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ABSTRACT 

The purpose of this report is to provide an overview of the writer's Final Year Project. 

Current techniques in dehydration of natural gas, such as absorption, adsorption and 

membrane require relatively large facilities, a large investment, complex mechanical work, 

and the possibility of having a negative impact on the environment. Separation with 

supersonic flow is proposed as a solution to some of the disadvantages of conventional 

methods. The objectives of the project is to perform simulation which model natural gas 
flow through a convergent-divergent nozzle which separates water from natural gas and 
study pressure and temperature drop as well as the effectiveness of the separation. 
FLUENT and GAMBIT are the major tool used in running the simulation. Simple 

explanation on the methods is provided in this report. 

Gas is accelerated up to velocities exceeding the sound propagation velocity in gas through 

a convergent-divergent nozzle due to transformation of a part of the potential energy of 
flow to kinetic energy the gas is cooled greatly. The result of the simulation shows velocity 

of gas increases significantly at the choke, resulting in temperature drop which condenses 
water vapour in the gas mixture. By removing water liquid droplets, water content in 

system can be reduced. Temperature, pressure, velocity and component mass fraction 

profiles are included in the report. Furthermore, effects of different inlet mass flow rate are 

studied. Higher inlet mass flow rate increases temperature drop, hence more water vapour 
is condensed and lower water content left in natural gas. For effective separation, sufficient 
inlet mass flow rate is required to achieve sonic flow in a 3-inch pipeline. 
Recommendations for future work expansion and continuation are provided at the end of 
the report. 
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CHAPTER 1: INTRODUCTION 

1.1 Background of study 

Natural gas extracted from underground sources is saturated with liquid water and 
heavier molecular weight hydrocarbon components. In order to meet the requirements for 

a clean, dry, wholly gaseous fuel suitable for transmission through pipelines and 
distribution for burning by end users, the gas must go through several stages of 

processing, including drying to reduce water vapour content. The dehydration of natural 

gas is critical to the successful operation of the production facility and the whole 
distribution train through to the end user. The presence of water vapour in concentrations 
above a few 10s of parts per million has potentially disastrous consequences. From the 

gas quality perspective, water is a common impurity in natural gas streams, and removal 

of it is necessary because water vapor becomes liquid water under low temperature and/or 
high-pressure conditions. 

The lifetime of a pipeline is governed by the rate at which corrosion occurs which is 

directly linked to the available moisture in the gas which promotes oxidation, particularly 

when carbon dioxide and hydrogen sulfide are present in the gas. In addition, the 
formation of hydrates can reduce pipeline flow capacities, even leading to blockages, and 

potential damage to process filters, valves and compressors. Such hydrates are the 

combination of excessive water vapour with liquid hydrocarbons, which may condense 

out of the gas in the course of transmission, to form emulsions that, under process 

pressure conditions, are solid masses. Besides, liquid water in a natural gas pipeline 
potentially causes slugging flow conditions resulting in lower flow efficiency of the 

pipeline. Moreover, water content decreases the heating value of natural gas being 

transported. 
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1.2 Problem statement 

The dwindling high quality crude oil reserves and increasing demand for natural gas has 

encouraged energy industries further towards the discovery of remote offshore reservoirs. 

Consequently, new technologies have to be developed to efficiently produce and 

transport stranded natural gas to consuming markets. Compactness of production systems 

is the most challenging design criteria for offshore applications. Current separation 

techniques used in dehydration of natural gas are absorption, adsorption, membrane and 

refrigeration. Setbacks of these methods are they require relatively large facilities, a 

considerable investment, complex mechanical work, and the possibility of having a 

negative impact on the environment. Supersonic gas processing system is able to 

overcome some of the disadvantages of the conventional processes for dehydration. 

1.3 Objectives of project 

The objectives of the project are to: 

" incorporate mathematical model into Computational Fluid Dynamic 

" simulate natural gas flow through De Lava nozzle and study the effectiveness of 

water separation from supersonic gas flow 

" determine system temperature and pressure drop due to sudden expansion after going 
through the throttling process as well as composition of components throughout the 

system 

2 



1.4 Scope of study 

The case studies are mainly about cooling and condensation of water vapour in natural 

gas. Study of thermodynamic and fluid flow of the gas mixture through a system consists 

of a convergent-divergent nozzle which accelerates gas flow, generates supersonic flow 

and creates cooling effect, 2A and 3A simulation are performed to model the fluid flow 

through throttling effect. Temperature, pressure and composition changes throughout the 

system are observed and analyzed to determine the effectiveness of the water removal 
technique. 

As natural gas composes mainly of methane, the rest of the other hydrocarbons usually 

present are disregarded. Meaning the other light gases such as ethane, propane and so on, 
is not in the scope of study, to reduce the complexity involved when dealing with 

FLUENT. However, non-hydrocarbons species, CO2 and H2S are given due attention as 

they are considered substantial water-content contributors besides hydrocarbon. 

The project involves finding out operating conditions best for separation of liquid from 

the gas system. Therefore, it will be advantageous to acknowledge the typical pressure 

and temperature in the gas pipeline and in the associated processing plant. Kolass states 

that in on-shore transmission (gas entering offshore pipelines) is often compressed to 16 

MPa (160 bar) or higher and in processing plant, the pressure of natural gas is typically 4 

MPa (40 bar) to 8 MPa (80 bar). A typical sour natural gas project example by Kolass 

specifies the maximum permissible moisture content to be at 50 mgH2O/std. m3. 

In this project the water vapour content in the vapour outlet of the separator device is set 
to be at 0.00014 mole fraction, equivalent to approximately 7 lb/MMscf. The range of 

pressure is set to be 60 bar (860 psi) to 245 bar (3,600 psi) which cover well the range of 

pressure in the pipeline and in processing plant. The temperature of study is from 40 OF to 
140°F (4.5 °C - 60 °C), which also cover well the operating regime of a gas pipeline. The 

temperature is neither too low nor too high because the design of the separator device 

shall strive to minimize the need for coolant and heating medium to achieve separation. 
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CHAPTER 2; LITERATURE REVIEW 

2.1 Dehydration Methods 

Removal of water from natural gas and can be accomplished by several alternative 

methods, which are discussed in the following part. 

2.1.1 Absorption of Water in Glycols 

Absorption dehydration involves the use of a liquid desiccant to remove water vapor 
from the gas. The glycols, particularly ethylene glycol (EG), diethylene glycol (DEG), 

triethylene glycol (TEG), and tetraethylene glycol (T4EG) have chemical affinity for 

water and removes water from the gas stream. Water and the glycols show complete 

mutual solubility in the liquid phase due to hydrogen-oxygen bonds, and their water 

vapor pressures are very low. In this process, DEG or TEG is brought into contact with 
the wet gas stream in a contactor. The glycol solution absorbs water from the wet gas 

and, once absorbed, the glycol particles become heavier and sink to the bottom of the 

contactor where they are removed. The natural gas, having been stripped of most of its 

water content, is then transported out of the dehydrator. 

Water may be removed from gas streams at the same time as hydrogen sulfide is 

removed. A widely used dehydration and desulfurization process is the glycolamine 

process, in which the treatment solution is a mixture of ethanolamine and a large amount 

of glycol. The mixture is circulated through an absorber and a reactivator. The glycol 

absorbs moisture from the hydrocarbon gas passing up the absorber; the ethanolamine 

absorbs hydrogen sulfide and carbon dioxide. The treated gas leaves the top of the 

absorber; the spent ethanolamineglycol mixture enters the reactivator tower, where heat 

drives off the absorbed acid gases and water. This technology needs a large facility and 
due to the need for glycol, there is a possibility for some operational problems such as 

corrosion, foaming in contactor device, fouling of heat transfer surfaces, glycol 

contamination and loss. 
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2.1.2 Adsorption of Water by a Solid 

Adsorption (or solid bed) dehydration is the process where a solid desiccant is used for 

the removal of water vapor from a gas stream. The solid desiccants commonly used for 

gas dehydration are those that can be regenerated and, consequently, used over several 

adsorption-desorption cycles. 

L Alumina 
A hydrated form of aluminum oxide (A1203), alumina is the least expensive 

adsorbent. It is activated by driving off some of the water associated with it in its 

hydrated form ((A1203.3H20) by heating. It produces an excellent dew point 

depression values as low as -100 °F, but requires much more heat for 

regeneration. 

Also, it is alkaline and cannot be used in the presence of acid gases, or acidic 

chemicals used for well treating. The tendency to adsorb heavy hydrocarbons is 

high, and it is difficult to remove these during regeneration. It has good resistance 
to liquids, but little resistance to disintegration due to mechanical agitation by the 
flowing gas. 

ii. Calcium chloride 

Solid anhydrous (CaCl2) which forms various CaC12 hydrates when combined with 

water can be also used as desiccant to dehydrate natural gas. As water absorption 

continues, brine solution will be formed. In this unit calcium chloride pellets are 

placed in a fixed bed. The units might show poor performance under some 

conditions if CaCl2 pellets bond together and form a solid bridge in the tower. 
These units produce a waste stream that has to be taken care of appropriately 

iii. Silica gel and silica-alumina gel 
Gels are granular, amorphous solids manufactured by chemical reaction. Gels 

manufactured from sulfuric acid and sodium silicate reaction are called silica gels, 

and consist almost solely of silicon dioxide (SiO2). Alumina gels consist primarily 

of some hydrated form of A1203. Silica-alumina gels are a combination of silica 
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and alumina gel. Gels can dehydrate gas to as low as 10 ppm, and have the 

greatest ease of regeneration of all desiccants. 

They adsorb heavy hydrocarbons, but release them relatively more easily during 

regeneration. Since they are acidic, they can handle sour gases, but not alkaline 

materials such as caustic or ammonia. Although there is no reaction with H2S, 

sulfur can deposit and block their surface. Therefore, gels are useful if the H2S 

content is less than 5-6%. 

iv. Molecular Sieves 

These are a crystalline form of alkali metal (calcium or sodium) alumina-silicates. 
They are highly porous, with a very narrow range of pore sizes, and very high 

surface area. Manufactured by ion-exchange, molecular sieves are the most 

expensive adsorbents. They possess highly localized polar charges on their 

surface that act as extremely effective adsorption sites for polar compounds such 

as water and hydrogen sulfide. Molecular sieves are alkaline and subject to attack 
by acids. Special acid-resistant sieves are available for very sour gases. 
Since the pore size range is narrow, molecular sieves exhibit selectivity towards 

adsorbates on the basis of their molecular size, and tend not to adsorb bigger 

molecules such as the heavy hydrocarbons. The regeneration temperature is very 
high. They can produce water content as low as 1 ppm. Molecular sieves offer a 

means of simultaneous dehydration and desulfurization and are therefore the best 

choice for sour gases. 

2.13 Membrane separation 

Membranes have been successfully used to remove acid gases from natural gas. They 

have also been successfully used for dehydration of air. They are also being promoted by 

suppliers of membrane technologies for water removal. They are relatively expensive 
(especially for large gas flow rates) and can be easily fouled by gas contaminants. They 

also need high pressure for efficient operation. However, they have a low-pressure drop 
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through the process and do not need any chemical reagents. The installation and change 

of the membrane cartridges are relatively easy and the maintenance cost is low. The 

membranes' capability to remove water vapour is not selective and part of the gas is 

always wasted through co-permeation. 

2.1.4 Refrigeration 

The simplest method of water removal is to cool the gas to a temperature at least equal to 

or below the dew point by refrigeration or cryogenic separation. The saturated vapor 

content of natural gas decreases with increased pressure or decreased temperature. Thus, 

hot gases saturated with water may be partially dehydrated by direct cooling. Gases 

subjected to compression are normally "after cooled", and this cooling may well remove 

water from the gas. The cooling process must reduce the temperature to the lowest value 

that the gas will encounter at the prevailing pressure to prevent further condensation of 

water. In most cases, cooling alone is insufficient for use in field operations. 

2.2 Hydrocarbon dew point 

For natural gas there are two dew-point temperatures of relevance, the water dew point, 

and the hydrocarbon dewpoint. The latter is quite simply the temperature at which liquid 

hydrocarbons condense out of the gas upon cooling. Such liquid hydrocarbons comprise 

the heavier molecular weight components of the gas composition, typically butane and 
higher. This parameter, as with water dew point, requires dedicated processing plant (in 

the form of condensing chillers) and purpose designed measurement instrumentation. 

7 
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Figure 1: Hydrocarbon and Water Dew Point Variation with Pressure for a Typical 

Natural Gas Composition 

2.3 Joule-Thomson effect 

As a gas expands, the average distance between molecules grows. Because of 
intermolecular attractive forces, expansion causes an increase in the potential energy of 

the gas. If no external work is extracted in the process and no heat is transferred, the total 

energy of the gas remains the same because of the conservation of energy. The increase 

in potential energy thus implies a decrease in kinetic energy and therefore in temperature. 

Due to the sudden pressure and temperature drop, water vapour condenses and falls out 

of the stream as liquid droplet while pure methane gas stream continues to flow. 

In thermodynamics, the Joule-Thomson effect, describes the temperature changes of a 
gas or liquid when it is forced through a valve or porous plug while being insulated so 
that no heat is lost to the environment. This procedure is called throttling process or Joule 
Thomson process. At room temperature, all gases except hydrogen, helium and neon cool 

upon expansion by Joule Thomson process. 

8 



In practice, the Joule-Thomson effect is achieved by allowing the gas to expand through 

a throttling device (usually a valve) which must be very well insulated to prevent any 
heat transfer to or from the gas. No external work is extracted from the gas during the 

expansion. Only when the Joule-Thomson coefficient for the given gas at the given 

temperature is greater than zero can the gas be liquefied at that temperature by the Linde 

cycle. In other words, a gas must be below its inversion temperature to be liquefied by the 

Linde cycle. 

Joule-Thomson cooling occurs when a non-ideal gas expands from high to low pressure 

at constant enthalpy. The effect can be amplified by using the cooled gas to pre-cool the 

incoming gas in a heat exchanger. 

2.4 Supersonic flow 

The term supersonic is used to define a speed that is over the speed of sound (Mach 1). In 

methane, the value required for an object to be travelling at a supersonic speed is 

approximately 460 m/s. Supersonic flow behaves very differently from subsonic flow. 

Fluids react to differences in pressure; pressure changes are how a fluid is "told" to 

respond to its environment. Therefore, since sound is in fact an infinitesimal pressure 
difference propagating through a fluid, the speed of sound in that fluid can be considered 

the fastest speed that "information" can travel in the flow. This difference most obviously 

manifests itself in the case of a fluid striking an object. In front of that object, the fluid 

builds up a stagnation pressure as impact with the object brings the moving fluid to rest. 
In fluid travelling at subsonic speed, this pressure disturbance can propagate upstream, 

changing the flow pattern ahead of the object and giving the impression that the fluid 

"knows" the object is there and is avoiding it. However, in a supersonic flow, the pressure 
disturbance cannot propagate upstream. Thus, when the fluid finally does strike the 

object, it is forced to change its properties, such as temperature, density, pressure, and 
Mach number in an extremely violent and irreversible fashion called a shock wave. 
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2.5 Nozzle system design 

To design a nozzle that efficiently converting the energy of high pressure gas to kinetic 

energy, the nozzle should be composed of three sections, namely the converging section, 

throat and diverging section. The function of the converging part is to keep the flow 

uniform and parallel as well as to accelerate the gas. The gas flow through a de Laval 

nozzle is isentropic (gas entropy is nearly constant). At subsonic flow the gas is 

compressible; sound, a small pressure wave, will propagate through it. Within the 

converging section leading to the throat area, the gas is accelerated because of the 

constant mass flow rate so that sonic is reached at the throat and the converging curvature 
keeps the velocity of the flow uniform. At the throat, where the cross sectional area is a 

minimum, the gas velocity locally becomes sonic (Mach number = 1.0), a condition 

called choked flow. As the nozzle cross sectional area increases the gas begins to expand 

and the gas flow increases to supersonic velocities where a sound wave will not 

propagate backwards through the gas as viewed in the frame of reference of the nozzle. 

The nozzle will only choke at the throat if the pressure and mass flow through the nozzle 
is sufficient to reach sonic speeds. In addition, the pressure of the gas at the exit of the 

expansion portion of the exhaust of a nozzle must not be too low. Because pressure 

cannot travel upstream through the supersonic flow, the exit pressure can be significantly 
below ambient pressure it exhausts into, but if it is too far below ambient, the flow will 

cease to be supersonic, or the flow will separate within the expansion portion of the 

nozzle, forming an unstable jet that may flop around within the nozzle, possibly 
damaging it. In practice ambient pressure must be no higher than roughly 2-3 times the 

pressure in the supersonic gas at the exit for supersonic flow to leave the nozzle. 
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Figure 2: Graph of flow velocity, temperature and pressure proportional with the flow 

across nozzle. 

Figure 2 shows the result of velocity, temperature and pressure proportion with the flow 

throughout the nozzle. Sudden expansion after the throat causes the temperature and 

pressure to drop significantly which causes condensation of water vapor. The velocity of 
the supersonic flow will increase after passes through the throat. Mach number at the 
throat is ideally equal to 1 while the Mach number after the throat will be larger than 1. 

When the sonic flow is reached at the throat, the diverging part can further accelerate the 

flow depending on the outlet condition. This causes a fall in pressure and temperature as 

well as increase in gas velocity. It is likely that under certain condition, the flow cannot 

expand insentropically to the exit pressure, therefore an irreversible discontinuity, called 

normal shock can occur. During this process, large change in pressure and temperature 

can occur in a small distance. 
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2.6 Supersonic gas technology 

2.6.1 3S supersonic gas separation technique 

A new group of technologies has been developed for the separation and processing of 

natural gas components based on the adiabatic cooling of swirling gas flow in a 

supersonic nozzle. In September, 2004, a complex consisting of two "3S" facilities with a 

capacity of above 400 mmscm per year each was successfully put into pilot production operation 

at one of the gas treatment plants in Western Siberia as a part of the LPG complex. 

Figure 3: Schematic diagram of 3S supersonic gas separator 

The mixed Hydrocarbon Stream enters the 3S unit as pictured from the left. Flowing 

through a static arrangement of blades, the stream attains a high velocity swirl. The 

stream continues through a nozzle, where it is accelerated to high sub-sonic or to 

supersonic speeds. Due to the rapid expansion at the exit of the nozzle the desired 

condensates will form as a mist. The centrifugal force of the swirl moves those liquids as 

a film to the wall where they run off through a suitable constructive arrangement and are 
diverted together with some slip gas. The gas stream continues through an anti-swirling 

arrangement and through diffusers. Here the stream is slowed down and the kinetic 

energy converts back into pressure, regaining about 75-80% of the inlet pressure. 

This technology is suitable for on-shore plants, particularly useful for off-shore plants 
due to the small footprint and reduced weight and has a great future for subsea 
installations. 
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2.6.2 TWISTER supersonic separator 

The Twister Supersonic Separator is a combination of physical processes producing a 

completely revolutionary gas conditioning system. Condensation and separation at 

supersonic velocity is the key to achieving a significant reduction in both capital and 

operating costs, The simplicity and reliability of Twister technology enables de-manned, 

or not normally manned, operation in harsh onshore and offshore environments and is 

expected to prove to be a key enabler for sub-sea gas processing. In addition, the compact 

and low weight Twister system design enables de-bottlenecking of existing space and 

weight constrained platforms. 

The Twister Supersonic Separator has thermodynamics similar to a turbo-expander, 

combining expansion, cyclonic gas/liquid separation and re-compression in a compact, 

tubular device. Twister achieves temperature drop by transforming pressure to kinetic 

energy. The centrifugation force generated by the cyclonic flow in the twister can go up 

to 500,000g in order to achieve supersonic flow and swelling effect. The diagram of 

twister supersonic separator is shown in Figure 4. 

Static Guide Laval Cyclonic Separator 
Vanes \ Nozzle (500,000g) Diffuser 

, NaturateU 
Feed Gas Dry Gas 

00.10 
100 bar, 20C 75 bar, 
(1450 psi, 68F)- ! jr (1088 psi, 48F) 

Vortex ' Tapered 
Generator Inner Body 

iJl ;" ; 

I Liquids + 
Slip-gas 

75 bar, 7C 

(1088 psi, 45F) 

Figure 4: Twister supersonic separator 

A Laval nozzle is used to expand the saturated feed gas to supersonic velocity, which 

results in a low temperature and pressure. This results in the formation of a mist of water 
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and hydrocarbon condensation droplets. The high vorticity swirl centrifuges the droplets 

to the wall. The liquids are split from the gas using a cyclonic separator. The separated 

streams are slowed down in separate diffusers, typically recovering 70 - 75% of the initial 

pressure. The liquid stream contains slip-gas, which will be removed in a compact liquid 

de-gassing vessel and recombined with the dry gas stream. 

Twister BV is currently working on a joint technology development project with 
Petrobras in Brazil for sub-sea gas processing using Twister technology. The first 

commercial offshore Twister application started-up in December 2003 on 
Petronas/Sarawak Shell Berhad B 11 facility offshore East Malaysia to dehydrate 600 

MMscfd of non-associated sour gas fed to the onshore Malaysian LNG plant at Bintulu, 

Sarawak to control pipeline corrosion. 
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CHAPTER 3: METHODOLOGY 

Figure 5 depicts the methodology employed in all phases of the project. Gantt chart 

which illustrates project schedule can be found in APPENDIX A. FLUENT and 
GAMBIT software are used to perform the simulation. GAMBIT is the preprocessor for 

FLUENT to setup geometry and generate mesh. The geometry is then export to FLUENT 

where it models fluid flow and heat transfer in the geometry. 

Literature Review 

1 
De Laval nozzle geometry setup 

in Gambit 

Integration of mathematical model 
into FLUENT 

t 

Simulation of gas flow 

1 
Validation of result 

Finalization of FLUENT model 

Figure 5: Project Flow Chart 

4 
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CHAPTER 4 RESULT AND DISCUSSION 

4.1 2D Modeling and Simulation 

4.1.1 Gambit Drawing 

Supersonic nozzle is drawn and meshed using Gambit, with finer mesh at area nearer to 

the convergent and divergent sections as properties changes are significant there. Figure 6 

shows the drawing of the nozzle. 

Figure 6: Gambit 2D drawing of convergent-divergent nozzle (unit in meter) 

4.1.2 Fluid flow simulation 

The velocity of the flow is expected to increase when it passes through the converging 

part until it achieves the supersonic flow, 460 m/s (Mach =1) at the throat. After the 

throat, it will flow through divergence part and the natural gas will experience swelling 
effect which causes temperature and pressure drop. The water will be condensed into 

water droplets; hence reducing water vapor content in pipe. 

The velocity profile (Figure 7) obtained from FLUENT simulation is similar with the 
hypotheses but does not fully agree with it, where velocity of gas increases as it 

approaches the convergent section. Velocity reaches maximum at the center of the throat, 
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where cross section area is the smallest of the system. However, the highest velocity 

achieved is 180 m/s, which is lower than the speed of sound in methane (460 m/s). Thus 

Mach number is lower than unity and the gas is in subsonic flow throughout the system. 
Flow rate decreases as the gas flows through the divergence part. In contrast, if 

supersonic flow is attained gas will keep accelerating during expansion. Besides, gas near 

to the wall has lower velocity due to frictional force. 
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Figure 7: Velocity profile in unit m/s 
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Figure 8: Velocity distribution along x-direction 
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Temperature drops 13K, from its initial temperature of 318K to 286K at the throat as 

shown in Figure 9 and Figure 10. This demonstrates Joule-Thomson effect when gas is 

forced through a much smaller area. 
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Figure 9: Temperature profile in unit Kelvin 
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Figure 10: Temperature distribution along x-direction 
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Significant pressure drop is observed across the choke due to the constriction that raises 

velocity of the gas mixture. Pressure profile and pressure distribution along x-direction is 

shown in Figure 11 and Figure 12. 
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Figure 11: Pressure profile in unit Pascal 
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Figure 12: Pressure distribution along x-direction 
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A small amount of water is condensed , thus lower mass fraction of water is observed 
downstream the choke. The lowest water fraction, which is 0.00023, is observed at the 

throat. Mass fraction changes of water in the system is shown in Figure 13, while Figure 

14, Figure 15 and Figure 16 shows mass fraction of methane carbon dioxide and 
hydrogen sulphide, respectively. Generally, concentration of all components decreases 

near the choke. 

Figure 13: Mass fraction of water vapour 
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Figure 14: Mass fraction of methane 

Figure 15: Mass fraction of carbon dioxide 
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Figure 16: Mass fraction of hydrogen sulphide 

4.1.3 Effects of different inlet mass flow rate 

The inlet mass flow rate is set at 200 kg/s for the analysis above. In this part of the report, 
inlet mass flow rate is varied to study its impact on velocity, temperature and efficiency 
in removing water. Each run is set to 10,000 iterations or achieve convergence; 

whichever comes first. 

4.1.3.1 Inlet mass flow rate at 180kg/s 
Velocity and temperature profiles (Figure 17 and Figure 18) are similar with profiles at 
200 kg/s. However, it has lower maximum velocity of gas, 162 m/s due to reduced mass 

flow rate that enters the system. As a result, temperature drop across the throat decreases, 

only 26 K of decrement is recorded. 
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m 

I 

Figure 17: Velocity profile in unit m/s at inlet mass flow rate of 180kg/s 

OL 
I 

Figure 18: Temperature profile in unit Kelvin at inlet mass flow rate of 180kg/s 

Mass fraction profile of water vapor is the same as profile at 200 kg/s. Mass fraction at 

choke is 0.00033, higher than mass fraction recorded at inlet mass flow rate of 200 kg/s. 
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1 

I Figure 19: Mass fraction of water vapour at inlet mass flow rate of 180kg/s 
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4.1,3.2 Inlet mass flow rate at 100kg/s 

When inlet mass flow rate is further lowered to 100 kg/s, velocity at throat reduces to 

90.4 m/s. Cooling effect of the expansion also reduces as the temperature only drops to 
310K, 8K difference from its initial temperature. Velocity and temperature profiles are 

shown in Figure 20 and Figure 21. 
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Figure 20: Velocity profile in unit m/s at inlet mass flow rate of 100kg/s 
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Figure 21: Temperature profile in unit Kelvin at inlet mass flow rate of 100kg/s 
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At inlet mass flow rate of 100 kg/s, the simulation result does not show any change in 

composition of the gas mixture as illustrated in Figure 22 and Figure 23. Mass fractions 

of all components are constant throughout the process, thus there is no phase change 

occur in this process. 

Figure 22: Mass fraction of water vapor at inlet mass flow rate of 100kg/s 

Figure 23: Mass fraction of methane at inlet mass flow rate of 100kg/s 
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4.2 3D Modeling and Simulation 

4.2.1 Gambit Drawing 

Another drawing of nozzle in pipeline is done in 3D to model more comprehensive 
behavior of fluid flow. Dimension of drawing is smaller (3 inch pipe) in correspondence 

to existing prototype of the system. In order to ensure fluid profile is fully developed at 

the outlet, length of pipe after choke is increased. As in 2D drawing, finer mesh is applied 

at area nearer to the convergent and divergent sections. Geometry and dimension of 

convergent-divergent nozzle is shown in Figure 24. 

Figure 24: Gambit 3D drawing of convergent-divergent nozzle (unit in meter) 
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4.2.2 Fluid flow simulation 

Natural gas flow through De Laval nozzle is simulated at varying inlet mass flow rates, 
with increase of 0.5kg/s from 2kg/s to 5.5kg/s. Following are the parameters specified for 
the simulation. 

Table 1: Simulation inputs 

Temperature 320 K 

Pressure 70 bar 

Species input mass fraction Methane 0.082 

Hydrogen sulfide 0.05 

Carbon dioxide 0.12 

Water 0.01 

The section follows show the simulation result of case of 4kg/s and 5kg/s. Other 

simulation results can be found in APPENDIX B. 
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4.2.2.1 Inlet Mass Flow Rate 4 kg/s 

As shown in Figure 25 and Figure 26 drastic pressure drop is witnessed at the convergent 

section of the nozzle due to conservation energy as fluid velocity increases through the 

constriction resulting in gain in kinetic energy. The lowest pressure recorded is 37.72bar 

at the throat. About 90% pressure recovery is observed after the throat. 

rAqý 3. M. "05 
a. 34.. 05 
1. as.. 05 

1.36.. 0{ 

"9. T6e. W 

-a09.. os 

-331.. 05 

-/. 3a.. 05 

-6-n. -Os 

-7.66.. 05 

-6. te.. os 
-9.69.. 05 

"t10.. 06 

-La1.. 06 

-t3a.. 06 

-t43.. 06 

-t55.. 06 

-1.66-06 
-ti1.. 06 

-1. E6.. 06 

ý: tss 

3-X 

Cwtara d 8taticheaarc (pe. xd) Noa OL 2009 
IIAnfT 6,2 (34 ee9regrte4 apt ake) 

Figure 25: Static pressure profile at inlet mass flow rate of 4kg/s 
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Figure 26: Static pressure distribution along x-axis at inlet mass flow rate of 4kg/s 
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Velocity of fluid increased as it is forced to converge to go through the smaller cross 

sectional area. Figure 29 shows a sharp increased in velocity at 0.35m x-direction, which 
is the throat position where fluid achieved its highest velocity of 432m/s. Increase in flow 

area at divergent section reduces the velocity of fluid flow. 
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Figure 27: Velocity profile at inlet mass flow rate of 4kg/s 
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Natural gas flow approaches local speed of sound near the choke, where its Mach number 
is equal to 0.943. 
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Figure 29: Mach number at inlet mass flow rate of 4kg/s 
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Figure 30: Temperature profile at inlet mass flow rate of 4kg/s 

31 



Static 
Temperature 

(k) 

0 0.2 0.4 0.6 0.6 1 

Position (m) 
12 tA 1.6 

Sl. tic 14. Pa. ra x0r 0% 9009 
ZLOLR 6.2 (8d. ° f°4MCd apS *e) 

Figure 31: Temperature distribution along x-axis at inlet mass flow rate of 4kg/s 

When natural gas enters the nozzle water vapor is cooled and condensed as temperature 

decreases significantly. Molar concentration profile of water vapour is depicted in Figure 

32. However, concentration of water vapour increases as temperature raises downstream 

the throat area. 
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Figure 32: Molar concentration profile of water vapor at inlet mass flow rate of 4kg/s 
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Figure 33: Molar concentration distribution of water vapor along x-axis at inlet mass flow 
rate of 4kg/s 
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4.2.2.2 Inlet Mass Flow Rate 5 kg/s 

As compared to the case of 4kg/s inlet mass flow rate, pressure drop is higher 

qualitatively in this case as shown in Figure 34. 
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Figure 34: Static pressure profile at inlet mass flow rate of 5kg/s 
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Figure 35: Pressure distribution along x-axis at inlet mass flow rate of 5kg/s 
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Figure 36: Temperature profile at inlet mass flow rate of 5kg/s 
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Figure 37: Temperature distribution along x-axis at inlet mass flow rate of 5kg/s 
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Figure 38: Velocity profile at inlet mass flow rate of 5kg/s 
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Figure 39: Velocity distribution along x-axis at inlet mass flow rate of 5kg/s 
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Mach number monotonically increases from inlet of nozzle to M=1 at the throat, where 

sonic flow is achieved. The gas is further expanded to supersonic flow at the divergent 

part where a sound wave will not propagate backwards through the gas as viewed in the 
frame of reference of the nozzle. Maximum Mach number obtained is 1.26. 
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Figure 40: Mach number at inlet mass flow rate of 5kg/s 
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Figure 41: Molar concentration profile of water vapor at inlet mass flow rate of 5kg/s 
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Figure 42: Molar concentration of water vapor along x-axis at inlet mass flow rate of 
5kg/s 

Reduced outlet molar concentration of water vapour is can be clearly seen in this case, 
where water liquid does not fully vaporise after the throttling effect. Molar concentration 
of water vapour reduces from the initial 0.02kmol/m3 to 0.0015kmol/m3 at exit. 



4.2.3 Summary of Simulation 

Velocity is a crucial factor in reaching the desired temperature and pressure drop of gas 

flow through De Laval nozzle. Figure 43 illustrates the relationship of velocity with 

pressure at choke and temperature drop. It is found that temperature drop increases with 
increasing velocity while pressure at choke is lower at higher velocity. It is desirable to 
have large temperature drop to cool the water vapour and high pressure at choke which 

signifies less pressure loss in the system. Thus an optimum velocity needs to be 

determined to acquire sufficient temperature drop at least differential pressure. 

Pressure at Choke and Temperature Drop at Different 
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Figure 43: Pressure at choke and temperature at different velocities 
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Details of pressure drop, pressure at throat, temperature drop and amount of water 

removed are shown in Table 2. 

Table 2: Pressure drop, pressure at throat, temperature drop and water removed 

Mass flow inlet 
ks 

Pressure 
drop (bar) 

Pressure at 
throat (bar) 

Temperature 
drop (K) 

Water removed 
(kg/m3) 

2 3.05 56.95 6 4.7 
2.5 4.09 55.92 9 6.8 

3 7.92 52.08 15 11 
3.5 12.47 47.53 25 19.5 

4 22.28 37.72 47 47.68 
4.5 32.81 27.19 70 104.31 

5 40.30 19.70 84 508.97 
5.5 47.10 12.90 93 710.476 

Figure 44 shows effect of inlet mass flow rate on amount of water removed. Looking at 
the figure, it is found that the amount of water removed increases with increasing inlet 

mass flow rate. Highest water removal is obtained at 5.5kg/s flow rate, which records 
710.48kg/m3. s. 
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Amount of Water Removed at Different Inlet Mass Flow 
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Figure 44: Water removed at different inlet mass flow rates 

5.5 

While it is desirable to remove larger amount of water by increasing the cooling effect, 

the outlet water vapour fraction shall also be checked. For example, in order to meet 

pipeline specification, mass fraction of water shall not exceed certain value. If fraction of 

water is an important criterion one has to check also the outlet fraction. There shall be an 

optimum design whereby it can removed large amount of water while also meeting the 

specification. 

Higher cooling effect is capable of condensing more materials than that of lower inlet 

mass flow rate with lower cooling effect. Higher cooling effect could also condense out 

other components, particularly the valuable CH4. As a consequence, rate of removal of 

methane (as well as H2S and C02) is higher resulting in increased outlet water vapour 

content instead of lowering it. This means higher velocity may not necessary be good for 

separation. Figure 45 and Figure 46 shows the outlet average mass percentage for water 
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vapor and outlet average mass fraction for other components, namely methane, carbon 
dioxide and hydrogen sulfide, accordingly. 
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Figure 45: Outlet mass percent of water vapour at different inlet mass flow rates 
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Figure 46: Outlet mass fractions at different inlet mass flow rates 

42 

ý CH4 

C02 

H2S 



From Figure 45, it is found that outlet mass percent of water decreases consistently as 
inlet mass flow rate is increased. On the other hand, there is no change of mass fraction 

of other components observed at the outlet following the cooling effect as shown in 

Figure 46. Hence, higher inlet mass flow rate is favoured. In addition to rate of water 

removed and outlet mass percent of water, other factors, such as limitation of the pipe 

and pumping requirement need to be taken into consideration. 

4.3 Validation of Simulation Result 

Simulation data are validated by comparing them with experimental data obtained from 

literature (Oil & Gas Journal, May 2005). As shown in Figure 47, simulation result is 

close to experimental data, showing difference of approximately f5 K. Therefore, the 

simulation model is considered valid. The values are tabulated in APPENDIX C. 
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Figure 47: Comparison of simulation data and experimental data 
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CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

Velocity increases while temperature and pressure drop across choke due to sudden 

expansion is modeled using Fluent and Gambit software. Simulation result shows 

velocity increases as it approaches the convergent section of the nozzle and sonic flow 

(Mach number=1) is achieved at throat when inlet mass flow rate is sufficient. The 

diverging part further increases velocity of gas to supersonic velocities. Sudden 

expansion also decreases the pressure and temperature of the gas, which enables the 

system to condense water vapor, thus reducing the water vapor content in natural gas. 
Besides, higher inlet mass flow rate causes higher velocity at throttle, which leads to 

greater temperature drop and more water vapour condensed that can be removed from 

natural gas. Simulation result is validated with experimental data from literature. 
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5.2 Recommendations 

Recommendations for future work are listed below: 

I. Blades should be included in the system to create swirling effect which forces water 
liquid condensed to the wall and then water near the wall should be removed. 

2. Generate two phase (vapour and liquid) simulation to see how much vapour is 

condensed to liquid and how much liquid vapourizes to gas, and how this equilibrium 
affects the outflow fraction. In this way, absolute amount of loss of each component 

can be obtained. 
3. Different design of De Laval nozzle could be tested for its cooling effect and water 

removal efficiency. 
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APPENDIX C 

SIMULATION RESULT VALIDATION DATA 



Table Cl: Comparison of experimental and simulation result 
Experimental Simulation 

Temperature 
difference K 

Pressure ratio, 
PI/P2 

Temperature 
difference (K) 

Pressure ratio, 
PI/P2 

0 1 6 1.2292 
10 1.2344 9 1.2519 
20 1.4375 15 1.3441 
30 1.6094 25 1.4728 
40 1.7969 47 1.8558 
50 1.9688 70 2.5745 
60 2.1563 84 3.5533 
70 2.4375 93 5.4264 

I 


