
Simple-As-Possible Computer System Developmenton

Field Programmable Gate Array

by

Lee Siang Yeek

4141

Dissertation submitted in partial fulfilment of the

requirements for the

Bachelorof Engineering (Hons)

(Electrical &Electronics Engineering)

JUNE 2007

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Simple-As-Possible Computer System Development on

Field Programmable Gate Array

Approved by,

by

Lee Siang Yeek

4141

A dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS ENGINEERING)

(MR. LO HAIHIUNG)

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

JUNE 2007

n

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work'submitted in this project, that the

original work ismy own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

(LEE SIANG YEEK)

in

ABSTRACT

This report presents the project work and results of the Simple-As-Possible (SAP)

computer system development on Field Programmable Gate Array (FPGA) project.

This project undertaken as fulfilment of the two semesters EEB5034 & EEB5044

Final Year Project course is aimed to develop the first generation of SAP computer

(SAP-1) introduced by Albert Paul Malvino on FPGAs for educational purpose. This

includes system level synthesis of SAP-1 computer on a single FPGA chip, as well as

modular synthesis of SAP-1 with each SAP-1 functional block on a Complex

Programmable LogicDevice (CPLD) or FPGA chip.

The objective of this project is to develop SAP-1 computer model for better

structured lab practices of the Computer System Architecture course. Implementation

of SAP-1 computer is initially suggested by Malvino to be based on TTL logic

circuits. FPGA and CPLD are selected instead in this project due to their improved

robustness and ease of debugging. The project also serves as introductory practice for

understanding of fundamental computer architecture and Verilog Hardware

Description Language (HDL) simulation and synthesis of digital systems to the

developer.

IV

ACKNOWLEDGEMENT

I would like toexpress my highest appreciation to a few people who has contributed

greatly towards making this project a successful and valuable one. Firstly, I would

want to thank the project supervisor, Mr. Lo Hai Hiung for his guidance throughout

the development ofthis project. Thanks Mr. Lo for his kind advice in determining the

project development flow and methodology, consultations on learning process of

Verilog HDL, HDL simulator, and development software, and valuable suggestions

in debugging ofthe prototype. His effort in reviewing the reports written throughout

thisproject is alsohighly appreciated.

I would want to thank the technician of the Digital System Design Lab, Mr.

Badrulnizam for his coordination in leasing of Altera's University Program 2 (UP2)

development platforms for project prototype development purpose. I would want to

thank Printed Circuit Board (PCB) Lab technician, Mr. Isnani too for his assistance in

PCB development for organized interconnectivity ofUP2 platforms used in modular

synthesis of SAP-1 computer.

Last but not least, I would also want to thankall lecturers whose name is not

mentioned here, yet have contributed their opinion or suggestion valuable to

development of this project. Thanks to all technicians for their kind cooperation

especially in leasing ofcomponents and equipment for project development purpose.

TABLE OF CONTENT

CERTIFICATIONS a

ABSTRACT iv

ACKNOWLEDGEMENT v

CHAPTER 1 INTRODUCTION \

1.1 Project Background 1

1.2 Problem Statement 2

1.3 Objective & Scope of Study 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 SAP-1 Architecture 4

2.1.1 WBus 4

2.1.2 Program Counter (Control Unit) 4

2.1.3 Memory Address Register &Address Input

(Memory Unit/Input Unit) 4

2.1.4 Random Access Memory &Instruction/Data Input
(Memory Unit / Input Unit) 5

2.1.5 Instruction Register (Control Unit) 5

2.1.6 Controller/Sequencer (Control Unit) 5

2.1.7 Mode-Select Switches, De-bouncers, and Clock Buffer
(Input Unit/Control Unit) 5

2.1.8 Accumulator (Arithmetic Logic Unit) 5

2.1.9 Adder/Subtracter (Arithmetic Logic Unit) 5

2.1.10 BRegister (Arithmetic Logic Unit) 6

2.1.11 Output Register &Binary Display (Output Unit) 6
2.2 SAP-1 Instruction Set 6

2.3 SAP-1 Programming 6

2.4 SAP-1 Machine Cycle &Instruction Cycle 7

vi

CHAPTER 3 METHODOLOGY & PROJECT WORK 8

3.1 Literature Study ofDigital Electronics Fundamentals and

Applications 9

3.2 Literature StudyofSAP-1 ComputerSystem 9

3.3 Literature Study of Verilog HDLfor Synthesis of Digital

Systems 9

3.4 Simulation of SAP-1 Computer System 10

3.5 System Synthesis of SAP-1 Computer System 11

3.6 ModularSynthesis of SAP-1 Computer System 16

CHAPTER 4 RESULTS & DISCUSSIONS 19

4.1 Simulation of SAP-1 ComputerSystem 19

4.1.1 Program Counter 19

4.1.2 MAR 20

4.1.3 2 to 1 Multiplexer 21

4.1.4 16 x 8RAM. 21

4.1.5 Instruction Register 22

4.1.6 Accumulator 22

4.1.7 Adder/Subtracter 23

4.1.8 B Register 24

4.1.9 Output Register 25

4.1.10 Controller/Sequencer (Instruction Decoder,

Ring Counter & ControlMatrix) 25

4.1.11 Mode-Select Switches, De-bouncers &ClockBuffer 27

4.1.12 System Level Simulation ofSAP-1 Computer 29

4.1.13 Overall Findings 35

42 System Synthesis of SAP-1 Computer System 35

4.3 Modular Synthesis of SAP-1 Computer System 40

CHAPTER 5 CONCLUSION & RECOMMENDATION 46

5.1 Conclusion 46

5.2 Recommendation 47

REFERENCES 48

VII

APPENDIX A MODIFIED BLOCK DIAGRAM OF SAP-1 50

APPENDIX B TRUTH TABLE OF BINARY TO HEXADECIMAL

7-SEGMENT DISPLAY DECODER MODULE 51

APPENDIX C ALTERA'S UNIVERSITY PROGRAM 2 DEVELOPMENT

PLATFROM COMPONENT LAYOUT 52

APPENDIX D SAP-1 SYSTEM SYNTHESIS SOURCE CODE 53

D-l Program Counter 53

D-2 MAR & 2 to 1 Multiplexer 54

D-3 16x8 RAM 55

D-4 Instruction Register 56

D-5 Accumulator 57

D-6 Adder/Subtracter 58

D-7 B Register 59

D-8 Output Register 60

D-9 Controller/Sequencer (Instruction Decoder, Ring Counter &

Control Matrix 61

D-10 Mode-Select Switches, De-bouncers & Clock Buffer 63

D-l 1 SAP-1 65

D-l2 Additional Hexadecimal Display of MAR & 2 to 1 MUX

Output on MAX 7000S Device 66

APPENDIX E SAP-1 MODULAR SYNTHESIS SOURCE CODE 68

E-l Program Counter 68

E-2 MAR & 2 to 1 Multiplexer 69

E-3 16x8 RAM 71

E-4 Instruction Register 73

E-5 Accumulator 75

E-6 Adder/Subtracter 76

E-7 B Register 78

E-8 Output Register 79

vui

E-9 Controller/Sequencer (Instruction Decoder, Ring Counter &

Control Matrix 80

E-10 Mode-Select Switches, De-bouncers & Clock Buffer 83

APPENDIX F PIN ASSIGNMENTS, PIN INTERCONNECTIONS, AND

INPUT & OUTPUT DEVICE UTILIZATION OF THE

MODULAR SAP-1 PROTOTYPE 86

F-l Program Counter 86

F-2 MAR & 2 to 1 Multiplexer 87

F-3 16x8 RAM 88

F-4 Instruction Register 89

F-5 Accumulator 90

F-6 Adder/Subtracter 91

F-7 B Register 92

F-8 OutputRegister 93

F-9 Controller/Sequencer (Instruction Decoder, Ring Counter &

Control Matrix 94

F-10 Mode-Select Switches, De-bouncers & Clock Buffer 95

APPENDIX G PHOTOS OF MODULAR SAP-1 PROTOTYPE 96

IX

LIST OF FIGURES

FIGURE 1 Project development flowchart 8

FIGURE 2 Simulation results of the Program Counter module 20

FIGURE 3 Simulation results of the MAR module 20

FIGURE 4 Simulation results of the 2 to 1 Multiplexer module 21

FIGURE 5 Simulation results of the 16 x 8 RAM module 22

FIGURE 6 Simulation results of the Adder/Subtracter module for addition

operation 24

FIGURE 7 Simulation results of the Adder/Subtracter module for subtraction

operation 24

FIGURE 8 Simulation results of the B Register module 24

FIGURE 9 Simulation results of the Output Register module 25

FIGURE 10 Simulation results of the Controller/Sequencer module 26

FIGURE 11 Input and outputwaveforms of simulation ofthe Controller/

Sequencer module at the earliest 2 instruction cycles 27

FIGURE 12 Simulation results of the Mode-Select Switches, De-bouncers &

Clock Buffer module 28

FIGURE 13 Input and outputwaveforms of SAP-1 system level simulation

in RAM-programming mode 30

FIGURE 14 Input and outputwaveforms of SAP-1 system level simulation

for execution of the ADD and SUB routine 31

FIGURE 15 Final results of SAP-1 system level simulation 34

FIGURE 16 Schematic diagram of the LOW_HIGH input switches

implementation 38

FIGURE 17 Modified block diagram of SAP-1 redrawn from chapter 10 of

[1] Digital Computer Electronics by Malvino (1983) 50

FIGURE 18 Component layout ofAltera's University Program 2 Development

Platform from page 3 of [13] "University Program UP2Education

Kit User Guide v3.1", Altera Corporation, www.altera.com/

literature/univ/upds.pdf 52

FIGURE 19 Modular SAP-1 prototype, picture 1 96

FIGURE 20 Modular SAP-1 prototype, picture 2 96

LIST OF TABLES

TABLE 1 SAP-1 Instruction Set Summary from chapter 10 of [1] Digital

Computer Electronics byMalvino (1983) 6

TABLE 2 UP2 platform input& outputdevices and driven or driving

signals in SAP-1 system synthesis 14

TABLE 3 Active control signals for each routine at everyT state obtained

from simulation results of the Controller/Sequencer module 26

TABLE 4 Programused for verification of SAP-1 system level

simulation 29

TABLE 5 Summary of internaloperations of the ADD routine in test

Program of SAP-1 system simulation 32

TABLE 6 Detailed observations of test program execution on SAP-1 system

synthesis prototype in manual-clocked mode 39

TABLE 7 Detailed observations of test program execution on modular SAP-1

prototype in manual-clocked mode 44

TABLE 8 Truth table of binary to hexadecimal 7-segment display decoder

module for common anode, active low 7 segment display on

Altera's UP 2 Development Platform 51

xi

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Simple-As-Possible (SAP) computer system is an educational computer system

introduced by Albert Paul Malvino in his book, Digital Computer Electronics

published in 1983. This computer system introduces only the most crucial ideas

behind computer operation. Though, these ideas make up valuable fundamental for

understanding of many modern and more complex computer architectures. SAP

comes in three generations with increasing number of functional blocks and

operational complexity, namely SAP-1, SAP-2, and SAP-3. SAP computer system

has been implemented in universities using TTL logic circuits as proposed by

Malvino's original design.

Field Programmable Gate Arrays (FPGA) are programmable logic chips

utilizing large scale integration technology [2]. It is made up of basic logic

components that can be programmed for certain logical behavior. These programmed

blocks can then be linked to generate more complex logic system [3]. This technology

has replaced the usage of Application Specific Integrated Circuit (ASIC) for design

and prototyping of IntegratedCircuits(IC) [4]. Utilization of FGPA has tremendously

increased efficiency of IC design and prototyping in terms of cost and time.

Complex Programmable Logic Devices (CPLD) which can be traced back as

historical root of invention of FPGA [5], is another type of programmable IC with

different architecture. It is made up of fully programmable AND and OR gates array

for logical functions and a macrocells bank performing combinatorial or sequential

logic [6]. CPLD typically has less logical elements than FPGA [7]. Another

noticeable difference between FPGA and CPLD is the presence of on-chip non

volatile memory in the CPLD [8].

Traditional circuit design uses schematic to describe circuits for simulation.

As new circuits increase greatly in complexity, this approach has become impractical.

Development of Hardware Description Language (HDL) has evolved to solve this

problem. HDL uses textual description representation of electronic circuits and

systems [9]. Verilog is one of the most widely used HDL, with another being VHDL.

Having its syntax being similar to *C language, Verilog is preferred by most

commercial designers [10]. Verilog is first designed for circuit simulation [9]. Latter

efforts have made Verilog capable for synthesis of circuit on chips too. Despite the

limitations on circuit synthesis with Verilog, as in not all statements implemented in

simulation are synthesizable, Verilog is still a powerful HDL for synthesis of digital

systems. Verilog allows various specification levels and styles.

1.2 Problem Statement

This project is aimedto develop first generation of SAP computers (SAP-1) on FPGA

for educational purpose. Verilog HDL will be used to capture each functional block

of SAP system for simulation and synthesis purpose.

The developed prototype will be utilized in lab sessions of EEB5253

Computer System Architecture course. Previously, lab practices would require the

students to construct their circuit for experimental purpose based on TTL logic

circuits. Maintaining a working Verilog program, the circuit can be reprogrammed or

duplicated whenever circuit failure occurs. This is far more efficient than debugging

complicated TTL circuits as error is encountered. Therefore, students of the course

can concentrate better on learning of computer system architecture rather than

spending time debugging TTL circuits during the lab session.

Meanwhile, FPGA also features higher robustness compared to TTL circuits.

TTL circuits implementation of SAP-1 computer suggested by Malvino requires more

than 50 TTL chips with messy wirings. Failure of a single TTL chip or connection of

a single wire may lead to malfunction of the entire system. This justifies the decision

to implement SAP computer system on FPGA rather than TTL circuits. Development

of this project also provides an alternative of learning computer system architecture

through Verilog HDL and FPGA besides construction ofTTL logic circuits.

1.3 Objective & Scope of Study

This project is aimed to develop hardware required for better structured lab

experiments of the Computer System Architecture course. This includes system level

synthesis of SAP-1 computer on a single University Program 2 (UP2) development

platform by Altera, as well as modular synthesis of SAP-1 computer utilizing a UP2

platform for each functional block. Presenting only the basic components of vital

importance, while eliminating unnecessary details at the same time, SAP computers

promote easy understanding of computer operation through the lab session [1].

From the project developer's perspective, this project enables me to gain

understanding on fundamentals of computer system. Although SAP computers

present a simple design for very basic computer operation, it forms valuable

fundamental for understanding of modern and more complex computer systems to be

encountered in the future. Apart from that, the project also provides me good practice

for picking up knowledge on Verilog HDL. Implementation of the computer system

also exposes me to FPGA technology. In short, this project is a value-added activity

for the participant.

Schematics and detailed description of all SAP generations are available in

Albert Paul Malvino's book, [1] Digital Computer Electronics (1983). Meanwhile,

reference source of Verilog HDL is widely available. The project supervisor, Mr. Lo

Hai Hiung is a very knowledgeable person on Verilog for valuable consultancy. The

university also provides good facility for digital system design on FPGA. Hence with

proper project scheduling, this project has high feasibility.

CHAPTER 2

LITERATURE REVIEW

This chapter provides a high level architectural overview of SAP-1. As SAP

computer is introduced by Albert Paul Malvino, information in this chapter is cited

from his publication, [1] Digital Computer Electronics (1983). Kindly refer to the

book for further details.

2.1 SAP-1 Architecture

Brief description of each functional block of SAP-1 is provided below. Kindly refer

to Appendix A for modified blockdiagram of SAP-1 computer system.

2.1.1 WBus

The W Bus is a three-state 8-bit wide bus interconnecting various SAP-1

modules, allowing orderly transfer of data [1].

2.1.2 Program Counter (Control Unit)

The program counter is essentially a ripple counter. It is incremented forevery

instruction cycle to point to the memory location of the next instruction to be

fetched and executed [1].

2.1.3 Memory Address Register &Address Input (Memory Unit/Input Unit)

The Memory Address Register (MAR) stores memory address coming from

the Program Counter and Instruction Register for access of instruction or data

stored in the Random Access Memory. Switches are utilized for memory

location selection during programming stage [1].

2.1.4 Random Access Memory & Instruction/Data Input (Memory Unit / Input

Unit)

The 16 8-bit-words Random Access Memory (RAM) stores program and data

of SAP-1. 8-bit switches are attached to this RAM for instruction/data

inputting purpose at the programming stage [1],

2.1.5 Instruction Register(Control Unit)

The Instruction Register is used to separate SAP-1 instructions into the

instruction field (upper nibble) and data location field (lower nibble) and

subsequently outputs to the Controller/Sequencer andMARrespectively [1].

2.1.6 Controller/Sequencer(Control Unit)

This block decodes the instruction fetched by the Instruction Register and

outputs a 12-bit control word that coordinates operation of each functional

block in every T state [1].

2.1.7 Mode-SelectSwitches, De-bouncers, and ClockBuffer (Input Unit/Control

Unit)

Mode-Select Switches is made up of the START'/CLEAR switch for running

or stopping of program execution and, LOW/HIGH and MANUAL7AUTO

switches facilitating the clocking mode of SAP-1 computer. CLK and CLR

signalsgenerated in this block are fed into the other SAP-1 modules [1].

2.1.8 Accumulator (Arithmetic Logic Unit)

This 8-bit register stores intermediate value and final result of arithmetic

operations. The value stored in the Accumulator is sent to the Output Register

and Binary Display when the "OUT" routine is executed [1].

2.1.9 Adder/Subtracter (Arithmetic Logic Unit)

A 2's complement Adder/Subtracter is used in SAP-1. For subtraction

operation, a high Su signal is sent to the Adder/Subtracter to convert one of

the operand (stored in B Register) into 2's complement form [1].

2.1.10 B Register (Arithmetic Logic Unit)

The B register is another buffer register used in arithmetic operation. It holds

the number to be added to or subtracted from the number stored in the

Accumulator [1].

2.1.11 Output Register &Binary Display (Output Unit)

When the "OUT" instruction is executed, number stored in the Accumulator is

sent to the Output Register to trigger 8 Light-Emitting Diodes (LEDs) Binary

Display [1].

2.2 SAP-1 Instruction Set

SAP-l's instruction set consists of only 5 instructions. These instructions and the

corresponding operation are summarized in TABLE 1.

TABLE 1: SAP-1 instruction set summary from chapter 10 of [1] DigitalComputer

Electronics by Malvino (1983)

Mnemonic
Op

Code
Operation

LDA 0000 Load RAM data into Accumulator

ADD 0001
Load RAM data to B Register, and add B Register data to

Accumulator

SUB 0010
Load RAM data to B Register, and 2's complement subtract B

Register data from Accumulator

OUT 1110 Load Accumulator data into Output Register

HLT mi Stop processing

2.3 SAP-1 Programming

SAP-1 program is stored in lower RAM location (from 0x0) whereas the data are

stored in the higher locations. The 8-bit instruction consists of the upper nibble

operation type and the lower nibble operand [1]. This is demonstrated in the

following example presented in both assembly language (left) and machine language

(right):-

Address Instruction/Data Address Instruction/Data

0x0 LDA0x9 0000 0000 1001

0x9 0x11 1001 00010001

The example shows that instruction which essentially loads the accumulator with the

content of location 0x9 of the RAM is stored at memory location 0x0 (lower

location). The data involved in this operation is stored in a higher RAM location

(0x9). When presented in machine language, the op-code and data are given in binary

representation. We see that op-code of the "LDA" operation (0000 binary) and

memory location storing the operand occupies the upper and lower nibble of the

instruction respectively [1].

2.4 SAP-1 Machine Cycle & Instruction Cycle

Each T state of SAP-1 is characterized by each clock cycle, starting and ending with a

falling clock edge. As SAP-1 is positive-edge-triggered, this selection makes all

clocked operation to occur midway through each T state. This gives an allowance of

half a cycle time for setup time, hold time, and steady state setup time for the signal

being present at the W Bus [1].

The first three T states are named the Fetch Cycle. It generally involves

accessing of memory location of instruction pointed to by Program Counter,

incrementing the Program Counter, and fetching the instruction in the RAM to the

Instruction Register [1]. The latter three T states make up the Execution Cycle.

Operation taking place in the system during Fetch Cycle is generally common for all

instructions but differs among instructions in the Execution Cycle [1].

6 T states (Ti through Te) makes up a machine cycle for SAP-1. The number

of T states needed to fetch and execute an instruction defines an instruction cycle.

SAP-1 has fixed instruction cycle of 6 T states which equals the machine cycle [1].

CHAPTER 3

METHODOLOGY & PROJECT WORK

The project work carried throughout thisFinal Year Project course is presented in this

section. Shown below is the development flowchart of this project:-

Literature study of digital electronics
fundamentals and applications
(Semester 1, week 2 to week4)

1 r

Literature study of SAP-1 computer
System

(Semester 1, week 5)

1 '

Literature study of Verilog HDL for
synthesis of Digital Systems

(Semester 1, week 4 to week 7)

i <

Simulation of SAP-1 computer
System

(Semester 1, week8 to week 14)

1 , i '

System synthesis of SAP-1
computer system

(Semester 2, week11 to week12)

Modular synthesis of SAP-1
computer system

(Throughout semester2)

FIGURE 1: Project development flowchart

Details of each project activity will be discussed throughout this chapter. Results

obtained from these activities will be discussed in the next chapter of this report.

3.1 Literature Study of Digital Electronics Fundamental and Applications

This is the first activity of the project carried out from Week 2 to Week 4 of Semester

1. The study is carried out based on the first nine chapters of [1] Digital Computer

Electronics by Malvino (1983). The early chapters cover the digital electronics

fundamentals which are recap of the Digital Electronics I course. Subsequently,

various applications of the fundamental logic components such as the adder-

subtracter, flip-flops, registers, counters, and memory are demonstrated. Along the

descriptions in these latter chapters, sub-modules of SAP-1 have been introduced as

appropriate. Thisensures good understanding during literature study of SAP-1.

3.2 Literature Study of SAP-1 Computer System

Literature study of SAP-1 is done based on chapter 10 of [1] Digital Computer

Electronics by Malvino (1983) in Week 5 of the Semester 1. In this chapter, how

small digital circuits introduced previously are combined for a simple computer

system has been seen. Details of this activity havebeen discussed in Chapter 2 of this

report. It is of vital importance that thorough understanding is gained at this stage for

correct Verilog HDL capturing of the computer system during latter simulation and

synthesis ofthe system on FPGA.

3.3 Literature Study ofVerilog HDL for Synthesis of Digital Systems

This activity has been performed from Week 4 to Week 7 of the Semester 1. [10]

Verilog Styles for Synthesis of Digital Systems by Smith & Franzon (2000) and [11]

Verilog Codingfor Logic Synthesis by W. F. Lee is the mainreference materials used.

Meanwhile, lecture notes of the Digital System Design course have also been used as

additional reference. Topics gone through are as follows:-

- Basic Language Constructs on preliminaries, data types, and modules of

Verilog HDL.

- Structural vs. Behavioural Specification that details in the writing styles of

both specification types.

- Procedural Specification that introduces the 'always' block, 'if statement,

'case' statement, and various looping statements having higher expressive

power for behavioural specification style.

- Design Approaches for Single Modules on recommended design steps and

strategies for single modules in Verilog HDL.

- Validation of Single Modules that discusses the element of good Verilog

HDL modules testing such as good testbench coding, proper test coverage,

and multiple test vector sources.

It is worth noting that Verilog HDL is initially designed for simulation thus not all

statements are synthesizable. Due to that, special attention has been paid to identify

statements that can only be used for simulation. These statements will be avoided in

simulation of SAP-1 system so that code verified through simulation can be applied

straight for synthesis purpose.

3.4 Simulation of SAP-1 Computer System

Simulation of SAP-1 has been started during Week 8 of Semester 1. ModelSim Xilinx

Edition (XE) III / Starter 6.0d has been used as the simulator. Early attempt of this

activity involves familiarization of the software by going through tutorials of the

software. Simulation is then startedby capturing SAP-1 modules in Verilog HDL and

writing testbench foreach module. Verilog coding used is ensured to be synthesizable

so that validated modules can be used for synthesis without any need for

modification. Testbench is written so that the simulation reflects actual operation of

the module being tested in SAP-1 system. For example, the CP control signal that

triggers an increment in the Program Counter goes high at every T2 state [1]. The

testbench is programmed to havethis behaviour as well.

As Malvino's design uses TTL chips, behaviour of the control, clock, and

clear signal are designed to comply with the TTL chips' requirements (whether they

are active high/low, positive/negative-edge-triggered). However, this is not necessary

as SAP is to be implemented on FPGA. Appropriate simplifications as listed below

10

have been made during simulation while maintaining the general behaviour of the

modules in the system:-

- All negative-edge-triggered flip-flops that accepts inverted clock signal can be

simplified to positive-edge-triggered ones which accepts non-inverted clock

signal to eliminate inverted clock fromthe system.

- Clear inputs of all blocks are active high.

- Inputs in each module that accepts control signals from the Controller-Sequencer

blockare active high. In otherwords, control signals go highwhen it is active.

These simplifications may reduce mistakes in theVerilog code. However, there might

be other concerns (e.g. power efficiency) behind Malvino's original design. Hence

any modification made unto theoriginal design is documented well. This willserve as

possible parameters that require correction in case of error when SAP-1 system is

synthesized on FPGA.

Apart from the simplifications mentioned above, the Verilog program design

is kept similar to that of the original SAP-1 computer during the simulation stage. In

making sure that this fundamental program works, other simplifications or extra

features can easily be added to the system as necessary at the synthesis stage with

ease of debugging. Any error encountered that time can easily be traced to the

modifications made. We shall discuss the enhancements introduced to SAP-1

computer in detail in the nextpartof this chapter.

A system level simulation hasalso been done combining Verilog programs of

all modules. Most signals that are essentially "wire" have been declared as "output"

in the Verilog program of SAP-1. This is done to enable observation of waveform of

these signals during simulation. System level simulation of SAP-1 has been

completed towards the end of Semester 1.

3.5 System Synthesis of SAP-1 Computer System

SAP-1 system synthesis is aimed to implement all SAP-1 modules on a single

Altera's University Program 2 (UP2) development platform. To understand the

features available on the UP2 platform, the document [13] University Program UP2

11

Education Kit User Guide v3.1 has been downloaded from Altera's website. This

document provides sufficient information for usage of the development platform in

prototype development.

The Quartus II 6.1 Web Edition software has also been acquired from Altera's

website. To obtain an overview on the features available in this software, the

document [12] Introduction to Quartus II - Version 6.1 available from Altera's

website has been gone through. The Quartus II is a powerful all-in-one tool for

project development using Altera's FPGA or CPLD products. It supports HDL &

Schematic Design Entry, Analysis & Synthesis, Place & Route, Timing Analysis,

Simulation, and Configuration & Programming of the selected target device [12].

The interactive tutorial of the Quartus II attached to the software is also

valuable in getting familiarized with the user interface of the software. Subsequently,

the project development tools relevant to this project are identified, including HDL

Design Entry, Analysis& Synthesis, Pin Assignment & Fitting, and Configuration &

Programming. Simulation is not carried out as the Verilog programs used in synthesis

have been verified in the simulation stage earlier.

After getting familiarized with the hardware and software to be utilized in the

synthesis stage, SAP-1 system synthesis has been started by setting up project

targeted for the FLEX 10K device on the UP2 platform in the Quartus II software.

Some simplifications and additional features have been introduced as appropriate to

the Verilog programs developed in the simulation stage. Each "if statement in the

Verilog programs is paired with an "else" statement to avoid inferred latch that may

introduce timing analysis issues during synthesis.

Another simplification has been implemented on the De-bouncers block.

Referring to the design of the Mode-Select Switches and De-bouncers in page 159 of

[1] Digital Computer Electronics by Malvino (1983), single pole double throw

(SPDT) switches are used at the latches' inputs. In order to utilize the dual in-line

package (DIP) switches available on the UP2 platform, this design can be modified so

that the upper input of each latch is driven by an ON/OFF switch. The lower input of

the latches will be tied to their respective ON/OFF switch through an inverter, always

12

maintaining inputs of opposite logic level at the latches. This modification also

reduces the number of input signals required in the module by 3 inputs.

Meanwhile, the 7-segment displays available on the UP2 platform can be

utilized as hexadecimal display for output of SAP-1 computer. This improves the

readability of the computational result originally driving eight Light Emitting Diodes

(LEDs) as binary display. Thus an additional binary number to hexadecimal 7-

segment display decoder module has been written and being instantiated by the

Verilog program of the Output Register module. The truth table of this module is

provided in Appendix B. Note that this is a 4-bit to 8-bit (including decimal point

signal) decoder module written for common-anode active-low display unit. As

content of the Output Register consists of 2 hexadecimal digits, 2 instantiations of the

binary to hexadecimal 7-segment display module is made in the Output Register

module. The result is then concatenated to form a 16-bit decoded signal,

OUTJlEG_HEX. Note that signals in Verilog programs of SAP-l are presented in

Italic throughout this report (e.g. OUT_REGJIEX).

Upon proper consideration and design, the LEDs available on the UP2

platform can be utilized as additional indicators so that functionality of the prototype

will be easily understandable. Table 2 summarizes the input and display devices on

the UP2 platform used in SAP-1 system synthesis and their corresponding driven or

driving signals. Kindly refer to AppendixC for board layout and components naming

of the UP2 development platform. Note the difference between naming format of

individual switch of DIP switches and the numbering used for referencing throughout

this report. Individual switch of DIP switches are represented following the naming

convention of arrays in Verilog, e.g. FLEX_SWITCH[1] and MAX_SW[5].

Numbering of references is presented in boldfaceto makethe difference clear.

As LEDs available on UP2 platform (Dl through D16) are active low [13],

additional complemented signals of T, LDA> ADD, SUB, OUT, HLT, CLK, and CLR

are generated for display purpose. MAX_SW1, MAX_SW2, and the LEDs are

connected to the input/output (10) pins of the FLEX 10Kdevice using wires through

wire wraps soldered at the expansion holes of those pins. Externalwiringis not

13

TABLE 2: UP2 platform input & output devices anddriven or driving signals in

SAP-1 system synthesis

Signal
Type

Component Signal Description

Input

FLEX SWLTCH[1]
FLEX SWITCH[2]
FLEX. SWITCH[3]
FLEX SWITCH[4]
FLEX SWITCH[5]
FLEX SWITCH[6]
FLEX SWITCH[7]
FLEX_SWITCH[8]

DATA IN[7]
DATA M[6]
DATA W[5]
DATA N[4]
DATA IN[3]
DATA M[2]
DATA W[l]
DATAJNfO]

Instruction/Data input during RAM
programming stage.

Active when both RUN_PROG and
READ_WRITE inputsare at LOWlogic

Input

MAX SW1[5]
MAX SW1[6]
MAX SW1[7]
MAX_SW1[8]

ADDR 1N[3]
ADDR N[2]
ADDR INfl]
ADDRJNfO]

Address input for programming of
RAM.

Active when RUN_PROG = 0

fiiput; >.vi\femsw2£2]-" •
Mkx^w2[a]i

start clear
manual auto .

•.'•• loW0iigh:

;SAP-1 m|>|te-setect inputs. •
;The first paranfeler is Active low, e^, *:
.•:^SAP^js»yi^uiig:ihmanual!clocR^ -
ntpde withlo#clock signalwhenal|3

~-&h: -t .,_ inputs ~'0'..; . /

Input
MAX SW2[8]

FLEXJ>B1
RUN PROG

READJVRITE

16 * 8 RAM mode-select inputs
The first parameter is active high, e.g.,
the RAM is in running and reading

mode when both inputs = 1.

'03|put:

Dl

'• ••kds-.'./'•• •
D7

Twtflj''-.
"*'-. Tnolf2f-^

• &• Tnot[3] •
Tnoff4]
TriotfS]
Triqif6]

'Complemented;s&telsignalsfor active
"ijf§y:LEDs":

Output

D9

D10

Dll

D12

D13

LDAnot

ADDnot

SUBnot

OUTnot

HLTnot

Complemented decoded instruction
signals for active low LEDs

Output
D15

D16

CLKnot

CLRnot

ComplementedCLK and,. Ciflsignals
for active low LEDs

Output FLEXDIGIT DIGIT_DISPLAY

Decoded signal of Output Register
content {OUT REG) in RUN mode and

RAM content (RAMJflSPLAY) in
PROG mode. *

Output MAXJDIGIT MUXJDUTJIEX
Decoded signal of2 to 1 MUX's output
(MUXJ)UT) for hexadecimal display *

Please read further for more detailed explanation.

14

necessary for the remaining components used as theyare routed permanently to fixed

10 pins of the FLEX 10Kdevice in the printedcircuitboard (PCB).

In order to take full advantages of the resources available on the UP2

development platform, the MAX_DIGIT device is designed for display of output of

the Memory Address Register (MAR) & 2 to 1 Multiplexer (MUX) module. This

enables the user of the prototype to observe the location of RAM being accessed

during SAP-1 program execution. As the MAX_DIGIT display is routed to the fixed

10 pins of the MAX 7000S device, which are not accessible through the expansion

holes, it has been decided that decoding for the hexadecimal display is to be

implemented on the MAX 7000S device. This reduces number of external wirings

required as the 4-bit output signal of the MAR and 2 to 1 MUX module (MUXOUT)

is passed from the FLEX 10K device to the MAX 7000S device instead of the 8-bit

decoded hexadecimal display signal. This connection is made using insulation

displacement connectors (IDC) with ribbon cable through pin headers soldered at

expansion holes ofboth FLEX 10K device and MAX 7000S device side.

For better clarity in the RAM-programming mode, an enhancement has been

introduced on FLEX_DIGIT device initially used only for display of Output

Register's content. FLEXJDIGIT is made to display the content of memory location

pointed to by the RAM address input switches {ADDRJN at MAX_SW1[5] through

MAX_SW1[5]) when the RUN_PROG input is low. With this, the user is able to

verify that correct instruction anddata have been entered at correct memory locations

before executing the program. To achieve this, 2 instantiations of the 4-bit binary to

hexadecimal display decoder module is made in the 16 x 8 RAM module too,

yielding decoded signal RAMJXSPLAYHEX. Selection of decoded signal being

passed to the FLEX_DIGIT display is done according to the logic state of the

RUNJ'ROG input. RAM_DISPLAYJIEX is passed instead of MUXJDUTJIEX

when RUN_PROG is low and vice versa.

Applying all changes discussed earlier in this section to the Verilog program

developed during the simulation stage, the Quartus II project created for SAP-1

system synthesis is compiled for the target FLEX 10K device using the Analysis and

Synthesis function. Erroneous source code is traced and corrected in case errors are

15

reported. Manual pin assignments for the input and output signals are then done,

aiming to avoid messiness of wirings on the prototyping board. Pins attached to

expansion holes at FLEX_EXPAN_A located nearer to the switches and LEDs are

selected. The Fitter is then run to place and route the design to logic cells of the

FLEX 10K device, whereas Assembler is executed to generate the programming file

(SRAM Object File with extension of .sof) of the project [12].

The same process is applied to the additional binary to hexadecimal display

decoder module on the MAX 7000S device, done in a different project. The

Programmer Object File (.pof) generated is added into the Chain Description File

(.cdf) of the SAP-1 system project [12]. This enables programming of both FLEX

10K and MAX 7000S devices in a chain. Applying appropriate jumper settings, the

chips are programmed using the Programmer available in the Quartus II software,

with the board being connected to the computer through ByteBlaster II cable. The

programmed platform is then ready for testing.

System synthesis of SAP-1 computer has been completed. Test results and

findings of hardware implementation of SAP-1 system will be presented in Chapter4

of this report. Verilog programs created for this system synthesis is available in

Appendix D.

3.6 Modular Synthesis of SAP-1 Computer System

Modular synthesis is aimed to implement each functional block of SAP-1 computer

on an Altera's UP2 development platform. SAP-1 computer will be implemented as

10 separate modules as illustrated in modified clock diagram of SAP-1 computer

available in Appendix A. All 10 boards will be interconnected to form a complete

SAP-1 computer.

This implementation has advantage over system synthesis of SAP-1 which the

entire system is implemented on a single board, as it is able to show every single

detail of SAP-1 computer down to the microinstruction level. It promotes good

understanding of the system by examining operations within the prototype alone.

16

Separate Quartus II projects are set up for each SAP-1 module to be

implemented on different UP2 platform. Binary to hexadecimal 7-segment display

decoder module as described in Section 3.5 and Appendix C is incorporated into all

SAP-1 modules except the Controller / Sequencer and Mode-Select Switches, De-

bouncers & Clock Buffer modules. This enables display of output of these modules

on the 7-segment displays available on UP2 boards, enhancing readability of the

outputs. LEDs on the boards are also properly utilized to indicate logic state of

outputs of the modules to make the prototype easily understandable. Verilog source

code of modular synthesis of SAP-1 is available in Appendix E. Detailed pin

assignments, pin interconnections across boards, and input and output device

utilization of all UP2 platforms used in SAP-1 modular synthesis are presented in

Appendix F of this report.

As the FLEX 10K device on the UP2 development platform is based on Static

RAM technology [13], it is volatile. Hence, it is impractical to implement modular

synthesis of SAP-1 on the FLEX 10K device as programming of 10 boards prior to

any usage of the prototype is tedious. This justifies our selection of the non-volatile

MAX 7000S CPLD device for this activity [13]. However, this device consisting of

only 128 macrocells could not accommodate the 16x8 RAM module requiring 192

macrocells [13]. We have two choices dealing with this issue. The 16 x 8 RAM

module can be implemented on the FLEX 10K device. This reduces the number of

UP2boards required by one as the module can be implemented at anyone of the nine

boards which the FLEX 10K device initially remains unused. Nevertheless, a major

drawback exists that the prototype must be programmed with this 16 x 8 RAM

module each time it is powered up. For the second option, the 16 x 8 RAM module

can be reduced to an 8 x 8 RAM module, enabling implementation on the MAX

7000S device. This option is adopted as it provides better convenience to the

prototype users. Although the RAM is shrunk in size, it is still sufficiently big to store

instructions and data of the test program to be used throughout discussions in Chapter

4, which consists of all five instructions of SAP-1 computer.

Interconnections of the WBus, CLK, and CLR signals are implemented on

extra PCB. This is done to reduce the messiness of wirings on the prototype, thus

decreasing the probability of mistakes when setting up the circuits. Typically,

17

interconnection of multiple-bit signals such as the WBus, ACCUJDUT, BREGOUT,

MUX_OUT, and IRJDUTJNS are done using insulation displacement connectors

(IDC) with ribbon cable through pin headers soldered at the UP2 platforms or the

PCB. Other and typically single-bit signals are interconnected using wires through

wire-wraps soldered at the UP2 boardsor the PCB.

The same project development flow in Quartus II software (HDL Design

Entry, Analysis & Synthesis, Pin Assignment & Fillting, and Configuration &

Programming) as discussed in Section 3.5 is applied here for projects setup for each

SAP-1 module. The prototyping boards are ready for testing and verification as they

are programmed using the Programmer in Quartus II software with ByteBlaster II

cable connecting the computer and UP2 platform.

CHAPTER 4

RESULTS & DISCUSSIONS

This chapter presents the test results and findings of all SAP-1 computer simulation,

SAP-1 system synthesis, and SAP-1 modular synthesis. Kindly refer to chapter 10 of

[1] Digital Computer Electronics by Malvino (1983) as appropriate to aid your

understanding in this chapter.

4.1 Simulation of SAP-1 Computer System

Results of modular simulation and system simulation of SAP-1 computer will be

discussed in this section referring to the signal waveforms obtained. Some brief

description on the Verilog code and testbench of each module will also be given.

Note that signals in the Verilog programs are presented in Italic. As mentioned

earlier, the Verilog programs are designed for similar behaviour as SAP-1 computer

in its original TTL circuits implementation, besides simplifications stated in Section

3.4 of this report. The tesbenches are also written to reflect actual behaviour of the

modules in SAP-1 computer system.

4.1.1 Program Counter

A positive-edge-triggered JK flip-flop module with active high clear is first written.

The Program Counter which is essentially a ripple counter is then described by

instantiating the JK flip-flop module. Inverted output of the least significant bit (LSB)

JK flip-flop is fed as the clock input of the next JK flip-flop. Output of Program

Counter (signal PC) will only be made available at WBus when the enable signal Ep

goes high. Else this connection remainsin high-impedance state (z state).

19

_PRQGRA!-4_C0UNT

_PR06RAM_CL.!UfnER,CLK jfj'
•T_PR06RAM_COUMT *
•T„PR0GRaM_COUNT

a--', /TEST_PRDGRAM_COUMTt

FIGURE 2: Simulation results of the Program Counter module

Clock cycle of20ps is used in all simulations. The Program Counter is reset to

0000 when CLR is high. The first machine cycle starts at the falling clock edge at

20ps. EP signal that puts value of PC on the WBus goes high for every clock cycle

starting from 20ps + n*6*20ps, or technically during the Ti state. Meanwhile, the

count enable signal, Cp goes high at every T2 state (clock cycle starting from 40ps +

n*6*20ps). PC is incremented at each positive clock edge appearing at the middle of

each T state [1].

4.1.2 MAR

The MAR is built based on positive-edge-triggered D flip-flops with active high

enable input for data loading. Signal appearing at the inputof the D flip-flop willonly

be accepted at the positive clock edge if the enable signal is high. The MAR module

shows 4 instantiations of the D flip-flop module. Each D flip-flop acts as a registerfor

storing one address bit. These D flip-flops are fed with the input coming from the

WBus at a positive clock edgewhen the control signal Lm is high. Else, output of each

D flip-flop is fed back into its input.

ilium doooo. 711111. :1010i01iii ytfODOtCiTOIOifl-llj *i:iin...""10101013

V MAR.4.1AP, nunotion I 00 ri'fnn" !"" f 'Voooo ,"" ! 51111 i

FIGURE 3: Simulation results of the MAR module.

First machine cycle starts at time Ops for this simulation. Timing of the Lm

signal applies for all LDA, ADD, and SUB routines for this testbench coding. It goes

high at every Ti and T4 state and remains low at any other instance of the machine

20

cycle [1]. Assuming that the instruction being executed is stored at location 0x0 of the

RAM, whereas the data of the operand is stored at location Oxf, the behaviour of the

module is shown in Figure 3. These memory addresses start appearing at MARJJUT

at positive clockedge midway through Ti and T4 respectively and is made available

to the 2 to 1 Multiplexer.

4.1.3 2tol Multiplexer

Source code of the 2 to 1 Multiplexer is made up of a single module. It is simply a

multiplexer outputting either MARJJUT orADDRJN4-bitaddress depending on the

RUN_PROG select signal. The MARJJUT address is selected if the RUNJ>ROG

switch is in RUN position {RUNJ}ROG == 1) and vice versa [1]. The output at this

multiplexer will be used as pointer to access the corresponding memory location of

the RAM.

FIGURE 4: Simulation results ofthe 2 to 1 Multiplexer module

As this module is not clocked, the testbench coding is straightforward.

Assuming that the input coming from MARJJUT is 1010 binary whereas the

ADDRJNswitches sendsignals of 1111 binary, 1010 is selected if RUNJPROG ==\.

Output of the module {MUXJOUT) is 1111 if RUN_PROG = 0.

4.1.4 16 xtf RAM

Low logic of RUNPROG and READJVRITE signals represent RAM programming

and writing mode respectively, and vice versa. When both signals are low, data from

the input switches {DATAJN) is written to the memory location given by output of

21

the 2 to 1 Multiplexer {MUXJJUT). For read operation, the high RUNJ'ROG input

is required. Data at address indicated by MUXJJUT will be retrieved and made

available to the WBus when the Chip Enable signal {CE) goes high [1].

Testbench of the 16 x 8 RAM module is written to simulate two write

operations to memory location 0x0 and 0x1 followed by read operations from these

locations. Data being retrieved from the RAM is only made available to the WBus

when CE goes high during the read operation. The WBus remains in high-impedance

stateat any other instances. Note that logical value of READJVRITE switch doesnot

impose anyeffect to the module whenit is operating in J?LWmode.

FIGURE 5: Simulation results of the 16x8 RAM module

4.1.5 Instruction Register

The Instruction Register generally functions to separate the instruction fetched to it

into the upper nibble instruction op code and lower nibble data address. It utilizes D

flip-flops similar to that of MAR module as registers to store the input values. It

accepts input (instruction in machine code being fetched from RAM) at the WBus at

T3 and outputs the data address at WBus through its tri-state output at T4 [1]. The op

code outputgoing into the Controller/Sequencer however is not clocked.

4.1.6 Accumulator

The Verilog program of the Accumulator module is written by instantiations of D

flip-flop module withenable input for data loading {La). A D flip-flop is usedto hold

1 bit of data thus a total of 8 D flip-flops have been used. Data is loaded into the

22

Accumulator at T5 (for LDA routine) or T6 (for ADD & SUB routines) when La

control signal goes high [1]. Data stored in the Accumulator is made available at the

WBus at T4 when Ea signal goes high as OUT routine is executed. The connection

between the Accumulator output and the WBus remains at high-impedance state

whenever Ea has low logic [1].

4.1.7 Adder/Subtracter

The following formula isused in description of theAdder/Subtracter module:-

ADD_SUB_OUT - ACCU_OUT + B + Su

where ADD_SUB_OUT is the output of the Adder/Subtracter, ACCUJJUT is the

input to the Adder/Subtracter from the Accumulator. B is obtained from the output of

B Register, BJIEGJJUT depending on the logic level of the subtraction enable

signal, Su. When Su is low, indicating an addition operation, B is made equal to

B_REGJJUT. Hence, addition of the Accumulator and B Register's content is

achieved through the formula above.

For a subtraction operation, Su is high. B is equals to complement of

B_REG_OUT in this case. 1 {Su) is added into B (complemented BJiEGJJUT) and

forms 2's complement conversion of BJiEGJJUT. The same formula now executes

addition of an unsigned number and a 2's complement negative number thatyields an

unsigned number thatequals result of a subtraction operation.

"bufifl" primitives are instantiated in this module to establish a three-state

connection between ADDSUBJJUT and the WBus. These tri-state buffers are

activated by the Eu control signal [1].

FIGURE 6 and 7 show the simulation waveforms of the written testbench for

addition and subtraction operation respectively. Note that as the Adder/Subtracter

module is asynchronous in nature (not clocked), result of the arithmetic operation is

available at the module's output as soon as it is fed with the inputs {ACCUJJUT,

BJiEGJJUT, and Su). This result is made available at the WBus at T6 when Eu goes

high as the ADD or SUB instruction is executed [1].

23

|)lJ -7TEST_AD D_S UESMCCU.
?g-^r/TEST_AD D_S UD/B„R'E
'®-J\. .-'TEST_ADD_SS.,"''T '

FIGURE 6: Simulation results of the Adder/Subtracter module for addition operation

FIGURE 7: Simulation results ofthe Adder/Subtracter module for subtraction
operation

4.1.8 B Register

The B Register accepts input from the WBus when the load signal Lb goes high at T5

for execution of ADD or SUB instruction [1]. Data loading operation occurs at the

positive clock edge midway through T5 state as positive-edge-triggered D flip-flops

are used to hold the input data [1]. This canbe observed in the simulation waveforms

shown below. Meanwhile, these D flip-flops also continuously drive output signal,

B REG OUT ofthe module as soon as data is loaded.

FIGURE 8: Simulation results of the B Register module

24

4.1.9 OutputRegister

Operation of the Output Register is essentially the same as the B Register except that

it is driven by data loading signal Lo. Lo only goes high at T4 when the OUT routine

is executed [1].

ffl-/*>iTEST_0UTPUT_REGJSTER/V/Bus|1l1lH11 1111.1111.
/'. ,'T[;STJ]IJTPUT_REG1STER..lo jo
5',JTEST„CUTPUT_REGI$TER,'CLK }0 \"i i

E|....^"v,TEST.OUTPU'r_REGISTER/LiLIT..iimmi

FIGURE 9: Simulation results of the Output Register module

4.1.10 Controller/Sequencer (Instruction Decoder, Ring Counter & Control

Matrix)

First of all, the RingCounter in the Controller/Sequencer module is constructed using

6 negative-edge-triggered JK flip-flops with active high clear. Qnot and Q outputs of

the least-significant-bit (LSB) flip-flop drive the J and K inputs of the next flip-flop

so that count of 000001 will be obtained at Qnot output when high CLR signal is

applied. On the other hand, Q and Qnot outputs of the second and higher flip-flops

drive the J and K input of the next higher flip-flop. Thus the Ring Counter shifts left

at each clock cycle starting with a negative clockedge. This creates 6 T states with a

positive clock edge midway through each state [1].

Meanwhile, the Instruction Decoder and Control Matrix modules are

described using logical and conditional statements. FIGURE 10 shows the waveforms

obtained from testbench written to verify this Controller/Sequencer module. Note that

as simplifications mentioned in Section 3.4 of this report apply, all control signals

goes high as they are active. The testbench simulates operations of the

Controller/Sequencer module for all LDA, ADD, SUB, OUT, and HLT routines in

the order as listed, each occupying an instruction cycle (6 T states). Observe that the

decoded instruction signals {LDA, ADD, SUB, OUT, and HLT) only goes active one

at a time after the corresponding op code is fetched to the instruction decoder. Table 3

25

summarizes the active control signals in each T state for all 5 routines according to

observations ofwaveforms in Figure 9:-

FIGURE 10: Simulation results of the Controller/Sequencer module

TABLE 3: Active

simu

control signals for each routineat everyT state obtained fro
ation results of the Controller/Sequencer module

Cycle T State

Active Control Signals

LDA

Routine

ADD

Routine

SUB

Routine

OUT

Routine

HLT

Routine

Fetch

Cycle

Ti Ep, Lm Ep, Lm Ep, Lm Ep, Lm Ep, Lm

T2 Cp Cp Cp Cp Cp

T3 CE, Li CE, Li CE, Li CE, Li CE, Li

Execution

Cycle

T4 Lm, Ei Lm, Ei Lm, Ei Ea, Lo -

T5 CE,La CE,Lb CE,Lb - -

T6 - La, Eu La, Su, Eu - -

26

FIGURE 11: Input and outputwaveforms of simulation of the Controller/Sequencer
module at the earliest 2 instruction cycles

Figure 11 is similar to Figure 10 except that it is zoomed to the first 2

instruction cycles which the LDA and ADD instructions are being fetched and

decoded. This figure is included for clearer inspection of the Ring Counter's output,

T. Notethat this signal shifts left at eachfalling clockedgewhenthe CLE. signal is at

logic low.

4.1.11 Mode-Select Switches, De-bouncers & Clock Buffer

The Clear-Start De-bouncer, Single-Step De-bouncer, Manual-Auto De-bouncer, and

Clock Buffer modules are written as separate Verilog modules using SR latch, JK

flip-flop, and logic gates. These modules are then instantiated in a single module

named DEBOUNCERS. Due to the simplification introduced to this project, all

modules are made to accept non-inverted clock signal, Hence, the inverted clock

signal present in the original design in [1] Digital Computer Electronics by Malvino

(1983) will notbeused andthe block thatgenerates it can be eliminated.

FIGURE 12 shows the simulation results of testbench written to verify the

DEBOUNCERS module:-

27

FIGURE 12: Simulation results of the Mode-Select Switches, De-bouncers & Clock

Buffer module

Note that the START & CLEAR, LOW & HIGH, and MANUAL & AUTO

switches are active when they are at low logic level. When the CLEAR input is low,

the CLR signal goes high, resetting the CLK signal. Auto clock mode is simulated

after the initial resetting of the module {START and AUTO go low, CLEAR and

MANUAL go high). In this mode, the output CLK signal follows the rawCLK signal,

which is essentially the rawrawCLK signal being scaled down to half its frequency.

The bouncing phenomenon of the CLEAR & START switches pair is also simulated

through this testbench. Operation of the module is not affected by this phenomenon as

SR latch used serves as a switch de-bouncer. It can also be observed through the

figure that logic level of the LOW/HIGH switch does not have any effect in auto

clock mode. The output CLK signal stops changing state as the HLT signal goes

active.

Step-through or manual-clocking mode is simulated starting from time 85ps.

The MANUAL signal goes low now whereas the AUTO signal changes state to high.

Bouncing phenomenon of the MANUAL switch is also simulated. The output CLK

signalnow follows the logic level of the LOW& HIGH switches pair. The HLT signal

is activated at 130ps. The output CLK stops changing state regardless of the logic

level of the LOW& HIGHswitches pair from then on.

28

4.1.12 System Level Simulation ofSAP-1 Computer

System level simulation of SAP-1 computer is done to verify the functionality of the

entire system when all independently written and tested SAP-1 modules are

combined. A module named SAP1 is written to instantiate all top level sub-modules

within each functional blocks of SAP-1 computer. Testbench of this module has been

properly designed to test its functionality thoroughly. Shown below is the SAP-1

program used inthe testbench, in both assembly language and machine code:-

'ABLE 4: Program used for verii
Assembly Code

Address Instruction/Data

0x0 LDA Oxa

0x1 ADD Oxb

0x2 SUB Oxc

0x3 OUT

0x4 HLT

Oxa Oxaa

Oxb 0x55

Oxc OxOf

ion of SAP-1 system level simulat
Machine Code

Address Instruction/Data

0000 0000 1010

0001 0001 1011

0010 0010 1100

0011 1110 xxxx

0100 1111 xxxx

1010 1010 1010

1011 01010101

1100 0000 1111

Referring to descriptions given in Section 2.3 of this report, SAP-1

instructions are programmed at lower RAM locations starting at location 0x0.

Meanwhile, the data used as operandof the instructions reside in higher location such

as location Oxa as shown in the program above. The instruction format is made up of

the upper nibble instruction op code, and the lower nibble operand RAM location.

Thus execution of the first instruction in the test program loads data stored at location

Oxa (value Oxaa) into the Accumulator. In short, the test program above does

arithmetic computation of Oxaa plus 0x55 minus OxOf. A result of OxfO is expected to

bepresent at the Output Register upon completion of execution of this program.

Outcome of the system simulation will be discussed next. As detailed

explanation of all operations in the entire SAP-1 system during execution of the test

program is lengthy, only details during RAM programming stage andexecution stage

of the ADD and HLT routines will be examined closely here. Figure 13 shows the

waveforms obtained in SAP-1 system level simulation showing steps involved in

programming of the RAM.

29

FIGURE 13: Input and outputwaveforms of SAP-1 system level simulation in

RAM-programming mode

Inputs of the START and CLEAR switches pairare heldat logic high and logic

low respectively to activate the global CLR signal. The activated CLR signal resets

the output of both Program Counter {PC) and upper nibble of Instruction Register

{IRjJUTJNS) to value of 0000, and output of the Ring Counter (J) to 000001.

Hence, it can be observed that the decoded instruction line of LDA and the

corresponding control signals in Ti state {Ep, Lm) are active at beginning of the

testbench execution. Note that the CLK signal stops when this mode is selected.

Logic level of 0 is applied to the RUNJ>ROG signal at the beginning of the

testbench for RAM-programming mode. Inputs corresponding to value of the Address

and Instruction/Data field of test program shown in Table 4 are applied sequentially

to the ADDRJNand DATAJN signal respectively, row by row. Note that the output

of the 2 to 1 MUX {MUXJJUT) always follows logic level of the signal present at

ADDRJN in this mode. Allowing some time for stabilization of ADDRJN and

DATAJN inputs, logic stateof the READWRITE input signal is switched to lowand

held constant for 5ps before returning it to logic high for memory write operation.

Repeating this for all appropriate combinations of ADDRJN and DATAJN inputs,

30

programming of the test program into the RAM is completed at time 115ps. The

RUNJ3ROG input is switched to logic high for running mode of the RAM.

FIGURE 14: Inputandoutput waveforms of SAP-1 system level simulation for

execution of the ADD and SUB routine

The left portion of Figure 13 shows the behaviour of the SAP-1 signals during

execution of the ADD routine in detail. The ADD routine is executed for an

instruction cycle (consisting of 6 clockcycles andT states, 20pseach) starting at time

255ps. For your information, the RUNPROG signal is set to logic high for running-

mode ofRAM, whereas the START & CLEAR and MANUAL & AUTO switches pairs

are tied to logic 0 & 1 and 1 & 0 respectively for auto-clocked execution mode,

although not shown in Figure 13. The CLK signal follows the rawCLK signal in this

execution mode.

According to the test program used in the testbench, the Accumulator has

already been loaded with value of Oxaa through execution of the LDA instruction

priorto execution of this ADD routine. For more organized presentation, all essential

operations occurring during eachT state of the ADD routine as extracted from Figure

13 are summarized in the following table:-

31

TABLE 5: Summary of internal operations of the ADD routine in test program of

SAP-1 system simulation

T

State

Active

Decoded

Instruction

Line Signal

Active

Control

Signal
Description

T, LDA Ep, Lm

- Activeted Ep signal makes PC signal (0001) available
at the WBus (zzzzOOOl) throughout the T state.

- The MAR loads the lower nibble value of the WBus as

Lm goes activeat positiveclock edgehalfwaythrough
the T state and outputs it through MUXJ)UT{0001).

T2 LDA Cp - PC is incremented by one from 0001 to 0010.

T3

LDA

(1st halfof
T3)

ADD

(2nd halfof
T3)

CE, Li

- The RAM is enabled by the CE signal so that
instruction stored at location pointed to by MUXJJUT
is retrieved from the RAM and made available at the

WBus (00011011) throughout the T state.

- The Instruction Register loads the data ofthe WBus as
Ligoes active at positiveclock edgehalfwaythrough
the T state. The data is separated into the upper nibble -
IR OUTJNS (0001) and lower nibble IRJJUT_ADDR
(1011). IRJJUTJNS is decoded in the
Controller/Sequencerblock, causing a change of active
decoded-instruction line signal from LDA to ADD
halfway through the T state.

T4 ADD Lm, Ei

- Ei enables the tri-state buffer at the lower nibble output
of the Instruction Register, making data carried by the -
1R_0UT_ADDR (1011) signalavailableat the WBus
(zzzzlOl 1) throughout the T state.

- The MAR loads the lower nibble ofdata of the WBus

as Lm goes activeat positiveclock edgehalfway
through the T state. Loaded data is output through
muxjjut {\o\\).

T5 ADD CE,Lb

- The RAM is enabled by the CE signal so that data
stored at location pointed to by MUXJJUT is retrieved
from the RAM and made available at the WBus

(01010101) throughout the T state.

- The Lb signal enables data loading of the B Register
from the WBus at the positive clock edge halfway
through the T state. B Register's content is output
through BJtEGJDUT (01010101) to the asynchronous
Adder/Subtracter, causing a change at its output,
ADD_SUBJJUT (11111111) immediately.

T6 ADD La, Eu

- Value carried by the ADD_SUBJJUT signal is made
available at the WBus (11111111) throughout the T
state as Eu goes active.

- La enables data loading ofthe Accumulator from the
WBus at the positive edge halfway through the T state.
Loaded data is output through signal ACCU OUT
(11111111).

32

The behaviour of the ADD_SUBJJUT and WBus signals may seem abnormal

at the second half of T6 state (time 365ps to 375ps). The observation will be justified

here. Since the Adder/Subtracter module is asynchronous in nature, result of

arithmetic computation will be available at ADDJSUBJJUT as soon as data is

present at both ACCUJJUT and BJIEGJJUT. As the result of addition operation in

the ADD routine is loaded into the Accumulator through the WBus at the positive

edge halfway through T6, a new data is available at ACCUJJUT. This yields a new

value of ADDSUBJJUT resulting from addition operation of the new ACCUJJUT

value and unchanged B_REGJJUT value almost immediately. This new value of

ADDJSUBJJUT is also passed to the WBus as the Eu signal driving the tri-state

buffer between ADDJSUBJJUT and WBus remains active for the entire T6 state.

However, this invalid new ADD_SUBJJUT value is not passed to ACCUJJUT as

data loading of the Accumulator is positive-clock-edge-triggered. Hence, correct

functionality of the SAP-1 system is not affected.

Figure 15 shows the final outcome of SAP-1 system simulation's testbench.

The HLT routine is executed from time 612ps onwards as shown in the figure. As

mentioned in Section 2.4 of this report, operations taking place are common for all

instructions in the Fetch Cycle occupying the first 3 T states. Internal operations

during Ti to T3 of the HLT routine is very similar to those that has been discussed in

Table 5, thus they are not repeated here to keep the discussion concise. Instead, we

will examine closely effect imposed on the system as the decoded instruction line

signal HLT is activated. As op code of the HLT instruction is decoded halfway

through T3 state, the activated HLT signal forces the rawCLK signal to stop changing

state. This cause the Program Counter and Ring Counter to stop counting, hence

halted all operations within the SAP-1 system.

33

FIGURE 15: Final results of SAP-1 system level simulation

Examining the value of OUTREG driven by content of the Output Register,

result of OxfO is obtained for computations in the tests program. This value matches

our prediction made earlier. Therefore, we can conclude that functionality of the

Verilog programs of SAP-1 system has been verified.

Note that the testbench that yields input and output waveforms shown in this

sectioned is tailored for auto-clocked execution mode. Another testbench that

simulates operations of SAP-1 in manual-clocked mode is also written. It is very

similar to the testbench for auto-clocked mode except that the MANUAL & AUTO

switches pairs are tied to logic 0 & 1 respectively, while logic state of the LOW &

HIGH switches pair are inverted repeatedly. This testbench also yields similar input

and output waveforms; except that the CLK signal follows the logic state of the LOW

& HIGHswitches pair instead of the rawCLK signal. Similar final outcome of OxfO at

OUT_REG is also obtained running this testbench.

34

4.1.13 Overall Findings

As mentioned earlier, testbenches of all modules are written so that they best reflect

real operations in the SAP-1 system. Test coverage has been made wide in modular

verification of the Verilog program (e.g. behaviour of all LDA, ADD, SUB, OUT,

HLT routines in the Controller/Sequencer module have been tested). Only

synthesizable Verilog statements are used in coding of SAP-1 modules. As discussed

throughout Section 4.1 of this chapter, results of all modular simulations and system

simulation show correct behaviour. No irresolvable bug has been identified in this

simulation stage. Hence, the Verilog programs written in simulation stage of SAP-1

computer will serve as fundamental programs for both system synthesis and modular

synthesis of SAP-1 computer system.

4.2 System Synthesis of SAP-1 Computer System

Verification of the prototype is started as soon as the chips are programmed and all

necessary wirings are done. The same test program as used in system simulation of

SAP-1 computer shown in Table 4 is being used here. Please refer to Table 2 in

Section 3.5 for naming of UP2 platform input and output devices and the driven or

driving signals in prototype of SAP-1 system synthesis. Note also that signals in the

Verilog programs of SAP-1 computer are presented inItalic.

MAX_SW2[1] {STARTJCLEAR) and MAX_SW2[2] {MANUAL_AUTO) are

initially set at OFF state (logic high) for activation of the CLR signal (indicated by

LED D16) and the auto-clocked mode. MAX_SW2[3] (LOWJUGH) is held at ON

state. To switch to RAM-programming mode, MAX_SW2[8] {RUNJ>ROG) is set at

ONstateto provide a logic lowinput. MAX_DIGIT nowdisplays input signal present

at MAX_SW1[5] through MAX_SW1[8] in hexadecimal representation, which is

essentially the memory location selected for programming. FLEX_DIGIT shows the

content of memory location being pointed to by address input at MAX_SW1[5]

through MAX_SW1[8]. Referring to Table 4 for the first test instruction, inputs of

0000 and 00001010 are appliedat MAX_SW1[5] - MAX_SWl[8j and FLEX_SW[1]

- FLEX_SW[8] for address input and data input respectively. Pressing the

35

FLEX_PB1 to give a logic low input to the READJWRITE signal, the data input is

programmed into the selected RAM location, and the new content of the RAM is

being updated immediately on FLEX_DIGIT. Repeating these steps for the rest of

instructions in test program shown in Table 4, programming of the SAP-1 RAM is

completed thus program execution can be commenced.

A program test run in auto-clocked mode is first being done. With

MAX_SW2[2] being held at OFF state {MANUALJXJTO = 1, auto-clocked mode),

MAX_DIGIT and FLEXJ3IGIT display character '4' and TO' as soon as

MAX_SW2[1] is turned to ON state {STARTjCLEAR == 0, startprogram execution).

Character being present at MAXDIGIT represents the final RAM location being

accessed in execution of the test program, which is the location where the HLT

instruction is stored. FLEX__DIGIT indicates the content of the Output Register,

storing result of arithmetic computations carried out in the test program (Oxaa plus

0x55 minus OxOf).

The oscillator attached to the UP2 platform provides a CLK signal running at

25.175MHz. Being scaled down by 2 at the Clock Buffer of SAP-1, the prototype

practically runs at clock frequency of 12.5875MHz. Execution of the test program

takes 1 instruction cycle (6 T states) for LDA, ADD, SUB, OUT routines. The HLT

routine takes 3 T states before the instruction is decoded, enabling the decoded

instruction line signal, HLT which stops the CLK signal. This sums up to 27 T states

or clock cycles for execution of the entire test program, which essentially takes only

26 * (1 / 12.5875MHz) = 2.066ns. Hence, it is impossible for the user to examine

internal operation of the computer at each T state at this clock frequency in auto-

clocked execution mode.

Ripple counter can be programmed at the Clock Buffer to scale down the

clocksignal supplied by UP2 board's crystal oscillator. Verilog program of the Clock

Buffer is modified to include a 26 bits ripple counter constructed using JK flip-flop

modules. Taking output of the MSB JK flip-flop as the clocksignal, it is scaled down

to approximately 25.175MHz / 226 = 0.3751Hz. Hence each clock state (half a clock

cycle) now takes approximately 1.3328s, making observation of operations within the

system at each clock state possible. The test program mentioned above being

36

executed in auto-clocked mode at this clock frequency also yields the same final

result of OxfO. Details of the operations at each clock state in auto-clocked mode are

similar to that of manual-clocked mode, which will be presented and discussed next.

Initial program test run attempts in manual-clocked mode have not been

successful. Bouncing phenomenon has been encountered on MAX_SW2[3j used to

generate manual clock signal LOWJHIGH of SAP-1 computer. This causes

generation of multiple CLK cycles in one switching action, prohibiting the prototype

user from observing changes taking place in each T state clearly. This problem is

however understandable examining the simplification introduced in Section 3.5 on

the De-bouncers block. Referring to page 159 of [1] Digital Computer Electronics by

Malvino (1983), the active-low SR latches used as the mode-select switch de-

bouncers functions provided thatcontact of the switch is lost as the switch bounces in

a switching action, resulting in high logic being applied at both inputs. For your

information, high logic at both inputs of an active-low SR latch results in unchanged

outputs.

Simplifications introduced in Section 3.5 causes the inputs to the latch to

always remain at opposite logic level, resulting in changes of the outputs state as the

switch bounces in a switching action. Examination of the bouncing phenomenon of

single pole double throw (SPDT) switch onoscilloscope has found that itsoutput tend

to fall into an unconnected condition as it bounces. Understanding these, solution to

this problem is straight forward. Figure 15 shows the schematic diagram of

LOWJIIGH switch implementation applied to eliminate the bouncing problem. This

implementation is essentially the original design presented by Malvino. Both inputs to

the active-low SR latch are pulled up to Vcc through 10kQ resistors. The switch

contact made drains the current thus providing low logic at one of the inputs. This

maintains high logic at both inputs of the latch as contact of the switch is lost when it

bounces. However, this implementation requires additional circuitry as dual inline

package (DIP) ON/OFF switch (initially implemented on MAX_SW2[3] as stated in

Table 2) available on UP2 platform cannot be utilized. This additional circuit has

been constructed on veroboard. Slight modifications have been made to the Verilog

program of the Debouncers module written earlier to follow Malvino's original

design with 2 input signals LOW and HIGH driven byanSPDT switch.

37

FIGURE 16: Schematic diagram of the LOWJIIGHinput switches

implementation

Bouncing phenomenon of input switches usedfor all otherinputsignals is not

critical in ensuring correct functionality of the system. Hence modification is not

necessary. This eliminates the need of extra expansions of the prototyping board as

DIP switches on the UP2 platform can be used.

The same test program is executed in manual-clocked mode. The same

method of RAM programming as discussed earlier in this chapter is used. Upon

completion of instruction/data entry, both MAX_SW2[8] and FLEX_PB1 are held at

OFF state to drive signals RUNJ>ROG and READJVRITE to logic low, enabling

running-mode of the RAM. Logic low is applied at both STARTJCLEAR and

MANUAL AUTO inputs for program execution in manual-clocked mode. The SPDT

switch is now used to generate manual CLK signal of the SAP-1 computer. Table 6

showsobservations on the prototyping board for execution of the test program at each

clock state resulting from switching of the SPDT toggle switch. T in the table

indicates that LED is on whereas '0' represents the opposite. Note that the active low

LEDs on the UP2 platform are driven by inverted signals of T, LDA, ADD, SUB,

OUT, HLT, CLK, and CLR (Tnot, LDAnot, ADDnot, SUBnot, OUTnot, HLTnot,

CLKnot, and CLRnot). For better clarity, logic levels of the non-inverted signals are

presented in the table.

38

TABLE 6: Detailed observations of test program execution of SAP-1 system

synthesis in manual-clocked mode

Switching
Action

Routine
T

State

LEDs
7-Segment

Display

D15

CLK

T
Decoded Instruction Line

Signal D16

CLR

MAX

DIGIT

MUX

OUT

FLEX

DIGIT

DIGIT

DISPLAY
Dl

mi

D2

T(2(
D3

T[3f
D5

T[4(
D6

T(5J
D7

T(6J
D9

LDA

D10

ADD

Dll

SUB

D12

OUT

D13

HLT

-1 . - 0 i 0 0 0 0 0 0 0 0 0 1 • -

0

LDA

Ti
0 i 0 0 0 0 0 .0 0 0 0 0 - • -

1 1 i 0 0 0' ' 0 0 0 0 0 0 0 Q -

2
T2

0 0 1 0 0 0 0 0 0 0 0 0 0
-

3 1 0 1 0 0 0 0 0 0 0 0 0 0
-

4
T3

0 - 0 • 0 1 0 0 0 0 0 0 0 0 0 -

5 1 0 0 1 0 0 0 0 0 0 0 0 0 -

6
T4

0 0 0 0 1 0 0 0 0 0 0 0 0
-

7 1 0 0 0 1 0 o 0 0 0 0 0 A
-

8
TS

0 0 0 0 0 1 0 0 0 0 0 ;0 A -

9 1 0 • 0 0 0 1 0 0 0 : o 0 0 A -

10
T6

0 0 0 0 0 0 1 0 0 0 0 0 A
-

11 1 0 0 0 0 0 1 0 0 0 0 0 A -

12

ADD

T!
0 1 0 0 0 0 0 0 0 0 0 0 A -

13 1 1 0 0 0 0 0 0 0 0 0 0
-

14
T2

0 0 1 0 0 0 0 0 0 0 0 0
-

15 1 0 1 0 0 0 0 0 0 0 0 0 -

16
T3

0 0 0 1 0 0 0 0 0 0 0 0 -

17 ' 1 0 0 1 0 0 0 0 0 0 0 0 -

18
T4

0 0 0 0 1 0 0 0 0 0 0 0
-

19 1 0 0 0 1 0 0 0 0 0 0 0 b
-

20
Ts

0 o . 0 0 0 1 0 0 0 0 0 0 b
-

21 1 0 0 0 . 0 1 0 0 0 0 0 0 b
-

22
T6

0 0 0 0 0 0 1 0 0 0 0 0 b -

23 1 0 0 0 0 0 1 0 0 0 0 0 b
-

24 •

SUB

T,
0 1 0 0 0 0 0 0 0 <)'• u 0 b -

' 25. 1 1 0 0 0 0 0 0 0 0 0 0 2 1 -

26
T2

0 0 1 0 0 0 0 0 0 0 0 0 2
-

27 1 0 1 0 0 0 0 0 0 0 0 0 2
-

28
T,

0 0 0 1 0 0 0 0 0 0 0 0 2 -

29 1 0 0 1 0 0 0 0 0 0 0 0 2
-

30
T,

0 0 0 0 1 0 0 0 0 0 0 0 2 -

31 1 0 0 0 1 0 0 0 0 0 0 0 C -

32
Ts

0 0 • 0 0 0 1 0 0 0 0 0 0 C -

33 1 0 •o 0 0 1 0 0 0 0 0 0 c -

34
T6

0 0 0 0 0 0 1 0 0 0 0 0 c -

35 1 0 0 0 0 0 1 0 0 0 0 0 c -

36

OUT

Tt
0 1 Q 0 . 0 0 0 . 0 0 0 0 0 c -

37 1 1 0 0 0 0 0 0 0 0 0 0 3
-

38
T2

0 0 1 0 0 0 0 0 0 0 0 0 3
-

39 1 0 1 0 0 0 0 0 0 0 0 0 3
-

40
T3

. 0 0 0 1 0 0 0 , o 0 0 0 0 3
-

4L 1 0 0 1 0 0 0 0 0 0 0 0 3 -

42
T4

0 0 0 0 1 0 0 0 0 0 0 0 3
-

43 1 0 0 0 1 0 0 0 0 0 0 0 3 F0

44
T5

0 0 0 0 0 1 0 0 0 0 0 0 - 3 FO

43 1 0 0 0 0 1 0 0 ' 0 0 0 0 3 FO

46
T6

0 0 0 0 0 0 1 0 0 0 0 0 3 F0

47 1 0 0 0 0 0 1 0 0 0 0 0 3 F0

48

HLT

T,
0 1 0 0 0 0 0 0 0 0 0 0 3 F0

49 1 1 0 0 0 0 0 0 0 0 0 0 4 F0

50
T2

0 0 1 0 0 0 0 0 0 0 0 0 4 F0

51 1 0 1 0 0 0 0 0 0 0 0 0 4 FO

52
Tj

0 0 0 1 0 0 0 0 0 0 0 0 4 F0

53 1 0 0 1 0 0 0 0 - 0 0 0 1 0 4 F0

54
T4

0 0 0 0 1 0 0 0 0 0 0 1 0 4 F0

55 0 0 0 0 1 0 0 0 0 0 0 1 0 4 F0

Switching
Action

Routine
T

State

D1S

CLK

Dl

TflJ
D2

T/2J
D3

775/
D5

T[4]
D6

TfSJ
D7

T[6]
D9

LDA

D10

ADD

Dll

SUB

D12

OUT

D13

HLT

D16

CLR

MAX

DIGIT

MUX

OUT

FLEX

DIGIT

RAM

DISPLAY

39

From observations recorded in the table, the prototype shows clearly when the

instruction op code is decoded. This happens at the positive clock edge occurring

half-way through each T3 state. The prototype also displays the address of memory

location being accessed throughout execution of the program. Memory location at

MUXJJUT for access of instruction stored in RAM (locations 0, 1, 2, 3, and 4) is

updated at positive clock edge mid-way through every Ti state. For LDA, ADD, and

SUB routines involving data, memory location for data retrieval from RAM is

performed at positive clock cycle of each T4 state.

The -1st switching is included in Table 6 to show behaviour of the system

when the CLR signal is active {START_CLEAR == 1). As described in Section 4.1.12,

activated CLR signal resets PC and IRJJUTJNS to 0000, and T to 000001. This

verifies our observation as T[1J and LDA are found to have logic high.

Note that the CLK signal remains unchanged at logic low even with further

switching after decoding of op code of the HLT routine {HLT =1). Halting of

operations within the system isachieved bygating the CLK signal.

Number being displayed at FLEX_DIGIT (signal DIGITJDISPLAY) remains

invalid until result of the arithmetic operations is fetched from the Accumulator to the

Output Register at positive clock edge of T4 during the OUT routine (after the 43rd
switching). These 7-segment displays output the non-initialized content of the Output

Register {OUT_REG) taking any random number prior to this. Table 6 shows that

execution of the test program yields OxfO as the final result. This verifies the

functionality of the prototype. The entire system is also found to function correctly

examining each state of Table 6 carefully. Kindly refer to Chapter 10 of [1] Digital

Computer Electronics byMalvino (1983) to verify testresults of this section in detail.

4.3 Modular Synthesis of SAP-1 Computer System

Each SAP-1 module on a separate UP2 platform is first tested independently. Inputs

are supplied to each module using switches available on the board and the resultant

output isverified. This issimilar to functionality of testbenches used to verify Verilog

40

program of SAP-1 modules created during SAP-1 simulation stage. Detailed

discussion on the test results of hardware of each individual SAP-1 module is not

presented in this report considering the length that it might take. All boards

implementing an SAP-1 module each have been found to be working correctly

independently.

All 10 UP2 platforms each implementing functionality of a SAP-1 computer

module is then interconnected to form a complete SAP-1 computer. Various problems

have been encountered interconnecting the SAP-1 module each implemented on a

UP2 platform for a complete SAP-1 system. The encountered problems and their

solution will be discussed in this section. Experience on overcoming bouncing

problem ofthe HIGH_LOW switch used for generation of manual clock signal gained

during SAP-1 system synthesis is applied here. Hence, an SPDT switch as illustrated

in Figure 16 is used to drive the Single-StepDe-bouncer's input.

Signals in the system tend to be unstable when the UP2 boards being supplied

by independent power adaptors are interconnected. This problem arises as different

ground level is present at each UP2 board being grounded to the earth through

respective power adaptors. To overcome this problem, all UP2 boards are powered

using a single external power supply unit while Vcc and Gnd pin of all boards are

being interconnected.

Physically connected but unused pins between the interconnected boards also

create problem in the modularSAP-1 prototype. These pins tend to drain considerable

amount of current. As a result, signals that is supposed to have high logic falls within

an indeterminate logic level. A convenient solution to this problem is to place always

disabled tri-state buffer at these pins. This implementation does not require any extra

hardware.

The modular SAP-1 prototype has not been functioning properly when it is

being clocked at 12.5875MHz as calculated Section 4.2. The cause of this problem

can be traced to degradation of signal integrity of the CLK signal being connected

from the Clock Buffer module to other modules through long wires at high frequency

as mentioned. This problem can be resolved by adopting the 26 bits ripple counter

41

design at the Clock Buffer as implemented in prototype of SAP-1 system synthesis to

scale the clock speed down to approximately 0.3751Hz. Furthermore, this

implementation also enables the prototype users to examine operations within each

clock state of program execution clearly in auto-clocked mode.

Another problem observed during program execution of the modular SAP-1

prototype is due to impulse noise of the CLR signal. CLR input of all Program

Counter modules, Instruction Register module, and Controller/Sequencer module is

driven by a switch in the Mode-Select Switches module through the Start-Clear De-

bouncer. When this is implemented, content of the Program Counter and upper nibble

of the Instruction Register (holding signal IRJJUTJNS, the instruction op code field

of SAP-1 instruction) tend to reset itself. Trials have been thrown by rearranging

position of the UP2 platforms so that the CLR signals can be sent through shorter

wires. Verilog program of the De-bouncers module has also been modified so that the

Start-Clear De-bouncer is driven by an SPDT switch instead of DIP switch, similar to

that of the Single-Step De-bouncer module. The problem does not work out however

applying any or both of these measures. Hence, the board configuration is altered to

place an independent CLR signal on the Program Counter module and the Instruction

Register module driven by a DIP switch on the respective UP2 board each. CLR input

of the Controller/Sequencer module remains being driven by CLR output of the

Mode-Select Switches & De-bouncers module.

With all enhancements introduced to the modular SAP-1 prototype, features

available on the prototype can be summarized as follows:-

- Supports both auto- and manual-clocked modes.

- Runs at clock frequency of approximately 0.3751Hz in auto-clocked mode.

- 8x8 RAM.

- DIP switches for address input during programming of RAM.

- DIP switches for data input during programming ofRAM.

- RAM-Mode-Select switches:-

o RUN/PROG' (DIP switch)

o READ/WRITE' (Push Button)

- Execution-Mode-Select switches:-

o START7CLEAR (DIP switch)

42

o LOW'-HIGH' (SPDT switch)

o MANUAL VAUTO (DIP switch)

- 7-segment displays showing register content of the Program Counter, MAR &

2 to 1 MUX, 8x8 RAM, Instruction Register, Accumulator,

Adder/Subtracter, B Register, and Output Register modules in hexadecimal

representation.

- LEDs displaying logic level of the control signals at the respective modules

{Cp, Ep, Lm, CE, Li, Ei, La, Ea,Su, Eu, Lb, Lo).

- LEDs displaying logic levelof the CLK and CLR signals.

- LEDs displaying logic level of the T states {T[1J through T[6J) within

machine cycle of SAP-1 computer.

- LEDs displaying logic level of the decoded instruction signal {LDA, ADD,

SUB, OUT,HLT).

Test program presented in Table 4 is modified slightly so that it fit into the

shrunk 8x8 RAM. Instead of storingthe data at locations Oxa, Oxb, and Oxc, they are

stored at locations 0x5, 0x6, and 0x7. The operandfield of the LDA, ADD, and SUB

instructions are also changed accordingly. This program is first loaded into the RAM

applying similar procedures as discussed in Section 4.2. Applying appropriate logic

level to the MANUAL_AUTO input signal (low for manual-clocked mode, high for

auto-clocked mode), program test run has been carried out for both clocking mode.

The SPDT switch connected to the inputs of the Single-Step De-bouncer is used to

generate manual CLK signal inmanual-clocked mode. Kindly refer to Appendix F for

details on pin assignments, pin interconnections across boards, and input/output

device utilization ofall UP2 platforms used in modular SAP-1 prototype.

Table 7 summarizes the observations at each clock state resulting from

switching of the Single-Step switch for test program execution in manual-clocked

mode. Similar to representations in Table 6, T in the Table 6 indicates that LED is

on whereas '0' represents the opposite. Note that the active low LEDs on the UP2

platform are driven by inverted signals of T, LDA, ADD, SUB, OUT, HLT, CLK, and

CLR (Tnot, LDAnot, ADDnot, SUBnot, OUTnot, HLTnot, CLKnot, and CLRnot). For

better clarity, logic levels of thenon-inverted signals arepresented in the table.

43

TABLE 7: Detailed observations of test program execution on modular SAP-1

prototype in manual-clocked mode

Switching
Action

CLK T State

Active

Decoded

Instruction

Signal

Active Control

Signals

Register Transfer
/

Operation
Register Value

0 0
mi

LDA

Ep, Lm R['M&R] *~ R[PC] 0x0
1 1

2 0
T[2] Cp R[PC] - R[PC+1] 0x1

3 1

4 0
mi CE,Li R[IR] *- R[RAM] 0x05

5 1

6 0
T[4] Ei, Lm R[MAR] - R[IR] 0x5

7 1

8 0
T[S] CE.La R[ACC] - R[RAM] Oxaa

9 1

10 0
T[6] -

- -

11 1

12 0
mi Ep,Lm R[MAR] «- R[PC] 0x1

13 1

14 0
T[2] Cp R[PC] .- R[PC+1] 0x2

15 1

16 0
mi CE;Li .. R[,IR] - R[RAM]' 0x16

17 1

ADD

18 0
T[4] Ei, Lm R[MAR] - R[IR] 0x6

19 1

20 0 T[5] _CE,Lb R[BRJ '- R[RAM] 0x55
21 1

22 0
mi Eu.La R[ACC] - R[A/S] Oxff

23 1

24 0
mi Ep.Lm R[MAR] .- R[PC] 0x2

25 1

26 0
T[2] Cp R[PC] .- RtPC+1] 0x3

27 1

28 0 T[3J CE, Li R'[IR] *- R[SAMJ 0x27
29 1

SUB

30 0
T[4] Ei, Lm R[M7AR] .- R[IR] 0x7

31 1

32 0 T[5] CE,Lb ' R-[BR]. - R[RAM] OxOf
33 1

34 0 T[6] Su, Eu, La R[ACC] - R[A/S] OxfO
35 1

36 0
mi Ep, Lm REM&R] - R[PC] 0x3

37 1

38 0
T[2] Cp R[PC] - R[PC+1] 0x4

39 1

40 0
mi CE,U R[IR] - R[RAM] ;Oxe7

41 1

OUT

42 0
T[4] Ea,Lo R[OR] ^ R[ACC] OxfO

43 1

44 0
mi - ' -

45 1

46 0
T[6]

-

- -

47 1

48 ' 0
mi Ep, Lm [R[MAR] - R[PC] 0x4

49 1

50 0
mi Cp R[PC] - R[PC+1] 0x5

51 1

52' 0 T[3J CE.Li ' R[IR] - RfRAM] 0xf7
53 1

HLT

54 0

T[4]
•

- -

55 0

56 0
-

- -

57 0

Abbreviations

PC Program Counter ACC Accumulator

MAR MAR&2W1MUX A/S Adder/Subtractor

RAM 8*8 RAM BR B Register
IR Instruction Register OR Output Register

44

From Table 7, it is clear that the modular SAP-1 prototype is able to show

logic level of the CLK signal, T[l] through T[6] signals, decoded instruction signals,

control signals, as well as all register transfers in the system. All register transfers

take place during the positive CLK edge of each T state. They are recorded in the

table using the following format:-

R[destination] <- R[source]

The column labelled "Register Value" is used to record value of the register content

loaded from the source register to the destination register. For example, content of the

Program Counter (0x0) is loaded into the MAR & 2 to 1 MUX at the positive CLK

edge in between the 1st and 2nd switching action. All register transfers take place

through the WBus, except for incremental of the Program Counter countoccurring at

each T2 state.

The active control signals remain high throughout the entire T state as

observed. Similar to observations in the prototype developed for SAP-1 system

synthesis, all instructions are decoded at the positive CLK edge hallway through T3,

as soon as the instruction is loaded from the 8 x 8 RAM into the Instruction Register.

At the positive CLK edge between the 42nd and 43rd switching action, it has been

observed that final computational result of OxfO is loaded from the Accumulator to

the Output Register. This verifies functionality of the prototype as the test program

essentially performs computation of Oxaa plus 0x55 minus OxOf. Behaviour of all

other signals has also been found to be correct examining the prototype carefully.

Kindly refer to Chapter 10 of [1] Digital Computer Electronics by Malvino (1983) to

verify test results of this section in detail.

45

CHAPTER 5

CONCLUSION & RECOMMENDATION

5.1 Conclusion

SAP-1 computer architecture is a good model for introductory computer system

architecture understanding. It eliminates advanced functional blocks that are difficult

to understand, yet retaining basic components sufficient to introduce all essential

concepts in computer operation [1]. Thus necessity of SAP-1 computer models in lab

experiments of the university's coursecan be seen.

Developing the computer system on FPGA, the project provides not only

exposure to knowledge on computer system architecture, but also creates learning and

practice opportunity of digital system design using HDL programming such as

Verilog. Development on FPGA has also higher robustness and ease of debugging

compared to TTL circuits. Implementation on FPGA also provides an alternative for

learning of computersystem through HDL and FPGA.

Project work in Semester 1 generally involves literature studies suchas digital

electronics fundamentals, SAP-1 architecture, and Verilog HDL, as well as modular

and system simulation of SAP-1 computer on ModelSim XE III software. All Verilog

programs written for SAP-1 computer havebeenverified successfully.

System synthesis and modular synthesis of SAP-1 computer on Altera's UP2

platforms have been carried out in Semester 2. Working prototypes have been

produced for SAP-1 system on a single UP2 platform, and SAP-1 modular synthesis

utilizing 10UP2 platforms. With proper design, the modular SAP-1 prototype is able

to demonstrate operations of SAP-1 computer down to microinstruction level for

good understanding of SAP-1 computer system.

46

5.2 Recommendation

It is recommended that design of SAP-1 system synthesis prototype can be expanded

to show more details similar to that of modular SAP-1 prototype. This may be useful

if resource of the UP2 development platform is limited.

Apart from that, projects on development of SAP-2 and SAP-3 computer

system on FPGA can be offered to students undertaking this Final Year Project

course in the future. These computer models features more instructions than SAP-1

computer, useful for enhancing understanding of computer systems with more

complex architecture.

47

REFERENCES

[1] A. P. Malvino, "Digital Computer Electronics: An Introduction to

Microcomputers", New York: McGraw-Hill Publishing, 1983.

[2] S. Thibault, D. Pellerin, "The FPGA as a Computing Platform - Sample

Chapter", Prentice Hall, 6 May 2005,

http://www.informit.com/articles/article.asp?p=382614&rl=l.

[3] Bluewater Systems Ltd., "FPGA Design - Introduction ", 2004,

http://www.bluewaternz.com/consuiting/doc/fpga/.

[4] AndrakaConsulting Group, Inc., "What is an FPGA? ", 25 Jan 2003,

http://www.andraka.com/whatisan.htm.

[5] Wikipedia Foundation, Inc., "Field-Programmable Gate Array", 2007,

http://en.wikipedia.org/wiki/FPGA.

[6] Xilinx, Inc., "Getting Started with CPLDs ", 2007, http://www.xilinx.com/pro

ducts/silicon solutions/cplds/cpld users guide/getting started with cplds.htm.

[7] GlobalSpec, Inc., "About Complex Programmable Logic Devices (CPLD) ",

2007,http://semiconductors.globalspec.com/LearnMore/Semiconductors/

Programmable Logic Devices/CPLD.

[8] Wikipedia Foundation, Inc., "Complex Programmable LogicDevice", 2007,

http://en.wikipedia.org/wiki/CPLD.

[9] DoulosLtd, "What is Verilog? &ABriefHistory of Verilog", 2006,

http://www.doulos.com/knowhow/verilog_designers guide/.

[10] D.R. Smith, P. D. Franzon, "Verilog Stylesfor Synthesis ofDigital Systems",

New Jersey: Prentice Hall, 2000.

48

[11]W. F. Lee, "Verilog Codingfor LogicSynthesis ", New Jersey: Wiley-

Interscience, 2003.

[12] Altera Corporation, "Introduction to Quartus II - Version 6.1",2006,

www.altera.com/literature/manual/intro_to_quartus2.pdf.

[13] AlteraCorporation, "University Program UP2 Education Kit User Guide v3.1",

Dec 2004, www.altera.com/literature/univ/upds.pdf.

49

APPENDIX A

MODIFIED BLOCK DIAGRAM OF SAP-1

Cp-

CLK-

CLR *•

EP •

. Program
^ Counter

RUN /PROG''

Lm-

CLK-

Address In

>

MAR

& A
2to 1MUX \f

L-M

RUN / PROG'"

READ/WRITE'"

Data In

CE
l^v

LI

CLK-

CLR *•
B: •

16x8

RAM

—:—^. Instnjction \j-
^ Register

CLK-

CLR-
>

Controller /

Sequencer

1&

Wbus

-N
V

N
*-iA

A
V

CLK<"

CLR<-

Cp Ep Lm Ce LiEi La Ea Su Eu Lb Lo

V

V

•N
V

Accumulator .

A <

Adder/

Subtracter

La

CLK

Ea

Su

B

Register <

Lb

CLK

Output
Register <

& Display

Mode-Select

Switches,
De-bouncers,
Clock Buffer

Lo

CLK

4 START/CLEAR

^ LOW / HIGH

< MANUAL' / AUTO

FIGURE 17: Modified block diagram of SAP-1 redrawn from chapter 10 of [1]

Digital Computer Electronics by Malvino (1983)

50

APPENDIX B

TRUTH TABLE OF BINARY TO HEXADECIMAL

7-SEGMENT DISPLAY DECODER MODULE

TABLE 8: Truth table of binary to hexadecimal 7-segment display decoder module

for common anode, active low 7 segment display on

Altera's UP 2 Development Platform

Binary
Input

Output (a = MSB, h= LSB = decimal point)

a b c d e f g h

0000 0 0 0 0 0 0 1

0001 1 0 0 1 1 1 1

0010 0 0 1 0 0 1 0

0011 0 0 0 0 1 1 0

0100 1 0 0 1 1 0 0

0101 0 1 0 0 1 0 0

0110 0 1 0 0 0 0 0

0111 0 0 0 1 1 1 1

1000 0 0 0 0 0 0 0

1001 0 0 0 0 1 0 0

1010 0 0 0 1 0 0 0

1011 1 1 0 0 0 0 0

1100 0 1 1 0 0 0 1

1101 1 0 0 0 0 1 0

1110 0 1 1 0 0 0 0

1111 0 1 1 1 0 0 0

51

APPENDIX C

ALTERA'S UNIVERSITY PROGRAM 2

DEVELOPMENT PLATFROM COMPONENT LAYOUT

FIGURE 18: Component layout of Altera's University Program 2 Development

Platform from page 3 of [13] "University Program UP2 EducationKit User

Guide v3.1", Altera Corporation, www,altera.com/l iterature/univ/upds .pdf

52

APPENDIX D

SAP-1 SYSTEM SYNTHESIS SOURCE CODE

As compilation of SAP-1 Verilog programs during system synthesis is done in a

single project without partitioning them according to modules, duplication of similar

modules is not allowed. For example, only D flip-flop module {D_FFQ in source file

d_flipflop.v) from the MAR & 2 to 1 MUX module is included in the project. All

instantiations of this module within the system will take the same source file.

However, for better clarity, the source code is arranged here with duplications as if

compilation of independent modules is done.

D-l Program Counter

D-l.l Program Counter with Tri-state Output

module PROGRAM_COUNTER(PC, WBus, Cp, Ep, CLK, CLR);

// Cp -> high to increment PC count
// Ep -> high to put PC count at WBus

output [3:0] PC;
output [7:0] WBus;

tri [7:0] WBus;

input Cp, Ep, CLK, CLR;
wire none;

JKFF_Q_POSCLK_POSCLR PCO(PC[0],Cp,Cp,CLK,CLR);
JKFF_Q_POSCLK_POSCLR PCI(PC[1],Cp,Cp,-PC[0],CLR)
JKFF_Q_POSCLK_POSCLR PC2(PC[2],Cp,Cp,-PC[1],CLR)
JKFF_Q__POSCLK_POSCLR PC3(PC[3] ,Cp,Cp,-PC [2] ,CLR)

assign none = 0;

bufifl(WBus[0],PC[0],Ep);
bufifl(WBus[l],PC[l],Ep);
bufifl(WBus[2],PC[2] ,Ep);
bufifl(WBus[3],PC[3],Ep);
bufifl(WBus[4],none,none) ;
bufifl(WBus[5],none,none);

bufifl(WBus[6], none, none) ;

bufifl(WBus[7],none,none);

endmodule

D-1.2 JK Flip-flop

module JKFF__Q_POSCLK_POSCLR(Q, J, K, CLK, CLR) ;

input J,K,CLK,CLR;
output Q;

reg Q;

53

always @(posedge CLK or posedge CLR)
begin

if (CLR) Q = 1'bO;

else if ({J,K} == 2'b00) Q = Q;

else if ({J,K} == 2'b01) Q = 1'bO;

else if ({J,K) == 2'blO) Q = l'bl;

else if ({J,K} == 2'bll) Q = -Q;

end

endmodule

D-2 MAR & 2 to 1 Multiplexer

D-2.1 MAR + 2 to 1 Multiplexer

module MARJ4UX(MUXJJUT, ADDR_IN, WBus, Lm, CLK, RUN_PROG)

input Lm, CLK, RUNJPROG;
input [3:0] ADDR_IN;
input [3:0] WBus;
wire [3:0] MAR_OUT;
output [3:0] MUXJJUT;

MAR MAR_MUX_1(MARJJUT, WBus, Lm, CLK);

MUX MAR_MUX_2(MUX_OUT, MAR_OUT, ADDR_IN, RUH_PROG)

endmodule

D-2.2 MAR

module MAR(MAR_OUT, WBus, Lm, CLK);

// Lm -> high to load PC count from WBus

input [3:0] WBus;
input Lm, CLK;
output [3:0] MARJJUT;

D_FF MAR0(MARJJUT[0],WBus[0], Lm,CLK);
D_FF MARl(MARJJUT[l],WBus[l],Lm,CLK);
D_FF MAR2(MARJJUT[2],WBus[2] , Lm, CLK) ;
DJT MAR3(MARJJUT[3] , WBus [3] ,Lm,CLK) ;

endmodule

D-2.3 2 to I Multiplexer

module MUX(MUXJJUT, MARJJUT, ADDRJCN, RUN_PROG);

// RUNJ?ROG == 0 -> program
// -> address from switches taken

// RUNJJROG == 1 -> run
// -> address from MAR output taken

input [3:0] MARJJUT, ADDR_IN;
input RUNJ>ROG;
output [3:0] MUXJJUT;

assign MUXJJUT = RUN_PROG? MARJJUT : ADDR_IN;

54

endmodule

D-2.4 D Flip-flop with Enable Inputfor Data Loading

module DJ?F(Q,D,EN,CLK);

input D,EN,CLK;
output Q;

reg Q;

always @(posedge CLK)
if (EN == 1)

Q = D;

else

Q = Q;

endmodule

D-3 16 x 8 RAM

D-3.1 16x8 RAM

module _16x8J^AM(WBus, DATAJJUT, RAMJJISPLAY_HEX,
MUXJJUT, DATA_IN, CE, RUNJ?ROG, READ_WRITE)

// RUNJ'ROG == 0 —> PROG; RUN_PROG == 1 —> RUN
// READJtfRITE == 0 — > WRITE; READ_WRITE == 1 — > READ

input [3:0] MUXJJUT;
input [7:0] DATA-IN;
input CE, RUN_PROG, READJSRITE;
output [7:0] WBus, DATAJJUT;
output [15:0] RAMJJISPLAYJffiX;
wire [7:0] RAMJJISPLAY;

tri [7:0] WBus;
reg [7:0] DATAJJUT;
reg [7:0] MEM [15:0];

always @ (MUXJJUT or DATA_IN or RUN_PROG or READ_WRITE)
begin

if (IRUNJ'ROG)
begin

if (1READJSRITE)
MEM [MUXJJUT] = DATA_IN;

end

else if (RUN__PROG)
DATAJJUT = MEM [MUXJJUT];

else;

end

assign RAMJJI SPLAY = MEM [MUXJJUT];

HEXJJISPLAY RAM_HEX_1
(RAMJJISPLAY_HEX[15:8],RAMJJISPLAY[7:4]);

HEXJJISPLAY RAM_HEX_2
(RAMJ)ISPLAY_HEX[7:0] ,RAMJJISPLAY [3 : 0]) ;

bufifl(WBus[0],DATAJJUT[0],CE)
bufifl(WBUS[1],DATAJJUT[1],CE)
bufifl(WBus[2],DATAJJUT[2] ,CE)
bufifl(WBus[3],DATA OUT[3],CE)

55

bufifl(WBus[4],DATAJJUT[4] , CE)
bufifl(WBus[5],DATAJJUT[5],CE)
bufif1(WBus[6],DATAJJUT[6],CE)
bufifl(WBus[7],DATA 0UT[7],CE)

endmodule

D-3.2 Hexadecimal Display

module HEXJJISPLAY (HEXJJUT, HEXJEN) ;

// HEXJJUT -> signals a-h of active low hex 7-segment display
// MSB = a, LSB = h (decimal point)

output [7:0] HEXJJUT;
input [3:0] HEX IN;

reg [7:0] HEXJJUT;

always @(HEXJEN)
case(HEX IN)

4*b0001 : HEXJJUT = 8'blOOlllll

4'bOOlO : HEX OUT = 8'b00100101

4'b0011 : HEXJJUT = 8'b00001101

4'bOlOO : HEX OUT = 8'blOOllOOl

4'bOlOl : HEX OUT = 8'b01001001

4'b0110 : HEXJJUT = 8'bOlOOOOOl

4'b0111 : HEX OUT = 8'bOOOlllll

4'blOOO : HEXJJUT = 8'b00000001

4'bl001 : HEXJJUT = 8'b00001001

4'bl010 : HEX OUT - 8'bOOOlOOOl

4'blOll : HEX OUT = 8'bll000001

4'bll00 : HEXJJUT = 8'bOllOOOll

4'bll01 : HEX OUT = 8'bl0000101

4'blllO : HEX OUT = 8'bOllOOOOl

4'bllll : HEXJJUT = 8'b01110001

default : HEX OUT = 8'bOOOOOOll

endcase

endmodule

D-4 Instruction Register

D-4.1 Instruction Register with Tri-stateAddress Output

module INSTRUCTIONJ*EGISTER(IRJJUT_ADDR, IRJJUTJENS, WBus, Li, Ei, CLK, CLR)

// Li -> high to load instruction from WBus
// Ei -> high to put lower nibble of insturction

// (data address field) at WBus

//

// irjjut_addr -> data address field of instruction
// IRJJUTJENS -> instuction opcode field (upper nibble)

input Li, Ei, CLK, CLR;
inout [7:0] WBus;
output [3:0] IRJJUT_ADDR, IRJJUTJENS;
tri [7:0] WBus;

DJT IR0(IRJJUT_ADDR[0] , WBus[0], Li, CLK) ;
D_FF IRl(IRJJUT_ADDR[l],WBus[l],Li,CLK);
D_FF IR2(IRJJUT_ADDR[2],WBus[2],Li,CLK);
D_FF IR3(IRJJUT__ADDR[3],WBus[3],Li,CLK) ;
DFFJ?OSCLR IR4(IRJJUTJENS[0],WBus[4],Li,CLK,CLR);
DFF_POSCLR IR5(IRJJUTJENS[1],WBus[5],Li,CLK,CLR);
DFF POSCLR IR6(IR OUT INS[2],WBus[6],Li,CLK,CLR);

56

DFF_POSCLR IR7(IRJJUTJENS[3],WBus[7],Li,CLK,CLR)

bufifl (WBus [O],IRJJUT__ADDR[0] ,Ei);
bufifl(WBus[1],IRJJUT_ADDR[1],Ei);
bufifl{WBus[2],IRJJUT_ADDR[2],Ei);
bufifl(WBus[3],IR OUT ADDR[3],Ei);

endmodule

D-4.2 D Flip-flop with Enable Inputfor Data Loading

module D_FF(Q,D,EN,CLK);

input D,EN,CLK;
output Q;

reg Q;

always @(posedge CLK)
if (EN == 1)

Q = D;

else

Q - Q;

endmodule

D-4.3 D Flip-flop withData Loading Enable & ClearInput

module DFFjPOSCLR(Q,D,EN,CLK,CLR);

input D,EN,CLK,CLR;
output Q;

reg Q;

always @(posedge CLK or posedge CLR)
if (CLR == 1)

Q = 0;

else if (EN == 1)

Q = D;

else

Q = Q;

endmodule

D-5 Accumulator

D-5.1 Accumulator

module ACCUMULATOR(ACCUJJUT, WBus, La, Ea, CLK) ;

// La -> high to load data from WBus
// Ea -> high to put accumulator content ot WBus

input La, Ea, CLK;
inout [7:0] WBus;

output [7:0] ACCUJJUT;
tri [7:0] WBus;

D_FF ACCUO(ACCUJJUT[0],WBus[0],La,CLK)
DjFF ACCU1(ACCUJJUT[1],WBus[1],La,CLK)
D_FF ACCU2(ACCUJJUT[2],WBus[2],La,CLK)
DJfF ACCU3(ACCUJJUT[3],WBus[3],La,CLK)
D FF ACCU4(ACCU OUT[4],WBus[4],La,CLK)

57

DjFF ACCU5(ACCUJJUT[5],WBus[5] ,La,CLK)
DjFF ACCU6(ACCUJJUT[6],WBus[6],La,CLK)
DjFF ACCU7(ACCUJJUT[7],WBus[7],La,CLK)

bufifl(WBus[0],ACCUJJUT[0],Ea);
bufifl(WBus[1],ACCUJJUT[l],Ea);
bufifl(WBus[2],ACCUJJUT[2],Ea);
bufifl(WBus[3],ACCUJJUT[3],Ea);
bufifl(WBus[4],ACCUJJUT[4],Ea);
bufifl(WBus[5],ACCUJJUT[5],Ea);
bufifl(WBus[6],ACCUJJUT[6],Ea);
bufifl(WBus[7],ACCU OUT[7],Ea);

endmodule

D-5.2 D Flip-flop with Enable Inputfor Data Loading

module D_FF(Q,D,EN,CLK);

input D,EN,CLK;
output Q;

reg Q;

always @(posedge CLK)
if (EN == 1)

Q = D;

else

Q = Q;

endmodule

D-6 Adder/Subtracter

D-6A Adder/Subtracter

module ADD_SUB(ADDJ5UBJJUT, WBus, ACCUJJUT, BJU3GJJUT, Su, Eu)

// Su -> subtraction operation enable bit, high to convert
// B Register output to 2's complement form
//
// Eu -> high to put arithmetic operation result on WBus

//
// ADDJ3UBJJUT -> Adder/Subtracter's output, arithmetic
// operation result

//
// ACCUJJUT -> Accumulator's output, operand of arithmetic
// operation
//

// BjREGJJUT -> B Register's output
//
// B -> temporary register to hold operand of arithmetic
// operation
// == BjSEGJJUT for addition operation
// == -BJIEGJJUT for subtration operation
// (added with 1 (Su) for 2's complement of BJREG_OUT)

output [7:0] ADDJ3UBJJUT, WBus;
input [7:0] ACCUJJUT, BJSEGJJUT;
input Su, Eu;
reg [7:0] ADDJSUBJJUT,B;
tri [7:0] WBus;

always @ (ACCUJJUT or BJREGJJUT or Su)
begin

if (Su)

58

begin B = -(BjREGjDUT); end
else

begin B = BJIEGJJUT; end
ADDJ^UBJJUT = ACCUJJUT + B + Su;

end

bufifl(WBus[0],ADDJSUBJJUT[0],Eu);
bufifl(WBus[1],ADD_SUBJJDT[1],Eu);
bufifl(WBus[2],ADDj5UBJJUT[2],Eu);
bufifl(WBus[3],ADD_SUBJJUT[3],Eu);
bufifl(WBus[4],ADDJSUBJJUT[4],Eu);
bufifl(WBus[5],ADDj3UBJJUT[5],Eu);
bufifl(WBus[6],ADD_SUBJJUT[6],Eu);
bufifl(WBus[7],ADD SUB OUT[7],Eu);

endmodule

D-7 B Register

D-7.1 B Register

module B_REGISTEK(BJREGJJUT, WBus, Lb, CLK);

// Lb -> high to load data from WBus

output [7:0] BjREGJJUT;
input [7:0] WBus;
input Lb, CLK;

D_FF B_REG_0(B_REG_OUT[0],WBus[0],Lb,CLK)
DjFF B_REGjl(B_REG_OUT[l],WBus[1],Lb,CLK)
DjFF B_REGj2 (B_REGJJUT[2],WBus[2],Lb,CLK)
D_FF B_REGj3(B_REGJJUT[3],WBus[3],Lb,CLK)
DJFF B_REGJ4 (B_REGJJUT[4],WBus[4],Lb,CLK)
DjFF B_REGJ5 (B_REGJJUT [5] ,WBus [5] ,Lb, CLK)
D_FF BJREGJ6(BJSEGJJUT[6],WBus[6],Lb,CLK)
DJFF BJ5EGJ7 (B_REG_OUT[7],WBus[7],Lb,CLK)

endmodule

D-7.2 D Flip-flop with Enable Inputfor Data Loading

module D_FF(Q,D,EN,CLK);

input D,EN,CLK;
output Q;

reg Q;

always @(posedge CLK)
if (EN == 1)

Q = D;

else

Q = Q;

endmodule

59

D-8 Output Register

D-8.I OutputRegister

module OUTPUTj;EGISTER(OUTjREG, OUT_REG_HEX, WBus, Lo, CLK)

// Lo -> high to load data from WBus

output [7:0] OUT_REG;
output [15:0] OUT_REG_HEX;
input [7:0] WBus;
input Lo, CLK;

DjFF OUTJSEG_0(OUT_REG[0],WBus[0],Lo,CLK)
D_FF OUT_REG_l(OUT_REG[1],WBus[1],Lo,CLK)
DjFF OUT_REG_2(OUTJiEG[2],WBus[2],Lo,CLK)
DJFF OUTJSEGJ3(OUTJSEG[3],WBus[3],Lo,CLK)
DJFF 0UT_REGJ1(0UT_REG[4],WBus[4],Lo,CLK)
DJFF 0UT_REGJ5 (OUT_REG[5],WBus[5],Lo,CLK)
D_FF OUT_REG_6(OUT_REG[6],WBus[6],Lo,CLK)
D_FF OUT_REGJ7 (OUT_REG[7],WBus[7],Lo,CLK)

HEX_DISPLAY OUT_HEX_l
(OUT_REG_HEX[15:8],OUT_REG[7:4]);

HEX_DISPLAY 0UT_HEXJ2
(OUT_REG_HEX[7:0],OUT_REG[3:0]J ;

endmodule

D-8.2 D Flip-flop with Enable Inputfor Data Loading

module D_FF(Q,D,EN,CLK);

input D,EN,CLK;
output Q;

reg Q;

always @(posedge CLK)
if (EN == 1)

Q = D;

else

Q = Q;

endmodule

D-8.3 Hexadecimal Display

module HEXJJISPLAY (HEXJJUT, HEXJEN) ;

// HEXJJUT -> signals a-g of hex 7-segment display
// MSB = a, LSB = g

output [6:0] HEX OUT;

input [3:0] HEX IN;

reg [6:0] HEXJJUT;

always @(HEX IN)

case(HEX IK)

4'b0001 : HEX OUT = 7 bOHOOOO

4'bOOlO : HEX OUT = 7 bllOHOl

4'bOOll : HEXJJUT = 7 bllllOOl

4'bOlOO : HEX OUT = 7 bOHOOll

4'b0101 : HEXJJUT = 7 blOHOll

4'b0110 : HEX OUT = 7 blOlllll

4'b0111 : HEX OUT = 7 blllOOOO

4'bl000 : HEX OUT = 7 blllllll

4'bl001 : HEX OUT = 7'bllll011

60

4'blOlO HEX OUT = 7 blllOlll

4'blOll HEX OUT - 7 bOOlllll

4'bllOO HEX OUT = 7 blOOlllO

4'bllOl HEX OUT = 7 bOllllOl

4'blllO HEX OUT = 7 blOOllll

4'bllll HEX OUT = 7 blOOOlll

default HEX OUT = 7 bllllllO

endcase

endmodule

D-9 Controller/Sequencer (Instruction Decoder, Ring Counter & Control

Matrix)

D-9.1 Controller/Sequencer

module CONTROLLERJ3EQUENCER
(Cp, Ep, Lm, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo,
LDAnot, ADDnot, SUBnot, OUTnot, HLTnot,

HLT, IRJJUT_INS, T, CLK, CLR);

output Cp, Ep, Lm, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo,

LDAnot, ADDnot, SUBnot, OUTnot, HLTnot, HLT;
output [6:1] T;
input CLK, CLR;
input [3:0] IRJJUT_INS;
wire LDA, ADD, SUB, OUT;
wire [6:1] Tnot;

RINGJXJUNTER RC(T, Tnot, CLK, CLR) ;
INSTRUCTIONJJECODER ID(LDA, ADD, SUB, OUT, HLT, IRJJUTJENS);
CONTROL_MATRIX CM(Cp, Ep, Lm, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo,

LDA, ADD, SUB, OUT, HLT, T, CLK, CLR);

assign LDAnot = -LDA,
ADDnot = -ADD,

SUBnot = -SUB,

OUTnot = -OUT,

HLTnot = -HLT;

endmodule

D-9.2 Instruction Decoder

module INSTRUCTIONJJECODERfLDA, ADD, SUB, OUT, HLT, IRJJUTJENS)

// associate control line of each routine with their

// corresponding opcode

output LDA, ADD, SUB, OUT, HLT;

input [3:0] IR OUT INS;

assign LDA = (IR OUT INS == 4'b0000)? l'bl 1'bO

ADD = (IR OUT INS == 4'b0001)? l'bl 1'bO

SUB = (IR OUT INS == 4'b0010)? l'bl 1'bO

OUT = (IRJJUTJENS == 4'blll0)? l'bl 1'bO

HLT = (IR OUT INS == 4'bllll)? l'bl 1'bO

endmodule

61

D-9.3 Ring Counter

module RIRG_COUNTER(T, Tnot, CLK, CLR);

// CLR high -> Ring Counter resets to 000001
//
// Ring Counter shifts left at each negative
// edge of CLK

output [6:1] T, Tnot;
input CLK, CLR;

JKFFj2not_NEGCLKJ?OSCLR RC1
(Tnot[1],T[1],Tnot[6],T[6],CLK,CLR) ;

JKFFJJ.notJffiGCLK_POS CLR RC2
(T[2],Tnot[2],T[l],Tnot[1], CLK,CLR);

JKFFJJnotJ5EGCLK_P0SCLR RC3
(T[3],Tnot[3],T[2],Tnot[2],CLK,CLR) ,•

JKFFJJ.not_NEGCLKJ?OS CLR RC4
(T[4],Tnot[4],T[3],Tnot[3],CLK,CLR);

JKFFJJ.notjSIEGCLK_POSCLR RC5
(T[5],Tnot[5],T[4],Tnot[4],CLK,CLR);

JKFFJ2not_NEGCLK_POSCLR RC6
(T[6],Tnot[6],T[5],Tnot[5],CLK, CLR);

endmodule

D-9.4 Control Matrix

module CONTR0L_MATRIX(Cp, Ep, Lm, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo,
LDA, ADD, SUB, OUT, HLT, T, CLK, CLR);

output Cp, Ep, Lm, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo;
input LDA, ADD, SUB, OUT, HLT, CLK, CLR;
input [6:1] T;

assign Cp = [T[2])? l'bl : 1'bO,

Ep - (T[l])? l'bl : 1'bO,

Lm = (T[l] II (LDA SS T[4]) II (ADDSST[4]) || (SUBSST[4]
l'bl : 1'bO,

CE = (T[3] tl (LDASST[5]) II (ADDSST[5]) || [SUBSST[5]
l'bl : 1'bO,

Li = (T[3])? l'bl : 1'bO,

Ei = ((LDA SS T[4]) || (ADDSST[4]) || (SUB &S T[4]))?
l'bl : 1'bO,

La = ((LDA SS T[5]) II (ADDSST[6]) || (SUB SS T[6]))?
l'bl : 1'bO,

Ea = (OUT SS T[4])? l'bl : 1'bO,

Su = (SUB SS T[6])? l'bl : 1'bO,

Eu = ((ADD SS T[6]) II (SUB SS T[6]))? l'bl : 1'bO,

Lb = ((ADD SS T[5]) || (SUB SS T[5]))? l'bl : 1'bO,

LO = (OUT SS T[4])? l'bl : 1'bO;

endmodule

62

D-9.5 Positive-edge-triggered JK Flip-flop with ActiveHigh Clear

module JKFF(Q,Qnot,J,K,CLK,CLR);

input J,K,CLK,CLR;
output Q,Qnot;

reg Q,Qnot;

always @(negedge CLK or posedge CLR)
begin

if (CLR)

begin
Q = 1'bO;

Qnot = ~Q;

end

else if ({J,K} == 2'b00)

begin

Q = Q;
Qnot = -Q;

end

else if ({J,K} == 2'b01)

begin

Q - 1'bO;

Qnot = ~Q;

end

else if ({J,K} == 2'blO)

begin
Q = l'bl;

Qnot = ~Q;

end

else if ({J,K} == 2'bll)

begin

Q = ~Q;
Qnot = ~Q;

end

end

endmodule

D-10 Mode-Select Switches, De-bouncers & Clock Buffer

D-10.1 De-bouncers

II STARTj:LEAR switch -> START active low
// CLEAR active high
// MANUAL_AUTO switch -> MANUAL active low
// AUTO active high
// LOW -> LOW manual CLK signal for logic 0 input
// HIGH -> HIGH manual CLK signal for logic 0 input
// **A11 switches gives logic low when pressed**]
//

// DBJCEMP1 -> clock signal in MANUAL mode
// DBJTEMP2 -> clock signal in AUTO mode

module DEBOUNCERS(CLK, CLR, rawCLK, STARTJJLEAR, LOW, HIGH,
MANUAL_AUTO, HLT, rawrawCLK);

output CLK;

input STARTJZLEAR, LOW_HIGH, LOW_HIGH_not, MANUAL_AUTO, HLT,
rawrawCLK;

inout CLR, rawCLK;

wire CLRnot, HIJCOnot, HI_LO, MANUALJJUT, AUTOJJUT,
DBJTEMP1, DBJTEMP2;

CLEARJ3TART DB1(CLR, STARTJJLEAR);
SINGLEJ3TEP DB2(HI_LO, LOW, HIGH);
AUTO MANUAL DB3(MANUAL OUT, AUTO OUT, MANUAL AUTO);

63

CLOCK DB4(rawCLK, HLT, rawrawCLK, CLR);

and DB5(DB_TEMP1, -HLT, HI_LO, MANUALJJUT),
DB6(DB_TEMP2, AUTOJJUT, rawCLK);

or DB7(CLK, DBJTEMPl, DBJTEMP2);

endmodule

D-10.2 Clear-Start De-bouncer

module CLEARJ3TART(CLR, STARTJJLEAR);

output CLR;

input STARTJ^LEAR;
wire CLRnot, STARTj:LEAR_NOT;

not gKSTARTJJLEARJTOT, STARTJ3LEAR);

SRjLATCH CS(CLRnot, CLR, START_CLEAR, STARTJILEARJJOT)

endmodule

D-10.3 Single-Step De-bouncer

module SINGLEJ3TEP(HI_LO, LOW, HIGH);

output HI_LO;
input LOW, HIGH;
wire HI_LOnot;

SRJLATCH SS(HI_LOnot, HI_LO, LOW, HIGH)

endmodule

D-10.4Manual-Auto De-bouncer

module AUTO_MANUAL(MANUAL_OUT, AUTOJJUT, MANUAL_AUTO);

output MANUALJ)UT, AUTOJJUT;
input MANUALJIUTO;
wire MANUAL_AUTO_NOT;

not gl(MANUAL_AUTOJJOT, MANUAL_AUTO);

SRjLATCH
AMfMANUALJJUT, AUTOJJUT, MANUALJiUTO, MANUAL_AUTO_NOT)

endmodule

D-10.5 Clock Buffer

module CLOCK(rawCLK, HLT, rawrawCLK, CLR)

output rawCLK;

input HLT, rawrawCLK, CLR;

JKFFJJ.J?OSCLKJ?OSCLR Clockl
(rawCLK, -HLT, -HLT, rawrawCLK,CLR)

endmodule

64

D-10.6Active Low SR Latch

module SRJLATCH(Q,Qnot,Snot,Rnot)

output Q, Qnot;

input Snot, Rnot;

or gl(Q,-Snot,-Qnot),
g2(Qnot,-Rnot,-Q);

endmodule

D-10.7Positive-edge-triggered JK Flip-flop withActive High Clear

module JKFFj2J?0SCLK_P0SCLR(Q,J,K,CLK,CLR),

input J,K,CLK,CLR;
output Q;

reg Q;

always @(posedge CLK or posedge CLR)

begin
if (CLR) Q = 1'bO;
else if ({J,K} == 2'bOO) Q = Q;
else if ({J,K} == 2'bOl) Q = 1'bOj
else if !{J,K} == 2'blO) Q = l'blj
else if ({J,K} == 2'bll) Q = -Q;

end

endmodule

Dll SAP-1

D-ll.l SAP-1

module SAP1(RUN_PROG, READ_WRITE, STARTJJLEAR, LOW, HIGH,
MANUAL_AUTO, rawrawCLK, ADDRJEN, DATA_IN,
CLK, CLR, Cp, Ep, Lm, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo,
HLT, WBus,

LDAnot, ADDnot, SUBnot, OUTnot, HLTnot, CLKnot, CLRnot,

MUXJJUT, Tnot, OUTJSEG, DIGITJJISPLAY) ;

input RUNjPROG, READ_WRITE, STARTJZLEAR, LOW, HIGH,
MANUAL_AUTO, rawrawCLK;

input [3:0] ADDRJEN;
input [7:0] DATAJEN;

inout CLK, CLR, Cp, Ep, Lm, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo, HLT;
inout [7:0] WBus;

output LDAnot, ADDnot, SUBnot, OUTnot, HLTnot, CLKnot, CLRnot;

output [3:0] MUXJJUT;
output [6:1] Tnot;
output [7:0] OUTJSEG;
output [15:0] DIGITJJISPLAY;

wire rawCLK;

wire [3:0] PC, IRJJUT_ADDR, IRJJUTJENS;
wire [6:1] T;
Wire [7:0] DATAJJUT, ACCUJJUT, ADDJ5UBJJUT, BjREGJJUT;
wire [15:0] OUTJREG_HEX, RAMJJISPLAY_HEX;

tri [7:0] WBus;

65

PROGRAMj:OUNTER
SAP1JJ1(PC, WBus, Cp, Ep, CLK, CLR);

MAR_MUX
SAP1JJ2(MUXJJUT, ADDR_IN, WBus, Lm, CLK, RUN_PROG);

jL6x8JIAM
SAP1J)3(WBUS, DATAJJUT, RAMJJISPLAYJiEX,

MUX_OUT, DATAjEN, CE, RUNJPROG, READ_WRITE);

INSTRUCTIONJREGISTER
SAP1JJ4(IR_OUT_ADDR, IR_OUTjENS, WBus, Li, Ei, CLK, CLR);

ACCUMULATOR

SAP1JJ5 (ACCUJJUT, WBus, La, Ea, CLK);

ADD_SUB
SAP1J)6(ADDJ^UBJJUT, WBus, ACCUJJUT, B_REGJJUT, Su, Eu) ;

B_REGISTER
SAP1JJ7(BJffiGJJUT, WBus, Lb, CLK);

OUTPUTJSEGISTER
SAP1JJ8(OUT_REG, OUT_REG_HEX, WBus, Lo, CLK);

CONTR0LLER_SEQUENCER
SAPlJ)9(Cp, Ep, Lm, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo,

LDAnot, ADDnot, SUBnot, OUTnot, HLTnot,

HLT, IRJJUTJENS, T, CLK, CLR);

DEBOUNCERS

SAP1_10(CLK, CLR, rawCLK, START_CLEAR, LOW, HIGH,
MANUAL_AUTO, HLT, rawrawCLK);

assign DIGITJJISPLAY = RUNJPROG? OUT_REG_HEX : RAM_DISPLAY_HEX,
Tnot = ~T,

CLKnot = -CLK,

CLRnot = -CLR;

endmodule

D-12 Additional Hexadecimal Display of MAR & 2 to 1 MUX Output on MAX

7000S Device

D-l2.1 Additional Hexadecimal Display ofSAP-1 on MAX7000S Device

module SAP1_MAX(MUX_OUT_HEX, BLANKJJISPLAY, MUXJJUT);

output [7:0] MUXJDUTJIEX, BLANKJJISPLAY;
input [3:0] MUXJJUT;

HEXJJISPLAY SAPl_MAX_DISPLAY(MUX_OUT_HEX,MUX_OUT);

assign BLANKJJISPLAY = 8'hff;

endmodule

D-l2.1 Hexadecimal Display

module HEXJJISPLAY(HEXJJUT,HEXJEN);

// HEXJJUT -> signals a-g of hex 7-segment display
// MSB = a, LSB = g

66

C
J>

-
J

o W
(
D

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

(D
h

h
O

'c
r
o

-
D

'c
y

t
r
o

'D
'O

't
r
D

'O
'D

'b
'D

'
Q

>
l
-
'
l
-
'
l
-
'
l
-
'
l
-
'
l
-
'
l
-
'
l
-
'
O

O
O

O
O

O
O

d
l
-
'l

-
'l

-
'l

-
'O

O
O

O
I
-
'l

-
'l

-
'l

-
'O

O
O

H
'
l
-
'
l
-
'
O

O
I
-
'
l
-
'
O

O
I
-
'
l
-
'
a
O

I
-
'
l
-
'
O

r
t
l
-
'
O

I
-
'
O

I
-
'
O

f
-
'
O

I
-
'
O

I
-
'
O

I
-
'
O

I
-
'

tu
H

H
-

o
M

n>
P

£
£

iQ
1

3
r
t

O
0

)
C

T
J

Q
J

u
-

"
r
t

C
W

01

fl
>

.
-
.

(3
3

O
O

J
i—

i

o
•
-

X
P

I
E

"
o

1
X

H
|

x
a

c
M

!G
—

a
a

i
,x

-
s
o

i-
3

H
W

H
H

M
P

l
H

M
W

H
M

H
K

t
H

I
E

l
H

P
s

Pn
P

s
P

s
?
s

P
s

PS
P

s
P

s
P%

P
s

P
s

P
s

P
s

Pn
P

s
i

i
i

i
i

i
i

i
i

i
i

i
i

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

a
a
c
c
i
a
a
a
a
a
a
a
a
a
a
a
a

>
-
3
i
-
3
H
>
^
i
-
3
>
-
3
i
-
3
i
-
3
>
-
3
>
-
3
H
H
H
>
^
i
-
3
>
-
3

-
J
^
]
-
J
^
J
-
J
-
J
^
]
-
J
-
J
-
J
-
J
^
J
-
J
-
J
-
J
~
J

t
r

t
r

l
-
>

O

b
'
t
r
t
r
t
r
a
'
O
'
O
'
D
'
O
'
D
'
b
'
o
-
'
D
'
O
"

M
O
I
-
'
O
l
-
'
l
-
'
l
-
'
l
-
'
F
-
'
l
-
'
O
I
-
'
l
-
'
O

O
I
-
'
O
O
I
-
'
I
-
'
I
-
'
I
-
'
O
O
I
-
'
I
-
'
I
-
'
I
-
'

O
M
O
l
-
'
l
-
'
l
-
'
l
-
'
l
-
'
l
-
'
l
-
'
i
-
'
l
-
'
O
I
-
'

l
-
'
O
M
M
O
M
I
-
'
O
I
-
'
l
-
'
a

M
M
O
l
-
'
O
l
-
'
O
O
O
h
-
'
O

l
-
'
O
I
-
'
l
-
'
t
-
'
l
-
'
l
-
'
O
I
-
'
l
-
'
t
-
'
O
O
O

l
-
'
l
-
'
O
l
-
'
l
-
'
l
-
'
h
-
'
O
I
-
'
M
I
-
'
l
-
'
l
-
'
O

l
-
>

O
Y

-*
K
1

APPENDIX E

SAP-1 MODULAR SYNTHESIS SOURCE CODE

E-l Program Counter

E-1.1 Program Counter with Tri-state Output

module PROGRAM_COUNTER(PC,PC_HEX,BLANKJJISPLAY,WBus,Cp,Ep,CLK,CLR,Cpnot,Epnot)

// Cp -> high to increment PC count
// Ep -> high to put PC count at WBus

output [3:0] PC;
output [7:0] WBus, PCJiEX, BLANKJJISPLAY;
output Cpnot,Epnot;

tri [7:0] WBus;
input Cp,Ep,CLK,CLR;
wire none;

JKFFJJ.j?OSCLKJ?OSCLR PCO (PC[0] , Cp, Cp, CLK, CLR) ;
JKFFJ)J?OSCLK_POSCLR PCI(PC[1],Cp,Cp,-PC[0],CLR);
JKFFJJ_J?OSCLKJ?OSCLR PC2(PC[2],Cp,Cp,-PC[1],CLR);
JKFF_QJ?OSCLKJ?OSCLR PC3(PC[3],Cp,Cp,-PC[2],CLR);

assign none = 0;

bufifl(WBus[0],PC[0],Ep);
bufifl(WBus[l],PC[l],Ep);
bufifl(WBus[2],PC[2],Ep);
bufifl(WBus[3],PC[3],Ep);
bufifl(WBus[4],none,none);

bufifl(WBus[5],none,none);

bufifl(WBus[6],none,none);
bufifl(WBus[7],none,none);

HEXJJISPLAY PCHEX(PCJIEX,PC);

assign BLANKJJISPLAY = 8'bllllllll,
Cpnot = -Cp,

Epnot = ~Ep;

endmodule

E-L2 JK Flip-flop

module JKFF Q POSCLK POSCLR(Q,J,K,CLK,CLR)

input J,K,CLK,CLR;
output Q;

reg Q;

always @(posedge CLK or posedge CLR)
begin

if (CLR) Q = l1'b0,

else if ({J,KJ == 2Tb0O) Q = Q;
else if (<J,K) == 2'bOl) Q - 1'bO

else if ({J,K} == 2'blO) Q - l'bl

else if ({J,K} == 2'bll) Q = ~Q;

end

endmodule

68

E-1.3 Hexadecimal Display

module HEXJJISPLAY {HEXJJUT,HEXJEN);

// HEXJJUT -> signals a-h of active low hex 7-segment display
// MSB = a, LSB = h (decimal point)

output [7:0] HEX OUT;

input [3:0] HEX IN;

reg [7:0] HEXJJUT;

always @(HEX_IN)
case(HEX IN)

4'b0001 : HEXJJUT = 8'blOOlllll

4'b0010 : HEX OUT = 8'b00100101

4'b0011 : HEXJJUT = 8'b00001101

4'b0100 : HEX OUT = 8'blOOllOOl

4*1)0101 : HEXJJUT = 8'b01001001

4'b0110 : HEX OUT = 8'b01000001

4'b0111 : HEX OUT = 8'b00011111

4'bl000 : HEX OUT = 8'bOOOOOOOl

4'bl001 : HEXJJUT = 8'bOOOOlOOl

4'blOlO : HEX OUT = 8'bOOOlOOOl

4'blOll : HEXJJUT = 8'bll000001

4'bllOO : HEX OUT - 8'b01100011

4'bll01 : HEX OUT = 8'bl0000101

4'blllO : HEX OUT = 8'bOllOOOOl

4'bllll : HEX OUT = 8'bOlllOOOl

default : HEX OUT = 8'bOOOOOOll

endcase

endmodule

E-2 MAR & 2 to 1 Multiplexer

E-2.1 MAR + 2 to 1 Multiplexer

module MAR_MUX(MUXJJUT, MUXJJUT_HEX, BLANKJJISPLAY, HighZ,
ADDRJEN, WBus, Lm, CLK, RUNJPROG, Lmnot)

input Lm, CLK, RUNJ?ROG;
input [2:0] ADDRJEN;
inout [7:0] WBus;

wire none;

wire [2:0] MARJJUT;
output Lmnot;
output [3:0] MUXJJUT;
output [5:0] HighZ;
output [7:0] MUXJJUT_HEX, BLANKJJISPLAY;
tri [5:0] HighZ;

MAR MAR_MUX_1(MARJJUT, WBus, Lm, CLK);

MUX MAR_MUX_2
(MUXJJUT, MUXJJUT_HEX, BLANKJJISPLAY, MARJJUT, ADDRJEN,
RUNJROG) ;

assign Lmnot = ~Lm,
none = 0;

bufifl(HighZ[0],none,none);
bufifl(HighZ[1],none,none);
bufifl(HighZ[2],none,none);

bufifl(HighZ[3],none,none);
bufifl(HighZ[4],none,none);

69

bufifl(HighZ[5],none,none);

endmodule

E-2.2 MAR

module MAR(MARJJUT,WBus,Lm,CLK);

// Lm -> high to load PC count from WBus

inout [7:0] WBus;
input Lm,CLK;
output [2:0] MARJJUT;
wire none;

D_FF MARO (MARJJUT[0] ,WBus[0] ,Lm,CLK)
DJFF MAR1(MARJJUT[1],WBus[1], Lm,CLK)
DJT MAR2(MARJJUT[2],WBus[2],Lm,CLK)

assign none = 0;

bufifl(WBus[0],none,none) ;
bufifl(WBus[1],none, none) ;
bufifl(WBus[2],none,none);

bufifl(WBus[3],none,none);

bufifl(WBus[4],none,none);

bufifl{WBus[5],none,none);
bufifl(WBus[6],none,none);
bufifl(WBus[7],none,none);

endmodule

E-2.3 2 to 1 Multiplexer

module MUX (MUXJJUT, MUXJJUTJEX, BLANKJJISPLAY, MARJJUT, ADDRJEN, RUNJPROG)

// RUNjPROG == 0 -> program
// -> address from switches taken
// RUNjPROG == 1 -> run
// -> address from MAR output taken

input [2:0] MARJJUT, ADDRJEN;
input RUNJPROG;
output [3:0] MUXJJUT;
output [7:0] MUXJJUT_HEX, BLANKJJISPLAY;

assign MUXJJUT[2:0] = RUNjPROG? MARJJUT : ADDR_IN,
MUXJJUT[3] = 1'bO;

HEXJJISPLAY MUX_HEX(MUXJJUT_HEX, MUXJJUT);

assign BLANKJJISPLAY = 8'bllllllll;

endmodule

E-2.4 D Flip-flop with EnableInputfor Data Loading

module D_FF(Q,D,EN,CLK);

input D,EN,CLK;

output Q;

reg Q;

always @(posedge CLK)
if (EN == 1)

Q = D;
else

70

Q = Q;

endmodule

E-2.5 Hexadecimal Display

module HEXJJISPLAY (HEXJJUT,HEXJEN) ;

// HEXJJUT -> signals a-h of active low hex 7-segment display
// MSB = a, LSB = h (decimal point)

output [7:0] HEXJJUT;
input [3:0] HEXJEN;
reg [7:0] HEX OUT;

always @(HEXJEN)
case (HEXJEN)

4'b0001 : HEXJJUT = 8'bl0011111
4'b0010 : HEXJJUT = 8'b00100101
4'b0011 : HEXJJUT = 8'bOOOOllOl
4'b0100 : HEXJJUT = 8'blOOllOOl
4'b0101 : HEXJJUT = 8'b01001001
4'bOHO : HEXJJUT = 8'bOlOOOOOl
4'b0111 : HEXJJUT = 8'bOOOlllll
4'blOOO : HEXJJUT = 8'b00000001
4'bl001 : HEXJJUT = 8'bOOOOlOOl
4'bl010 : HEXJJUT = 8'b00010001
4'bl011 : HEXJJUT = 8'bll000001
4*bll00 : HEXJJUT = 8'bOllOOOll
4'bll01 : HEXJJUT = 8'bl0000101
4'blllO : HEXJJUT = 8'bOllOOOOl
4'bllll : HEXJJUT - 8'b01110001
default : HEXJJUT = 8'bOOOOOOll

endcase

endmodule

E-3 8x8 RAM

E-3.1 8*8RAM

module J5x8_RAM_MAX (WBus, DATAJJUT, RAMJJISPLAY_HEX,HighZ,
MUXJJUT,DATA_IN,CE,CEnot,RUNJPROG,READJflRITE)

// RUNJPROG == 0 —> PROG; RUNjPROG == 1 —> RUN
// READ_WRITE == 0 —> WRITE; READ_WRITE == 1 —> READ

input [2:0] MUXJJUT;
input [7:0] DATAJEN;
input CE, RUNJPROG, READJIRITE;

output CEnot;

output [6:0] HighZ;
output [7:0] WBus, DATAJJUT;
output [15:0] RAMJJISPLAYJiEX;

wire none;

wire [7:0] RAMJJISPLAY;
tri [6:0] HighZ;

tri [7:0] WBus;

reg [7:0] DATAJJUT;
reg [7:0] MEM [15:0];

always 9 (MUXJJUT or DATAJEN or RUNJPROG or READ_WRITE)
begin

71

if (!RUNJPROG)
begin

if {!READ_WRITE)
MEM [MUXJJUT] = DATA_IN;

end

else if (RUNJPROG)
DATA OUT = MEM [MUXJJUT];

else;

end

bufifl

bufifl

bufifl

bufifl

bufifl

bufifl

bufifl

bufifl

(WBus[0]

{WBus[l]

(WBus[2]

(WBUS[3]

{WBus[4]

(WBUS[5]

(WBus[6]

(WBUS[7]

,DATA_
,DATA

,data"
,data"
,DATA

,DATA

,DATA

,DATA

OUT[0],CE)
OUT[l],CE)
OUT[2],CE)
"0UT[3],CE)
_0UT[4],CE)
OUT[5],CE)

_OUT[6],CE)
~0UT[7] ,CE)

assign RAMJJISPLAY = MEM [MUXJJUT],
CEnot = -CE,

none = 0;

HEXJJISPLAY RAM_HEX_1
{RAM_DISPLAY_HEX[15:8],RAMJJISPLAY[7:4]

HEXJJISPLAY RAM_HEXJ3
(RAMJJISPLAYJ1EX[7:0],RAMJJISPLAY[3:0])

bufifl(HighZ[6],none,none);
bufifl(HighZ[5],none,none);
bufifl(HighZ[4],none,none);
bufifl(HighZ[3],none,none);
bufifl(HighZ[2],none,none);
bufifl(HighZ[l],none,none);
bufifl(HighZ[0],none,none);

endmodule

E-3.2 Hexadecimal Display

module HEXJJISPLAY (HEXJJUT, HEXJEN) ;

// HEXJJUT -> signals a-h of active low hex 7-segment display
// MSB = a, LSB = h (decimal point)

output [7:0] HEXJJUT;
input [3:0] HEXJEN;
reg [7:0] HEXJJUT;

always @(HEX IN)
case(HEX IN)

4'b0001 : HEXJJUT = 8'blOOlllll

4'bOOlO : HEXJJUT = 8'b00100101

4'b0011 : HEXJJUT = 8'bOOOOllOl

4'b0100 : HEXJJUT = 8'blOOllOOl

4'bOlOl : HEX OUT = 8'bOlOOlOOl

4'b0110 : HEX OUT = 8'b01000001

4'b0111 : HEXJJUT = 8'bOOOlllll

4'blOOO : HEX OUT = 8'bOOOOOOOl

4'blOOl : HEX OUT = 8'bOOOOlOOl

4'bl010 : HEX OUT = 8'b00010001

4'bl011 : HEXJJUT = 8'bllOOOOOl

4'bllOO : HEX OUT = 8'bOllOOOll

4'bll01 • HEXJJUT = 8'bl0000101

4'blll0 HEX OUT = 8'bOllOOOOl

4'bllll HEX OUT = 8'bOlllOOOl

default HEX OUT = 8'bOOOOOOll

endcase

endmodule

72

E-4 Instruction Register

E-4.1 Instruction Register with Tri-state Address Output

module INSTRUCTIONJ^EGISTER(IRJJUT_ADDR, IR_OUTJENS,HighZ,
IRJJUT_ADDR_HEX, IRJJUT_INSJiEX,
WBus,Li,Ei,CLK,CLR,Linot,Einot)

// Li -> high to load instruction from WBus
// Ei -> high to put lower nibble of insturction
// (data address field) at WBus
//

// IRJJU1JADDR -> data address field of instruction
// IRJJUTJENS -> instuction opcode field (upper nibble)

input Li,Ei,CLK,CLR;
inout [7:0] WBus;
output Linot,Einot;
output [3:0] IRJJUTJADDR, IRJJUTJENS;
output [5:0] HighZ;
output [7 : 0] IRJJUTJ^DDR_HEX, IRJJUTJENS_HEX;
wire none;

tri [5:0] HighZ;
tri [7:0] WBus;

DJFF IR0(IRJJUT_ADDR[0],WBus[0],Li,CLK);
DJ?F IRl(IR_OUT_ADDR[l],WBus[l],Li,CLK);
DjFF IR2(IR_OUT_ADDR[2],WBus[2],Li,CLK);
DjFF IR3(IRJJUT_ADDR[3],WBus[3],Li,CLK);
DFFjPOSCLR IR4(IRJJUTJENS[0],WBus[4],Li,CLK,CLR)
DFFjPOSCLR IR5(IRJJUT_INS[1],WBus[5],Li,CLK,CLR)
DFFjPOSCLR IR6{IRJJUTJENS[2],WBus[6],Li,CLK,CLR)
DFFjPOSCLR IR7{IRJJUTJENS [3], WBus [7],Li, CLK, CLR)

assign none = 0;

bufifl{WBus[0],IRJJUTJUJDR[0],Ei) ;
bufifl(WBus[l],IRJJUT_ADDR[l],Ei);
bufifl(WBus[2],IR_0UT_ADDR[2],Ei);
bufifl(WBus[3],IR_OUT__ADDR[3],Ei) ;
bufifl(WBus[4],none,none);
bufifl(WBus[5],none,none);
bufifl(WBus[6],none,none);
bufifl(WBus[7],none,none);

HEXJJISPLAY IRJADDR_HEX(IR_OUT_ADDR_HEX,IRJJUT^ADDR)
HEXJJISPLAY IRJENS_HEX(IRJJUTJENS_HEX, IRJJUTJENS) ;

assign Linot = -Li,
Einot = ~Ei;

bufifl(HighZ[5],none,none);
bufifl(HighZ[4],none,none);
bufifl{HighZ[3],none,none);
bufifl(HighZ[2],none,none);
bufifl(HighZ[1],none,none);
bufifl{HighZ[0],none,none);

endmodule

E-4.2 D Flip-flop withEnable Inputfor Data Loading

module D_FF(Q,D,EN,CLK);

input D,EN,CLK;
output Q;

reg Q;

always @(posedge CLK)
if (EN == 1)

73

Q = D;
else

Q = Q;

endmodule

E-4.3 D Flip-flop withData Loading Enable & ClearInput

module DFFJ?OSCLR(Q,D,EN,CLK,CLR);

input D,EN,CLK,CLR;
output Q;

reg Q;

always @(posedge CLK or posedge CLR)
if (CLR == 1)

Q = 0;
else if (EN == 1)

Q = D;

else

Q = Q;

endmodule

E-4.4 Hexadecimal Display

module HEXJJISPLAY (HEXJJUT, HEXJEN) ;

// HEXJJUT -> signals a-h of active low hex 7-segment display
// MSB = a, LSB = h (decimal point)

output [7:0] HEXJJUT;
input [3:0] HEXJEN;
reg [7:0] HEX OUT;

always @(HEXJEN)
case(HEX_IN)

4'b0001 : HEXJJUT = 8'blOOlllll
4'b0010 : HEXJJUT = 8'b00100101
4'bOOll : HEXJJUT = 8'bOOOOllOl
4'b0100 : HEXJJUT = 8'bl0011001
4'bOlOl : HEXJJUT = 8'b01001001
4'bOllO : HEXJJUT = 8'bOlOOOOOl
4'b0111 : HEXJJUT = 8'bOOOlllll
4'blOOO : HEXJJUT = 8'bOOOOOOOl
4'bl001 : HEXJJUT = 8'b00001001
4'bl010 : HEXJJUT = S'bOOOlOOOl
4'bl011 : HEXJJUT = 8'bll000001
4'bllOO : HEXJJUT = 8'bOllOOOll
4'bllOl : HEXJJUT = 8'blOOOOlOl
4'blllO : HEXJJUT = 8'bOllOOOOl
4'bllll : HEXJJUT = 8'bOlllOOOl
default : HEXJJUT = 8'bOOOOOOll

endcase

endmodule

74

E-5 Accumulator

E-5.1 Accumulator

module ACCUMULATOR (ACCUJJUT,ACCUJJUTJJEX, WBus, La, Ea, CLK,Lanot, Eanot, HighZ)

// La -> high to load data from WBus
// Ea ~> high to put accumulator content ot WBus

input La,Ea,CLK;
inout [7:0] WBus;

output Lanot,Eanot;

output [1:0] HighZ;
output [7:0] ACCUJJUT;
output [15:0] ACCUJJUT_HEX;
wire none;

tri [1:0] HighZ;
tri [7:0] WBus;

DJT ACCU0 (ACCUJJUT[0], WBus[0] , La, CLK)
DJFF ACCU1(ACCUJJUT[1],WBus[1],La,CLK)
DJT ACCU2 (ACCUJJUT[2], WBus [2], La, CLK)
DJT ACCU3(ACCUJJUT[3],WBus[3] ,La,CLK)
DJT ACCU4 (ACCUJJUT [4], WBus [4], La, CLK)
DJT ACCU5{ACCUJJUT [5], WBus [5], La, CLK)
DJTF ACCU6(ACCU_OUT[6],WBus[6],La,CLK)
DjFF ACCU7(ACCUJJUT[7],WBus[7],La,CLK)

bufifl(WBus[0],ACCUJJUT[0],Ea);
bufifl(WBus[1],ACCUJJUT[1],Ea);
bufifl(WBus[2],ACCUJJUT[2],Ea);
bufifl(WBus[3],ACCUJJUT[3],Ea);
bufif1(WBus[4],ACCUJJUT[4],Ea);
bufifl(WBus[5],ACCUJJUT[5],Ea);
bufifl(WBus[6],ACCUJJUT[6],Ea);
bufif1(WBus[7],ACCUJJUT[7],Ea);

HEXJJISPLAY ACCUJ3EX_1
(ACCUJJUT_HEX[15:8],ACCUJJUT[7:4]);

HEXJJISPLAY ACCU_HEX_2
(ACCUJJUT_HEX[7:0],ACCUJJUT[3:0]);

assign Lanot = -La,

Eanot = -Ea,

none = 0;

bufifl(HighZ[1],none,none);
bufifl(HighZ[0],none,none);

endmodule

E-5.2 D Flip-flop withEnable Inputfor Data Loading

module DJT (Q, D,EN,CLK);

input D,EN,CLK;
output Q;

reg Q;

always @(posedge CLK)
if (EN == 1)

Q = D;

else

Q = Q;

endmodule

75

E-5.3 Hexadecimal Display

module HEXJJISPLAY(HEXJJUT,HEX_IN);

// HEXJJUT -> signals a-h of active low hex 7-segment display
// MSB = a, LSB = h (decimal point)

output [7:0] HEX OUT;

input [3 0] HEX IN;

reg [7:0 HEXJJUT;

always 8(HEX IN)

case(HEX IN)

4 bOOOl : HEX OUT = 8'blOOlllll

4 bOOlO : HEXJJUT = 8'bOOlOOlOl

4 bOOll : HEX OUT = 8'bOOOOllOl

4 bOlOO : HEX OUT = 8'bl0011001

4 bOlOl : HEX OUT = 8'bOlOOlOOl

4 bOllO : HEXJJUT = 8'bOlOOOOOl

4 bOlll : HEXJJUT = 8'b00011111

4 blOOO : HEXJJUT = 8'bOOOOOOOl

4 blOOl : HEX OUT = 8'b00001001

4 blOlO : HEX OUT = 8'b00010001

4 blOll : HEX OUT = 8'bllOOOOOl

4 bllOO : HEX OUT = 8'bOllOOOll

4 bllOl : HEXJJUT = 8'blOOOOlOl

4 blllO : HEX OUT = 8'b01100001

4 bllll : HEX OUT = 8'bOlllOOOl

default : HEX OUT = 8'bOOOOOOll

endca se

endmodule

E-6 Adder/Subtracter

E-6.1 Adder/Subtracter

module ADDJ3UB(ADD_SUB_OUT, ADDj3UBJJUT_HEX,WBus,HighZ,
ACCU_OUT,B_REG_OUT,Su,Eu,Sunot,Eunot);

// Su -> subtraction operation enable bit, high to convert
// B Register output to 2's complement form
//

// Eu -> high to put arithmetic operation result on WBus
//

// ADDJSUBJJUT -> Adder/Subtracter's output, arithmetic
// operation result
//
// ACCUJJUT -> Accumulator's output, operand of arithmetic
// operation
//

// BJiEGJJUT -> B Register's output
//
// B -> temporary register to hold operand of arithmetic
// operation
// == BJLEGJJUT for addition operation
// == -BJSEGJJUT for subtration operation
// (added with 1 (Su) for 2's complement of BJtEGJJUT)

output [3:0] HighZ;
output [7:0] ADD_SUBJJUT, WBus;
output [15:0] ADDJ^UBJJUT_HEX;
output Sunot, Eunot;

input [7:0] ACCUJJUT, BJ3EGJJDT;
input Su, Eu;
reg [7:0] ADD SUB OUT,B;

76

wire none;

tri [3:0] HighZ;
tri [7:0] WBus;

always @ (ACCUJJUT or BJXEGJJUT or Su)
begin

if (Su)

begin B = ~(BJREGJJUT); end
else

begin B = BJREGJJUT; end
ADDJ5UBJJUT = ACCUJJUT + B + Su;

end

bufifl(WBus[0], ADD SUB OUT[0], Eu),

bufifl(WBus[l], add"_SUB~"out[1], Eu) ,

bufifl(WBus[2], add""sub""OUT[2], Eu),

bufifl(WBus[3], add"-SUB["OUT[3], Eu),

bufifl(WBus[4], ADD sub" OUT[4], Eu),

bufifl(WBus[5], add]"sub""OUT[5], Eu),

bufifl(WBus[6], ADD SUB "OUT[6], Eu),

bufifl{WBus[7], add""sub""OUT[7], Eu),

HEXJJISPLAY ADD_SUB_HEXJL
(ADDJSUBJJUT_HEX[15:8],ADD_SUBJJUT[7:4]

HEXJJISPLAY ADD_SUB_HEXJ2
(ADDJ3UBJJUT_HEX[7:0] , ADDJ3UBJJUT [3 : 0])

assign Sunot = -Su,
Eunot = -Eu,

none = 0;

bufifl(HighZ[3],none,none);
bufifl(HighZ[2],none,none);
bufifl(HighZ[1],none,none);
bufifl(HighZ[0],none,none);

endmodule

E-6.2 Hexadecimal Display

module HEXJJISPLAY (HEXJJUT, HEXJEN) ;

// HEXJJUT -> signals a-h of active low hex 7-segment display
// MSB = a, LSB = h (decimal point)

output [7:0] HEXJJUT;
input [3:0] HEX_IN;
reg [7:0] HEX OUT;

always @(HEX IN)
case(HEX IN)

4'bOOOl : HEX OUT = 8'blOOlllll

4'b0010 : HEX OUT = 8'bOOlOOlOl

4'bOOll : HEXJJUT = 8Tb00001101

4'b0100 : HEX OUT = 8'blOOllOOl

4'b0101 : HEX OUT = 8'bOlOOlOOl

4'b0110 : HEXJJUT = 8'bOlOOOOOl

4'b0111 : HEX OUT = 8'bOOOlllll

4'bl000 : HEXJJUT = 8'bOOOOOOOl

4'bl001 : HEXJJUT = 8'b00001001

4'bl010 : HEXJJUT = 8'bOOOlOOOl

4'bl011 : HEX OUT = 8'bll000001

4'bll00 : HEX OUT - 8'b01100011

4'bll01 : HEX OUT - 8'bl0000101

4'blllO : HEXJJUT = 8'bOllOOOOl

4'bllll : HEX OUT = 8'bOlllOOOl

default : HEX OUT - 8'b00000011

endcase

endmodule

77

E-7 B Register

£-7.7 B Register

module BJREGISTER {BJREGJJUT, BJREG_OUT_HEX, WBus, Lb, CLK, Lbnot, HighZ)

// Lb -> high to load data from WBus

output [1:0] HighZ;
output [7:0] BJREGJJUT;
output [15:0] BJREG_OUT_HEX;
output Lbnot;
input [7:0] WBus;
input Lb, CLK;
wire none;

tri [1:0] HighZ;

DJ?F BJREGJ) (BJREGJJUT [0] ,WBus[0] ,Lb, CLK) ;
D_FF BJREGjl (BJREGJJUT [1], WBus [1],Lb,CLK);
DJ?F B_REG_2 (BJREGJJUT [2] ,WBus[2] , Lb, CLK) ;
DJ?F BJREGJ3 (BJREGJJUT [3], WBus[3] , Lb, CLK);
D_FF BJREGJ4 (BJREGJJUT [4] ,WBus[4] , Lb, CLK) ;
DJ?F BJREGJ5 (BJREGJJUT [5], WBus [5] , Lb, CLK);
DJTF BJREGJ5 (BJREGJJUT [6], WBus[6] , Lb, CLK);
D_FF BJREGJ7 (BJREGJJUT [7] ,WBus[7] , Lb, CLK) ;

HEXJJISPLAY BJREGJ4EXJL
{BJREGJJUT_HEX[15:83 , BJREGJJUT [7 : 4]) ;

HEXJJISPLAY BJREG_HEX_2
(BJREGJJUT_HEX[7:0],BJREGJJUT[3:0]);

assign Lbnot = -Lb,
none = 0;

bufifl{HighZ[1],none,none);
bufifl(HighZ[0],none,none);

endmodule

E-7.2 D Flip-flop withEnable Inputfor Data Loading

module DJFF(Q,D,EN,CLK);

input D,EN,CLK;
output Q;
reg Q;

always @(posedge CLK)
if {EN == 1)

Q = D;

else

Q = Q;

endmodule

E-7.3 HexadeciamlDisplay

module HEXJJISPLAY (HEXJJUT, HEXJEN) ;

// HEXJJUT -> signals a-h of active low hex 7-segment display
// MSB = a, LSB = h (decimal point)

output [7:0] HEXJJUT;
input [3:0] HEXJIN;
reg [7:0] HEX OUT;

78

always @(HEX IN)
case(HEX IN)

4'b0001 : HEXJJUT = 8 blOOlllll

4*b0010 : HEX OUT = 8 bOOlOOlOl

4'b0011 : HEX OUT = 8 bOOOOllOl

4'b0100 : HEX OUT = 8 blOOllOOl

4'b0101 : HEXJJUT = 8 bOlOOlOOl

4'b0110 : HEX OUT = 8 bOlOOOOOl

4'b0111 : HEXJJUT = 8 bOOOlllll

4'blOOO : HEX OUT = 8 bOOOOOOOl

4'bl001 : HEX OUT = 8 bOOOOlOOl

4'bl010 : HEXJJUT = 8 bOOOlOOOl

4'blOll : HEX OUT = 8 bllOOOOOl

4'bll00 : HEXJJUT = 8 bOllOOOll

4'bllOl : HEX OUT = 8 blOOOOlOl

4'blllO : HEX OUT = 8 bOllOOOOl

4'bllll : HEXJJUT = 8 bOlllOOOl

default : HEX OUT = 8 bOOOOOOll

endcase

endmodule

E-8 Output Register

E-8.1 Output Register

module OUTPUTJREGISTER(OUTJREG,OUTJREG_HEX,WBus, Lo, CLK, Lonot)

// Lo -> high to load data from WBus

output [7:0] OUT REG;
output [15:0] OUTJREG_HEX
output Lonot;
input [7:0] WBus;
input Lo, CLK;

DJfF OUTJREGJ) (OUTJREG[0] ,WBus[0] Lo,CLK)

D FF OUT REG 1(OUT REG[1] ,WBus[l] Lo,CLK)
D FF OUT REG 2(OUT REG[2] ,WBus[2] Lo,CLK)

D FF OUT REG 3{OUT REG[3] ,WBus[3] Lo,CLK)

DJ-F OUTJREG_4(OUTJREG[4] WBus[4] Lo,CLK)

D FF OUT REG 5(OUT REG[5] ,WBus[5] Lo,CLK)

D FF OUT REG 6{OUT REG[6] WBus[6] Lo,CLK)
D FF OUT REG 7(OUT REG[7] WBus[7] L0,CLK)

HEXJJISPLAY OUTJIEXJL
(OUTJREG_HEX[15:8],OUTJREG[7:4]

HEXJJISPLAY OUT_HEXJ2
(OUTJREG_HEX[7:0],OUTJREG[3:0])

assign Lonot = -Lo;

endmodule

E-8.2 D Flip-flop with Enable Inputfor Data Loading

module DJ^F(Q,D,EN,CLK) ;

input D,EN,CLK;
output Q;

reg Q;

always @(posedge CLK)
if (EN == 1)

79

Q = D;

else

Q = Q;

endmodule

E-8.3 Hexadecimal Display

module HEXJJISPLAY (HEXJJUT, HEXJEN) ;

// HEXJJUT -> signals a-g of hex 7-segment display
// MSB = a, LSB = g

output [6:0] HEXJJUT;
input [3:0] HEXJEN;
reg [6:0] HEXJJUT;

always @(HEXJEN)
case(HEXJEN)

4'bOOOl : HEXJJUT = 7'b0110000
4'b0010 : HEXJJUT = 7'bll01101
4'b0011 : HEXJJUT = 7'bllll001
4'b0100 : HEXJJUT = 7'b0110011
4'bOlOl : HEXJJUT = 7'bl011011
4'bOllO : HEXJJUT = 7'bl011111
4'b0111 : HEXJJUT = 7'blllOOOO
4'blOOO : HEXJJUT = 7'blllllll
4'bl001 : HEXJJUT = 7'bllllOll
4'blOlO : HEXJJUT = 7'blll0111
4'blOll : HEXJJUT = 7'b0011111
4'bll00 : HEXJJUT = 7'bl001110
4'bllOl : HEXJJUT - 7'b0111101
4'blllO : HEXJJUT = 7'bl001111
4'bllll : HEXJJUT - 7'bl000111
default : HEXJJUT = 7'bllllllO

endcase

endmodule

E-9 Controller/Sequencer (Instruction Decoder, Ring Counter & Control

Matrix)

E-9.1 Controller/Sequencer

module CONTROLLERJ^EQUENCER
(Cp,Ep,Lm,CE,Li,Ei,La,Ea,Su,Eu,Lb,Lo,LDAnot,ADDnot,SUBnot,OUTnot,HLTnot,
HLT,HighZ,BLANKJJISPLAY,IRJOUTJINS, Tnot,CLK,CLR);

output Cp, Ep, Lm, CE, Li, Ei,
LDAnot, ADDnot, SUBnot,

output [6:1] Tnot;
output [5:0] HighZ;
output [15:0] BLANKJJISPLAY;
input CLK, CLR;
input [3:0] IRJJUTJENS;
wire lda, ADD, SUB, OUT, none;

wire [6:1] T;
tri [5:0] HighZ;

La, Ea, Su, Eu, Lb, Lo,

OUTnot, HLTnot, HLT;

RINGJJOUNTER RC(T,Tnot,CLK,CLR);
INSTRUCTIONJJECODER ID(LDA,ADD,SUB,OUT,HLT,IRJJUT_INS)
CONTROL_MATRIX CM(Cp,Ep,Lm,CE,Li,Ei,La,Ea,Su,Eu,Lb,Lo,

LDA,ADD,SUB,OUT,HLT,T,CLK,CLR);

80

assign BLANKJJISPLAY = 16'hffff,
LDAnot = -LDA,

ADDnot = -ADD,

SUBnot = -SUB,

OUTnot = -OUT,

HLTnot = -HLT,

none = 0;

bufifl(HighZ[5],none,none);
bufifl(HighZ[4],none,none);
bufifl(HighZ[3],none,none);
bufifl(HighZ[2],none, none) ;
bufifl{HighZ[1],none, none);
bufifl(HighZ[0],none, none);

endmodule

E-9.2 Instruction Decoder

module INSTRUCTIONJJECODER(LDA, ADD, SUB, OUT, HLT, IRJJUTJENS)

// associate control line of each routine with their
// corresponding opcode

output LDA, ADD, SUB, OUT, HLT;
input [3:0] IRJJUTJENS;

assign LDA = (IR_OUT_INS == 4'bOOOO)?
ADD = (IRJJUTJENS == 4'b0001)?
SUB = (IRJJUTJENS == 4'b0010)?
OUT = (IRJJUTJENS == 4'blllO)?
HLT = (IRJJUTjtNS == 4'bllll)?

endmodule

E-9.3 Ring Counter

l'bl :; 1'bO,

l'bl :: 1'bO,

l'bl :: 1'bO,
l'bl ;: 1'bO,

l'bl :: 1'bO;

module RINGj:OUNTER(T, Tnot, CLK, CLR);

// CLR high -> Ring Counter resets to 000001
//
// Ring Counter shifts left at each negative
// edge of CLK

output [6:1] T, Tnot;
input CLK, CLR;

JKFF_Qnot_NEGCLKJ?OSCLR RC1
(Tnot[1],T[1],Tnot[6],T[6],CLK,CLR);

JKFFJJ.no tJJEGCLKjPOSCLR RC2
(T[2],Tnot[2],T[l],Tnot[1],CLK,CLR);

JKFFJJ.notJJEGCLKJ>OS CLR RC3
(T[3],Tnot[3],T[2],Tnot[2],CLK,CLR);

JKFF_Qnot_HEGCLKj?OSCLR RC4
(T[4],Tnot[4],T[3],Tnot[3],CLK,CLR);

JKFFJJnotJJEGCLKjPOSCLR RC5
(T[5],Tnot[5],T[4],Tnot[4],CLK,CLR);

JKFFJJnotJIEGCLKjPOSCLR RC6
(T[6],Tnot[6],T[5],Tnot[5],CLK,CLR);

endmodule

E-9.4 Control Matrix

module CONTROL_MATRIX(Cp, Ep, Lm, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo,
LDA, ADD, SUB, OUT, HLT, T, CLK, CLR) ;

output Cp, Ep, Lm, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo;

81

input LDA, ADD, SUB, OUT, HLT, CLK, CLR;
input [6:1] T;

assign Cp = (T[2])? l'bl : 1'bO,

Ep = (T[l])? l'bl : 1'bO,

Lm = (T[l] || (LDA SS T[4]) [| (ADD SS T[4]) || (SUB SS T[4]))?
l'bl : 1'bO,

CE - (T[3] || (LDA SS T[5]) || (ADD SS T[5]) || {SUB SS T[5]))?
l'bl : 1'bO,

Li = (T[3])7 l'bl : 1'bO,

Ei = ((LDA SS T[4]) || (ADD SS T[4]) || (SUB SS T[4]))?
l'bl : 1'bO,

La = ({LDA SS T[5]) || (ADD SS T[6]) II (SUB SS T[6]))?
l'bl : 1'bO,

Ea = (OUT SS T[4])? l'bl : 1'bO,

Su = (SUB SS T[6])? l'bl : 1'bO,

Eu = {(ADD 55 T[6]) 1| (SUB SS T[6]))? l'bl : 1'bO,

Lb = ({ADD SS T[5]) || (SUB SS T[5]))? l'bl : 1'bO,

Lo = (OUT SS T[4])? l'bl : 1'bO;

endmodule

E-9.5 Positive-edge-triggered JK Flip-flop with ActiveHigh Clear

module JKFF(Q,Qnot,J,K,CLK,CLR);

input J,K,CLK,CLR;
output Q,Qnot;

reg Q,Qnot;

always @(negedge CLK or posedge CLR)
begin

if (CLR)

begin
Q = 1'bO;

Qnot = ~Q;

end

else if ((J,K) == 2'bOO)
begin

Q = Q;
Qnot - ~Q;

end

else if ({J,K} == 2'b01)

begin
Q - 1'bO;

Qnot = ~Q;

end

else if ((J,K) == 2'blO)

begin
Q = l'bl;

Qnot = ~Q;

end

else if ((J,K) == 2'bll)

begin
Q = -Q;

Qnot = ~Q;

end

end

endmodule

82

E-10 Mode-Select Switches, De-bouncers & Clock Buffer

E-10.1 De-bouncers

II STARTJHJ3AR DIP switch -> START active low
// CLEAR active high
// MANUALJAUTO DIP switch -> MANUAL active low
// AUTO active high
// **DIP switch gives logic low when pressed*-*

//
// LOW S HIGH SPDT switch -> LOW active low
// HIGH active low

//
// DB TEMPI -> clock signal in MANUAL mode
// DBJTEMP2 -> clock signal in AUTO mode

module DEBOUNCERS(CLK,CLR,CLKnot,CLRnot,BLANKJJISPLAY,
STARTj;LEAR,LOW,HIGH,MANUALJAUTO,HLT,rawrawCLK)

output CLK, CLKnot, CLRnot;
output [15:0] BLANKJJISPLAY;
input START_CLEAR, LOW, HIGH, MANUAL_AUTO, HLT,

rawrawCLK;

inout CLR;

wire [25:0] rawCLK;
wire CLRnot, HI_LOnot, HIJC.O, MANUALJJUT,

AUTOJJUT, DBJCEMP1, DBJTEMP2;

CLEARJ3TART DB1(CLR,START_CLEAR);
SINGLE_STEP DB2(HIJ,0,LOW,HIGH);
AUTO_MANUAL DB3(MANUALJJUT,AUTOJJUT,MANUAL_AUTO);
CLOCK DB4(rawCLK,HLT,rawrawCLK,CLR);

and DB5(DB_TEMPl,-HLT,HI_LO,MANUALJJUT),
DB6(DB_TEMP2,AUTOJJUT,rawCLK[25]);

or DB7(CLK,DBJTEMPl,DBJTEMP2) ;

assign BLANKJJISPLAY = 16'hffff,
CLKnot = -CLK,

CLRnot - -CLR;

endmodule

E-10.2 Clear-Start De-bouncer

module CLEARESTART(CLR, STARTJJLEAR);

output CLR;
input STARTJ2LEAR;
wire CLRnot, STARTJ2LEARJSOT;

not gl(STARTJ3LEARJSOT, STARTJZLEAR);

SRjLATCH CS(CLRnot, CLR, STARTJZLEAR, STARTJZLEARJTOT)

endmodule

E-10.3 Single-Step De-bouncer

module SINGLE_STEP(HIJLO, LOW, HIGH);

output HIJjO;
input LOW, HIGH;
wire HIJjOnot;

SR LATCH SS(HI LOnot, HI LO, LOW, HIGH)

83

endmodule

E-10.4 Manual-Auto De-bouncer

module AUTO_MANUAL{MANUALJJUT, AUTOJJUT, MANUALJiUTO);

output MANUALJJUT, AUTOJJUT;
input MANUALJUJTO;
wire MANUAL_AUTO_NOT;

not gl(MANUAL_AUTO_NOT, MANUALJAUTO);

SRJLATCH
AM(MANUALJJUT, AUTOJJUT, MANUALJAUTO, MANUAL_AUTO_NOT)

endmodule

D-10.5 Clock Buffer

module CLOCK(rawCLK,HLT,rawrawCLK,CLR);

output[25:0] rawCLK;
input HLT, rawrawCLK, CLR;

HLT,rawrawCLK,CLR)

HLT,rawCLK[0],CLR)

HLT,rawCLK[l],CLR)

HLT,rawCLK[2],CLR)

HLT,rawCLK[3],CLR)

HLT,rawCLK[4],CLR)

HLT,rawCLK[5],CLR)

HLT,rawCLK[6],CLR)

HLT,rawCLK[7],CLR)

HLT,rawCLK[8],CLR)

-HLT,rawCLK[9],CLR);

-HLT,rawCLK[10],CLR)

-HLT,rawCLK[11],CLR)

-HLT,rawCLK[12],CLR)

-HLT,rawCLK[13],CLR)

-HLT,rawCLK[14],CLR)

-HLT,rawCLK[15],CLR)

-HLT,rawCLK[16],CLR)

-HLT,rawCLK[17],CLR)

-HLT,rawCLK[18],CLR)

-HLT,rawCLK[19] ,CLR)

~HLT,rawCLK[20],CLR)

~HLT,rawCLK[21],CLR)

-HLT,rawCLK[22],CLR)

-HLT,rawCLK[23],CLR)

~HLT,rawCLK[24],CLR)

JKFF Q POSCLK POSCLR ClockOO (rawCLK[0], -HLT,-

JKFFJJ.jPOSCLKJPOSCLR ClockOl (rawCLK[1], -HLT,~

JKFF Q POSCLK POSCLR Clock02 (rawCLK[2], -HLT,-

JKFF Q POSCLK POSCLR Clock03 (rawCLK[3], -HLT,-

JKFFJJ. POSCLK POSCLR Clock04 (rawCLK[4], -HLT,~

JKFF Q POSCLK POSCLR Clock05 (rawCLK[5], -HLT,-

JKFF Q POSCLK POSCLR Clock06 (rawCLK[6], -HLT,-

JKFFJJ.J'OSCLKJ'OSCLR Clock07 (rawCLK[7], -HLT,-

JKFF Q POSCLK POSCLR ClockOS (rawCLK[8], -HLT,-

JKFF Q POSCLK POSCLR Clock09 (rawCLK[9], -HLT,-

JKFFJJ.JPOSCLK POSCLR ClocklO (rawCLK[10] -HLT,

JKFF Q POSCLK POSCLR Clockll (rawCLK[ll] -HLT,

JKFFJJJ'OSCLKJ'OSCLR Clockl2 (rawCLK[12] -HLT,

JKFF Q POSCLK POSCLR Clockl3 (rawCLK[13] -HLT,

JKFF Q POSCLK POSCLR Clockl4 [rawCLK[14] -HLT,

JKFF Q POSCLK POSCLR Clockl5 {rawCLK[15] -HLT,

JKFFJJ.J>OSCLKJ>OSCLR Clockl6 (rawCLK[16] -HLT,

JKFF Q POSCLK POSCLR Clockl7 (rawCLK[17] -HLT,

JKFFJJJPOSCLK POSCLR Clockl8 (rawCLK[18] -HLT,

JKFF Q POSCLK POSCLR Clockl9 (rawCLK[19] -HLT,

JKFF Q POSCLK POSCLR Clock20 (rawCLK[20] -HLT,

JKFF Q POSCLK POSCLR Clock21 (rawCLK[21] -HLT,

JKFFJJ.JJOSCLK POSCLR Clock23 (rawCLK[22] -HLT,

JKFF Q POSCLK POSCLR Clock24 (rawCLK[23] -HLT,

JKFFJ2JOSCLK_POSCLR Clock25 (rawCLK[24] -HLT,

JKFFJ2J>OSCLK_POSCLR Clock26 (rawCLK[25] -HLT,

endmodule

E-10.6 Active Low SR Latch

module SRJLATCH(Q,Qnot,Snot, Rnot)

output Q, Qnot;

input Snot, Rnot;

or gl(Q,-Snot,-Qnot),

g2(Qnot,-Rnot,~Q);

endmodule

84

E-10.7 Positive-edge-triggeredJK Flip-flop withActive High Clear

module JKFFJJJPOSCLKJPOSCLR(Q,J,K,CLK, CLR)j

input J,K,CLK,CLR;
output Q;

reg Q;

always @(posedge CLK or posedge CLR)
begin

if (CLR) Q = 1'bO;
else if {{J,K} = 2'b00) Q = Q;

else if {{J,K} == 2'b01) Q = 1'bOj

else if ({J,K} == 2'blO) Q = l'blj
else if ({J,K| == 2'bll) Q = ~Q;

end

endmodule

85

APPENDIX F

PIN ASSIGNMENTS, PIN INTERCONNECTIONS, AND INPUT &

OUTPUT DEVICE UTILIZATION OF THE MODULAR SAP-1

PROTOTYPE

Abbreviations

WW - Wire through wire wrap

IDC - IDC socket & ribbon cable through pin header

F-l Program Counter

Signal
Type

Signal Pin
Expan.

Hole

Input/Output Device
/

Interconnection

Connector

Input CLR 1 12 MAX SW2[0] WW

Input CLK 2 14 From CLK of Clock Buffer
WW through

extra PCB

Input Cp 4 15 From Cpof ContfSeq WW

Input Ep 84 13 From Ep of Cont/Seq WW

Output

WBusf7] 49 49

, WBus PCB expansion IDC through
extra PCB

WBus[6] 50 50

WBus[51 51 51

WBus[4] 52 52

WBus[3] 54 53

WBus[2] 55 54

WBusfll 56 55

WBusfO] 57 56

Output

BLANK DISPLAY[7] 58 -

MAX_DIGIT (MSD) (Routed on
PCB)

BLANK DISPLAY[6] 60 -

BLANK DISPLAY[5] 61 -

BLANK DISPLAY[4] 63 -

BLANK DISPLAY[3] 64 -

BLANK DISPLAY[2] 65 -

BLANK DISPLAY]1] 67 -

BLANK DISPLAYfO] 68 -

Output.

PC HEX[7] 69 -

MAXjDIGIT (LSD) (Routed on
PCB)

PC HEX[6J 70 -

PC UEXfSJ .73 -

PC BEX(4J 74 -

PC HEX[3J .76 -

PC HEX[2] 75 -

PC HEXfl] 77 -

PC HEXfO] 79 -

Output Cpnot 81 - LEDD1 WW

Output Epnot 80 - LED D9 WW

86

F-2 MAR & 2 to 1 Multiplexer

Signal
Type

Signal Pin
Expan.

Hole

Input/Output Device
/

Interconnection

Connector

Input CLK 2 14 From CLK of Clock Buffer
WWthrough

extra PCB

Input Lm 4 15 From Lmof Cont/Seq WW

Input RUN PROG 6 17 From RUN PROGofRAM WW

Input
ADDR IN[2] 18 26 MAX SW1[7]

WWADDR INfl] 20 27 MAX SW1[6]

ADDR INfOJ 21 28 MAX SW1[5]

Input

WBus[7] 49 49

WBus PCB expansion
IDC through

extra PCB

WBusf6J 50 50

WBusf.5] .51 51

WBus[4], 52 ' ,52
WBus[3] 54 53

WBus[2] 55 54 ,

WBus[l] 56 55

WBusfOJ 57 56

Output

MUX 0UT[3J 35 39

ToMy-Yj^t/fofRAM IDC
MUX 0UT[2] 36 40

MUX OUTfl] 37 41

MUX OUTfO] 39 42

Output

BLANK DISPLAY[7] 58 -

MAXjDIGIT (MSD) , (Routed on
PCB)

BLANK DISPLAY[6] 60 -

BLANK DISPLAYS] 61 -

BLANK DISPLAY^] 63 -

BLANK D1SPLAY[3] 64 . -'

BLANK DISPLAX[2J 65 -

BLANK DISPLAYfl] 67 .

, BLANK DISPLAYfOl 68 -

Output

MUX OUT HEX[7] 69 -

MAX_DIGIT (LSD) (Routed on
PCB)

MUX OUT HEX[6] 70 -

MUX OUT HEX[5] 73 -

MUX OUT HEX[4] 74 -

MUX OUT HEX[3] 76 -

MUX OUT HEX[2] 75 -

MUX OUT HEXfl] 77 -

MUX OUT HEXfOJ 79 -

Output Lmnot 81 - LEDD1 WW

87

F-3 8x8 RAM

Signal
Type

Signal Pin
Expan.

Hole

Input/Output Device
/

Interconnection

Connector

Input READ WRITE. 4 15 MAX PB1 WW

Input RUN PROG 6 17 MAX SW2[7] WW

Input CE 84 13 FromCEofCont/Seq WW

Input

DATA IN[7] 11 21 MAX SW[7]

WW

DATA INf6J 12 22 MAX SW[6]

DATA INf51 15 23 MAX SW[5]
DATA INf4] 16 24 MAX SW[4]
DATA IN[3] 17 25 MAX SW[3]
DATA IN[2] 18 26 MAX SW[2]

DATA INfl] 20 27 MAX_SW[1]
DATA INfO] 21 28 MAX SW[0]

Input
WX OUTf2J 36 40.

¥romMUX OUTofMAR
&MUX

IDCMUX OUTflJ 37 41

MUX OUTfOJ 39 42

Output

WBus[7] 49 49

WBus PCB expansion
IDC through

extra PCB

WBusf6] 50 50

WBusf5] 51 51

WBusf4] 52 52

WBusf3] 54 53

WBusf2] 55 54

WBusfl] 56 55

WBusfOJ 57 56

Output

RAM DISPLAY HEXfl5] 58 -

, MAXjDIGIT (MSD) (Routed on
PCB)

RAM DISPLAY HEX[14] ,60 -

RAM DISPLAY.HEXfl3] 61 -

RAM DISPLAY HEXfJ2J ,63, -

RAM DISPLAY HEXfll], 64 -

RAM DISPLAY HEXflO] .65 ' ' -

RAM DISPLAY HEX[9] 67 -

RAM DISPLAY HEXfS] 68 -

Output

RAM DISPLAY HEXf7] 69 -

MAX_DIGIT (LSD) (Routed on
PCB)

RAM DISPLAY HEXf6] 70 -

RAM DISPLAY HEX[5] 73 -

RAM DISPLAY HEXf4] 74 -

RAM DISPLAY HEXf3] 76 -

RAM DISPLAY HEXf2] 75 -

RAM DISPLAY HEXfl] 77 -

RAM DISPLAY HEXfO] 79 -

Output CEnof 80 - LEDD9 WW

F-4 Instruction Register

Signal
Type

Signal Pin
Expan.

Hole

Input/Output Device
/

Interconnection

Connector

Input CLR 1 12 MAX SW2[0] WW . .

Input CLK 2 14 From CLK of Clock Buffer
WW through

extra PCB

Input Li 4 15 Fromi/ofCont/Seq WW

Input Ei 84 13 FromfiofCont/Seq WW

Output

IR OUT INSf3J 30 35

To IRipUTJNS of
Cont/Seq

IDC
IR OUT INSf2] 31 36

IR OUTINSfl] 33 37

IR OUT 1NS]01 34 38

Inout

WBusf7] 49 49

WBus PCB expansion
IDC through

extra PCB

WBus]6] 50 50

WBus]5] 51 51

WBusf4] 52 52

WBusf3] 54 53

WBusf2] 55 54

WBusfl] 56 55

WBusfOJ 57 56

Output

IR OUT INS HEXf7] 58 -

MAX_DIGIT (MSD) (Routed on
PCB)

IR OUT-INS HEX]6] 60 -

IR OUT INS HEXfS] 61 -

IR OUT INS HEX]4] 63 -

IR. OUT INS HEX]3] 64 -

IROUT INS HEX[2] 65 _

IR OUT INS HEXfl] 67 -

IR OUT INS HEXfO] 68 -

Output

IR OUT ADDR HEXf7] 69 -

MAX_DIGIT (LSD) (Routed on
PCB)

IR OUT ADDR HEX]6] 70 -

IR OUT ADDR HEX]5] 73 -

IR OUT ADDR HEX[4] 74 -

IR OUT ADDR HEX]3] 76 -

IR OUT ADDR HEX]2] 75 -

IR OUT ADDR HEX]1] 77 -

IR OUT ADDR HEXfOJ 79 -

Output Linot 81 - LEDD1 WW

Output Einot 80 - LEDD9 WW

89

F-5 Accumulator

Signal
Type

Signal Pin
Expan.

Hole

Input/Output Device
/

Interconnection

Connector

Input CLK 2 14 From CLK of Clock Buffer
WW through

extra PCB

Input La 4 15 From La of Cont/Seq WW

Input Ea 84 13 From£aofConi/Seq WW

Inout

WBusf7] 49 49

WBus PCB expansion
IDC through

extra PCB

WBusf6] 50 50

WBusf5] 51 51

WBus[4] 52 52

WBusf3] 54 53

WBusf2] 55 54

WBusfl] 56 55

WBusfO] 57 56

Output

AC<m0UTf7] >-,..3fli.... .35;. .

':^^Q^mujourof-'. ':
Adder/Subjracter

IDC

• mcuomm -^ • Wk:} Y/:$T"»:
ACCU ODff5] - ...m^ 37. ;

*- Ammwffi-':« ,<^34l;.t ^-3«r^

a£cu ou$fn.,: • :3&:J : • ». -1

ACCBiQmP? ";s* r-'S&h ••-•«wr*

i • jamouTfm.:: •. -M-v -;. •**-:•'.
; ACCU OMTfOf "::'V35T: •^%2i **

Output

ACCU OUT HEXfl5] 58 -

MAX_DIGIT(MSD)

ACCU OUT HEXfl4] 60 -

ACCU OUT HEXfl3] 61 -

ACCU OUT HEXfl2] 63 - (Routed on
ACCU OUT HEXfl1] 64 - PCB)
ACCU OUT HEXflO] 65 -

ACCU OUT HEXf9] 67 -

ACCU OUT HEXfS] 68 -

Output

ACCU OUT HEXf7] 69 -

MAX_DIGIT(LSD)

ACCU OUT HEX]6] 70 -

ACCU OUT HEXf5] 73 - .

ACCU OUT HEXf4] 74 - (Routed on
ACCU OUT HEX{3]_ 76 - -PCB)
ACCU OUT HEXf2] 75 - 1

ACCU OUT HEXfl] , 77 -

ACCU OUT HEXfO] 79 _

Output Lanot 81 - LEDD1 WW

Output Eanot 80 -
LEDD9 WW

90

F-7 B Register

Signal
Type

Signal Pin
Expan.

Hole

Input/Output Device
/

Interconnection

Connector

Input CLK 2 14 From CLK of Clock Buffer
WW through

extra PCB

Input Lb 4 15 From Lb of Cont/Seq WW

Input

WBusf7] 49 49

WBus PCB expansion
IDC through

extra PCB,

WBusf6] 50 50

WBusfS] 51 51

WBus[4] 52 5,2
WBusf3] 54 53

WBusf2] 55 54

WBusfl] 56 55

WBusfO] 57 56

Output

B REG OUTf7] 11 21

To 5 REG OUT of

Adder/Subtracter
IDC

B REG OUTf6] 12 22

B REG OUTf5] 15 23

B REG OUT[4] 16 24

B REG OUT[3] 17 25

B REG OUT[2] 18 26

B REG OUTfl] 20 27

B REG OUT]0] 21 28

Output

B REG OUT HEXfl5f 58

MAXjDIGIT (MSD) (Routed on
PCB)

B REG OUT HEXfl4], 60 -

B REG OUT HEXfl3] 61 -

B REG OUT HEXfl2] 63 -

B REG OUT HEXfl1] 64 -

B REG OUT HEXflO] 65 -

B REG OUT HEX[9] 67 -

B REG OUT HEX]8] 68 -

Output

B REG OUT HEX]7] 69 -

MAXjOIGIT (LSD) (Routed on
PCB)

B REG OUT HEXf6] 70 -

B REG OUT HEXf5] 73 -

B REG OUT HEXf4] 74 -

B REG OUT HEXf3] 76 -

B REG OUT HEXf2] 75 -

B REG OUT HEXfl] 77 -

B REG OUT HEXfO] 79 -

Output Lbnot 81 - LEDD1 WW

92

F-S Output Register

Signal
Type

Signal Pin
Expan.

Hole

Input/Output Device
/

Interconnection

Connector

Input CLK . 2 14 From CLK of Clock Buffer
WW through

extra PCB

Input Lo 4 15 From Lo of Cont/Seq WW

Input

WBusf7] 49. 49

WBus PCB expansion
IDCthrough

extraPCB

WBusf6] . 50 50

WBusf5] 51 51

WSiis[4] , 52 52 ,
WBusf3] .54 . 53

WBusf2] 55 54

WBusflJ .56 55

WBusfOJ 57 56

Output

OUT REG HEXfl5] 58 -

MAXjOIGIT (MSD) (Routed on
PCB)

OUT REG HEX]14] 60 -

OUT REG HEX]13] 61 -

OUT REG HEXfl2J 63 -

OUT REG HEXfllJ 64 -

OUT REG HEXflO] 65 -

OUT REG HEX[9] 67 -

OUT REG HEXfS] 68 -

Output

OUT REG HEXfl] .69 -

MAX_DIGIT(LSD) (Routed oh
PCB)

OUT MG.HEXf6], 70 -

OUT REG HEXf5J 73 -

OUT REG HEXf4] 74 -

OUT REG HEX[3] 76 -

OUT REG HEXf2] 75 -.

OUT REG HEXfl] , : 77 -

OUT. REG HEXfOJ J 79 • _

Output Lonot 81 - LEDD1 WW

93

F-9 Controller/Sequencer (Instruction Decoder, Ring Counter & Control

Matrix)

Signal
Type

Signal Pin
Expan.

Hole

Input/Output Device
/

Interconnection

Connector

Input CLR 1 12 From CLR ofDe-bouncers WW

Input CLK 2 14 From CLK of Clock Buffer
WW through

extra PCB

Input

IR OUT INS]3J 30 35

From IRzPUTJNS of
InstructionRegister IDC

IR..OUT. INSf2] 31 36

IR OUT INSfl] 33, 37

IR OUT INSfO] 34 - 38

Output HLT 51 51

To HLT of Mode-Select

Switches, De-bouncers, and
Clock Buffer

WW

Output

Cp 9 19 To Cp ofProgram Counter

WW

Ep 10 20 To Ep ofProgram Counter

Lm 11 21 To Lm of MAR & MUX

CE 12 22 To CE ofRAM

Li 15 23 To Li ofInstruction Register

Ei 16 24 • ToEi of Instruction Register
La 17 25 To La of Accumulator

Ea 18 26 To Ea ofAccumulator

Su 20 27 • To Su of Adder/Subtracter

Eu 21 28 To £wofAdder/Subtracter

Lb 22 29 ToLbof B Register
Lo 24 30 To Lo of Output Register

Output

Tnotf6] 44 45 LEDD7

WW

Tnot[5] 45 46 LEDD6

Tnot[4] 46 47 LEDD5

Tnot[3] 48 48 LEDD3

Tnot[2] 49 49 LEDD2

Tnotfl] 50 50 LEDD1

Output'

HLTnot -52 52 LED D13

WW

OUTnot 54 53, ' LEDD12

SUBnot 55 ' 54 LED Dll

ADDnot 56 55 LED D10. ,

LDAnot 57 56 LEDD9

Output

BLANK DISPLAYf15] 58 -

MAXjOIGIT (MSD) (Routed on
PCB)

BLANK DISPLAYfU] 60 -

BLANK DISPLAYfl3] 61 -

BLANK DISPLAYfU] 63 -

BLANK DISPLAYfU] 64 -

BLANK DISPLAY]10] 65 -

BLANK DISPLAYf9] 67 _

BLANK DISPLAYf8] 68 -

Output

BLANK DISPLAYf7] 69 -

MAX_DIGIT(LSD) (Routed on
PCB)

BLANK D1SPLAY[6] 70 -

BUNK DISPLAYfS] "73 -

BLANK DISPLAY[4] 74 , -

BLANK DISPLAYf3] 76 -

BLANK DISPLAYf2j 75 -

BLANK DISPLAYfl] 11 -

BLANK DISPLAYfO] 79 -

94

F-10 Mode-Select Switches, De-bouncers & Clock Buffer

Signal
Type

Signal Pin
Expan.

Hole

Input/Output Device
/

Interconnection

Connector

Input START CLEAR 33 37 MAX SW[0I WW

Input
LOW 35 39 SPDT switch on extra

veroboard
WW

HIGH 36 40

Input MANUAL AUTO 37 41 MAX SW1[7] WW

Input HLT 39 42 From#LrofCont/Seq WW

Input rawrawCLK 83 - On-board oscillator (Routed on
PCB)

Output CLR 31 36 ToCiflofCont/Seq WW

Output CLK . 30 35 To CLKPCB expansion WW through
extra PCB

Output

BLANK DISPLAYf15] 58 -

MAXjDIGIT (MSD) (Routed on
PCB)

BLANK DISPLAYf14] 60 -

BLANK DISPLAYf13] 61 -

BLANK DISPLAY]12] 63 -

BLANK DISPLAYfU] 64 -

BLANK DISPLAYflO] 65 -

BLANK DISPLAYf9] 67 -

BLANK DISPLAYf8] 68 -

Output

BLANK DISPLA7{7] 69 -

MAX_DIGIT(LSD) (Routed on
PCB)

BLANK DISBLAXf6] . 70 . -

.BLANK DISPLAYS]. 73 _

BLANKDJSPLAY]4] . 74 -

BLANK DISPLAY]3] 76 -

BLANK DISPLAff2J' 75: -

BLANK DISPLAY]!] 77 -

BLANK DISPLAY]0] 79, .- .

Output CLRnot 52 52 LEDD9 WW

Output CLKnot 51 51 LEDD1 WW

95

APPENDIX G

PHOTOS OF MODULAR SAP-1 PROTOTYPE

^•^>;%.-s"#3

FIGURE 19: Modular SAP-1 prototype, picture 1

FIGURE 20: Modular SAP-1 prototype, picture 2

96

