(num_vis, num_hid)
ah = ones(l,num_hid);

av = 6""ones(l, num_vis) ; %original value 6

% Mixing two learning data alternatively

for i=l: (num„sample',v2)

if remCi ,2)

30

visCi,:) = visACfixCi/2)+l,:);

else

visCi,:) = visB(i/2,:);

end

end

% Learning stage for CRBM

for i=l:num__iter

hid = infer(vis, vishid, ah, bh, phiL, phiH);
fvis = generateChid, vishid, av, bv, phiL, phiH);

fhid = inferCfvis, vishid, ah, bh, phiL, phiH);

dvishid = mui-(gradient(vis,hid) - gradient(fvis,fhid))
dav = gradA(vis, fvis, av, kv);

dah = gradA(hid, fhid, ah, kh);

% update parameters

vishid = vishid + dvishid;

av = av + dav;

ah = ah + dah;

% Record parameters' change

weight_change(i) = sum(sum(dvishid.A2));

weight(:,:,i)=vishid;

AV(i ,:) = av;

AH(i,:) = ah;

end

% un-mixing the clusters' result

for i=l: (num_sample"-'2)

if remCi ,2)

fvisACfix(i/2)+l,:) = fvis(i,:);

fhidA(fix(i/2)+l,:) = fhid(i,0;

else

fvisB(i/2,:) = fvisCi,:);

fhidB(i/2,:) = fhidCi,:);

end

end

figid = aplot(AV, figid);

figid = aaplot(AH, figid);

figid = bplot (WEIGHT, figid);

figid = figid + 1;

% Examine the learning success with n-step reconstruction

figid = exam(num_vis,vishid,av,ah,bv,bh,phiL,phiH,figid);

31

% sensormodela_2cluster()

function [concentration_a, concentration_b, visA, visB] = sensormodela(num_samplel
stddev_sampl"e, "stdde"v_sensor_min, stddev_sensor_max, ca, cb, sensorOneWork,
sensorTwowork, sensorThreeWork, sensorFourWork, sensorOneDrift,
sensorTwoorift,sensorThreeDri ft, sensorFourDri ft)

% objectives:

% 1. To have two distinct sets of chemicals.

% 2. To have non-separable individual measurements due to the

% cross-correlation between the measurands.

% variables

num_sensor = 2;

num_cluster = 2;

concentration_a = 3";;randn(num_sensor,num_sample);

concentration_a(l,:) = Ca(l,l)+(stddev_sample*concentration_a(l,:))

concentration_a(2,:) = ca(l,2)+(stddev_sample*concentration_a(2,:))

%% This is for symmetric gaussian distrubtion;
% concentration^ =randn(num_sensor,num_samp1e);

% concentration„b(l, :) = Cb(l,l)+(stddev_sample*concentration_b(l,:));

% concentration_b(2,:) = cb(l,2) +(stddev_sample*concentration_b(2,:)) ;

% %concentration_b(3,:) = Cb(l,3)+(stddev_sample-concentration_b(3, :))
% %concentration_b(4,:) = Cb(l,4)+(stddev_sample*concentration_b(4,:))

%% This is for non-symmetric gaussian distrubtion;

concentration_b =0. 7""randn(num_sample,num_sensor) ;

sigma=[0.002 0.15;-0.15 0.1];

concent ration_b=concent rati on_b""sigma;

concentration_b(:,1) = cb(l,l)+(concentration_b(:,1));

concentration_b(:,2) = Cb(l,2)+(concentration_b(:,2));

concentrati on„b=concentration_b';

% sensors' parameters

% For non-trivial problem, assume the linearity is poor and cross-correlation is strong

first_order =[0.1 0; 0 0.1];

second_order = [0 0.1;0.8 0];

sensor__noise_a = cat(l,stddev_sensor_min'-'randn(num_sensor-

1, num_sample) , stddev_sensor_max*randn(l,num_sample)) ;

32

sensor_noise_b = cat(l,stddev_sensor_min'"randn(num_sensor-

l,num_sample),stddev_sensor_max*randn(l,num_sample));

% Sensors' equationsstddev_sensor-randn(num_sensor,l)

for l=l:num_sample,

Sa(:,i) = (fi rst_orderv,concentration_a(: ,i)) +

nonzeros(eye(num_sensor,num_sensor) . ""(second_order* (concentration_a(: , I)V(concentration_a

(:,!)'))) + sensor_noise_a(:,i);

Sb(:,l).= (first_order*concentration_b(:,1)) +

nonzeros(eye(num_sensor ,num_sensor) . *(second_order* (concentration^ (: ,i) "concentration_b

(:,!)'))) + sensor_noise_b(:,1);

end

% Additional time-drifting components, if sensor is working

if sensorOneWork == 1

Sa(l,:) = Sa(l,:) + sensorOneDriftv'ones(l,num_sample) ;

Sb(l,:) = Sb(l,:) + sensorOneDrift1'tones(l,num„sample) ;
else

sa(l,:) = zeros(l,num_sample) ;

Sb(l,:) = zeros(1,num_sample);

end

if sensorTwoWork == 1

sa(2,:) = sa(2,:) + sensorTwoDrift*ones(l,num_sample);

Sb(2,:) = Sb(2,:) + sensorTwoDriftv'ones(1,num_sample) ;

else

Sa(2,:) = zeros(l,num_sample);

Sb(2,:) = zeros(l,num_sample) ;

end

visA=(cat(2 ,ones(num_sample,l) ,concentration_a')) ;

visB=(cat(2,ones(num_sample,l), concentration^'));

% sensor_plotQ

function [figid] = sensor_plot(Sa, sb, figid)

figure(figid) ;

title('Sensor inputs');

plot(Sa(:,2),Sa(:,3),'ro');

hold on; xlabel('data_i_n_p_u_t x'); ylabel('data_i_n„p_u_t y');

axis([-l 1 -1 1]);

plot(Sb(:,2),Sb(:,3),'ro');

figid = figid + 1;

33

% inferQ

function hid = infer(vis, vishid, ah, bh, phiL, phiH)

vs = size(vis) ;

ws = size(vishid);

noise = randn(vs(l), ws(2));

hid = sigmoid(repmat(ah,vs(l),1).*(vis-vishid+bh^noise), phiL, phiH);

hid(:,l) = 1;

% generateO

function vis = generateChid, vishid, av, bv, phiL, phiH)

hs = size (hid) ;

ws = size(vi shid);

noise - randn(hsCl),ws(l));

vis = sigmoid(repmat(av,hs(l),1).*(hid-'vishid'+bv*noise), phiL, phiH)

vis(:,l) = 1;

% gradAC)

function da = gradA(stagel, stage2, a, learning_rate)

nfac = sizeCstagel); % Size of data set

x = diagC(stagel-stage2) ' *-'(stagel+stage2)) ';

da = learning_rate"'x./Ca.^2) ;

da = da/nfac(l);

% aplotO

function [figid] = aplot(a, figid)

n = size(a,2);

34

figure(figid);

hold off;

for i=2:n

plot(a(:,i));

hold on; xlabel ('epoch'); ylabelC'a_v_i_s_i_b_1_e');
end

figid = figid + 1;

% aaplotQ

function [figid] = aaplotCa, figid)

n = sizeCa,2);

figure(figid);

hold off;

for i=2:n

plot(a(:,i));

hold on; xlabelC'epoch'); ylabelC'a_h_i_d_d_e_n');

end

figid = figid + 1;

% bplotC)

function [figid]. = bplotCa, figid)

n = prod(size(a(:,:,1)));

figure (figid) ;

hold off;

for i=l:n

b=permute(a,[3,2,1]);

plot(b(:,i));

hold on; xlabelC'epoch'); ylabel('weight')

end

figid = figid + 1;

% examO

function [figid] = exam(num_vis,vishid,av,ah,bv.bh,phiL,phiH,figid)

35

% Examine learning ability of the network with normal distributed noise

num_sample « 400;

nstep = 20;

1 = 0;

vis_test = cat(2 ,ones(num_sample, 1) ,2;';rand(num_sample,num_vis-l)-

onesCnum_sample,num_vis-l));

for i=l:num_sample

if remCi ,2)

visACfixCi/2)+l,:) = vis_testCi,:);

else

visBCi/2,:) = vis_test(i, :) ;

end

end

hid_test = infer(vis_test, vishid, ah, bh, phiL, phiH);

for i=l:nstep

vis_test = generate(hid_test, vishid, av, bv, phiL, phiH);

hid„test = infer(vis_test, vishid, ah, bh, phiL, phiH);

end

figid = figid + 1;

figureCfigid) ;

titleC'output of crbm');

plotCvis_testC:,2),vis_testC:,3),'ro');

xlabel('data_o_u_t_p_u_t x'); ylabel('data„o_u_t_p_u_t y');

axis([-l 1 -1 1]);

% sigmoidQ

function y = sigmoidCx, phiL, phiH)

y = phiL + CphiH-phiL)./Cl+expC-x))

36

Appendix II'- Results of Testing

BWU*I> hf r *#p jr^l^

ma *ji' if/i L USUI* .tX^pT* (f " !t^. H-,— j£l** L.tf/'.S' **

M»*> Vl*l»'l*,3|^, "*,

.!.

Epoch = 10000 Epoch = 20000

37

••JTi-K-amw£7'~-j.-L I

in^-^a^Maypm^^"JresTOipT-TO"" yr—•?•••
i~, V

,<«|£*8TS
^/•y^tfjifc^-BL' fci *iua.<Sftti~Mifc

ii~mt.-i.iT-: 37

IDS U''t »* «,«** ^^^g^^ri^i^'-sEv^jfe-i..^'^ ffikfSllS

*ft

Epoch = 30000 Epoch- 10000

38

si^^:,g.»ui,ii«<|aa"SEr.r

>i» * * '• *#i)

J=s;?^=<oa*~^
5g£ e*s.asSEssi

r^c:
-:;i' ,,

—

—__'-——— ","~

X

. --._

tSvidKWWSi.iJ -SS" 'M I)

jtBo*ji * j1 i* j»sn-. .

Epoch = 20000

" * '**,"*, J'-v-,

"*kv

Epoch = 30000

39

lHon * ji»,i7>fl'srnr^vi'." -s

i/tfSj-ks^'^^SiS^a^^^iSlKkisI:

J"

i.-^
.-"tX.

KUjjawuua1- i '^ j.t. lit'

P>SBI» JO,-/ m\£^t&-w£

KBlM^-*dnJ53' J.—=•'•—T

P= B» 'ijTTT*1'',

Epoch= 10000 Epoch= 20000

40

3*OU < « r ste-
• —*''i.' C""r"l* ™Z—,S

lisan U'^»«; ifflHSSE51W3*S«^^,s*ojks4.'-5>£%.

.s

„w""-

•u a h n u>s / a-bi

'/-^~\/

W^^^^^^^^^P

^*^fi^^^^ev.>v\,-'

Epoch - 30000 Epoch = 50000

41

}•
•» 1

Site

0H# > *'< *»'

ion t*w •#-

Epoch- 10000

42

.*..•*•• \'l •=£.tt* >tf

•: •*••:,".•

.! • •

"" f'm -w"

•. A' • :iS\

