Optimization Approaches & Strategies for Distillation Column Sequencing Separation for Olefins Production

by Lee Tzu Fen ID: 7045

Dissertation submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) (Chemical Engineering)

JANUARY 2009

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

i

CERTIFICATION OF APPROVAL

Optimization Approaches and Strategies for Distillation Column Separation Sequencing for Olefins Production

by

Lee Tzu Fen ID: 7045

A project dissertation submitted to the Chemical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the Bachelor of Engineering (Hons) (Chemical Engineering)

Approved by,

(KHOR CHENG SEONG)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2009

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

(LEE TZU FEN)

ACKNOWLEDGEMENTS

Firstly, I would like to acknowledge the guidance given by my supervisor, Mr. Khor Cheng Seong throughout the whole period of completing this final year project. His patience and kindness help has been the main the main source of motivation and driven me in completing the project successfully.

Secondly, I would like to express my gratitude toward my external examiner, Ir Dr. Abdul Halim Shah Bin Maulud for his valuable input and assistance throughout the course of this project.

Finally, I would like to thank all my fellow colleagues for their assistance and ideas in completion of this project.

ABSTRACT

This main objective of this project is to develop a mathematical model for determining the optimal design of distillation sequencing for olefin production. The mathematical model with optimization procedure for the integration of olefin flow from refinery to a petrochemical plant is based on a process flowsheet superstructure representation that embeds all possible alternatives for the distillation sequencing. The model formulation includes material balances with fixed split fractions and logical constraints for representing design specifications and structural specifications based on engineering knowledge and past design experience and heuristics. Additionally, big-M logical constraints relating the continuous variables of flowrates to the binary 0-1 variables of column existence are incorporated. In this work, the intermediate superstructure representation is adopted to represent the distillation sequencing for olefin production because it has been shown to provide good computational performance in obtaining the global optimal solution (Caballero and Grossmann, 1999). The optimization model is investigated using different feedstock; ethane from Ethylene Polyethylene (M) Sdn. Bhd (EPEMSB) and naphtha from University of Manchester's Process Integration (2005). By using different feedstocks, the computational results yield the same optimal sequencing. Furthermore, The-the_optimal distillation sequencing with this model formulation is validated with the existing olefin plant. It is proved that the optimal distillation sequencing is consistent with the common heuristic in process plant synthesis. The optimization model is also investigated using integer cuts in order to check that they agree or conform to the heuristic for distillation sequencing. It is proved that the optimum solution has the least total mass flow rate.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	IV
ABSTRACT	v
LIST OF FIGURES	
LIST OF TABLES	
ABBREVIATIONS & NOMENCLATURE	<u> XIIIX</u>
<u>CHAPTER 1</u>	<u>1</u>
INTRODUCTION	<u>1</u>
1.1. BACKGROUND OF STUDY	1
1.2. PROBLEM STATEMENT	
<u>1.3.</u> OBJECTIVES	
<u>1.4. Scope</u>	<u>3</u>
CHAPTER 2	<u>5</u> 4
LITERATURE REVIEW	54
2.1 OLEFIN FEEDSTOCK	
2.2 PETROCHEMICAL INDUSTRY IN MALAYSIA	
2.3 OVERVIEW ON PROCESS DESCRIPTION OF NAPHTHA CRACKING	<u>118</u>
2.3.1 CRACKING OR PYROLYSIS SECTION	118
2.3.2 PRIMARY FRACTIONATION, COMPRESSION AND QUENCH SYSTEM	
2.3.3 CAUSTIC WASHING & DRYING 2.3.4 PRODUCT RECOVERY AND FRACTIONATION SECTON	<u>1310</u>
2.5.4 PRODUCT RECOVERT AND FRACTIONATION SECTOR	
<u>CHAPTER 3</u>	
METHODOLOGY	<u>21</u> 17
3.1 MILP OBJECTIVE FUNCTION	23 19
3.2 LOGICAL CONSTRAINTS	
CHAPTER 4	
OPTIMIZATION MODEL FORMULATION	3224
4.1 INTERMEDIATE SUPERSTRUCTURE REPRESENTATION	
4.1 INTERMEDIATE SUPERSTRUCTURE REPRESENTATION	
4.3 LOGICAL CONSTRAINTS ON DESIGN SPECIFICATIONS, INTERCONNECTIVITY	
RELATIONSHIPS AND SWITCHING CONSTRAINTS	46 34
4.4 Switching Constraints	5846
<u>CHAPTER 5</u>	<u>6350</u>
COMPUTATIONAL EXPERIMENTS AND DISCUSSIONS ON NUMERICAL RESULTS	63 50
5.1 COMPARISON OF DISTILLATION SEQUENCING USING DIFFERENT OLEFIN FEEDSTOCKS	63 50
5.1.1 Case 1: Ethane feedstock from Ethylene Polyethylene (M) Sdn. Bhd (EPEMSB)	
5.1.2 Case 2: Naphtha Composition from University of Manchester's Centre for Process	
Integration (CPI) (2005)	68 <mark>54</mark>

5.2. OPTIMAL AND SUBOPTIMAL DISTILLATION SEQUENCES USING INTEGER CUTS	
5.2.1 Case 1: Ethane feedstock from Ethylene Polyethylene (M) Sdn. Bhd (EPEMSB)	77 59
5.2.2 Case 2: Naphtha Composition of CPI (2005)	
5.3 COMPUTATIONAL EXPERIMENTS	
CHAPTER 5	<u>8363</u>
CONCLUDING REMARKS & RECOMMENDATIONS FOR FUTURE WORK	<u>8363</u>
REFERENCES	87 65
APPENDICES I	<u>9067</u>
ACKNOWLEDGEMENTS	IV
ABSTRACT	V
LIST OF FIGURES	
LIST OF TABLES	VIII
ABBREVIATIONS & NOMENCLATURE	
CHAPTER 1 INTRODUCTION	1
1.1BACKGROUND OF STUDY	1
1.2. — PROBLEM STATEMENT	2
1.3. OBJECTIVES	2
<u>1.4.</u> <u>Scope</u>	3
CHAPTER 2 LITERATURE REVIEW	4
2.1 OLEFIN FEEDSTOCK	
2.2 PETROCHEMICAL INDUSTRY IN MALAYSIA	4 6
2.3 OVERVIEW ON PROCESS DESCRIPTION OF NAPHTHA CRACKING	
2.3.1 CRACKING OR PYROLYSIS SECTION	
2.3.2 PRIMARY FRACTIONATION, COMPRESSION AND OUENCH SYSTEM	9
2.3.3 CAUSTIC WASHING & DRYING	
2.3.4 PRODUCT RECOVERY AND FRACTIONATION SECTON	
2.5 OVERVIEW OF PROCESS DESCRIPTION OF ETHANE CRACKING	14
CHAPTER 3 METHODOLOGY	16
<u>3.2 LOGICAL CONSTRAINTS</u>	
3.5 Switching Constraints	24
CHAPTER 4 OPTIMIZATION MODEL FORMULATION	
4.1 <u>INTERMEDIATE SUPERSTRUCTURE REPRESENTATION</u>	
4.2LOGICAL CONSTRAINTS ON DESIGN SPECIFICATIONS, INTERCONNECTIVITY	
RELATIONSHIPS AND SWITCHING CONSTRAINTS	
CHAPTER 5 COMPUTATIONAL EXPERIMENTS AND DISCUSSIONS ON NUMERIC	<u>AL</u>
RESULTS	49
5.1 Comparison of distillation sequencing using different olefin feedstocks	
5.1.2 CASE 2: NAPHTHA COMPOSITION FROM UNIVERSITY OF MANCHESTER'S CENTRE FOR	2
Process Integration (2005)	
5.2.2 Case 2: Naphtha Composition from University of Manchester's Centre for	ŧ
PROCESS INTEGRATION (2005)	61
5.3 Computational Experiments	62
CHAPTER 5 CONCLUSIONS & RECOMMENDATIONS	63

REFERENCES.

LIST OF FIGURES

Figure 1 Production of Petrochemical Feedstock (as at January 2005) (MIDA, 2005)107	Formatted: Justified, Line spacing: 1.5 lines
Figure 2 Description of Olefin Cracking Process	Field Code Changed
	Field Code Changed
Figure 3 A typical flow sheet of naphtha cracking plant (Ren, et al, 2006)	Field Code Changed
Figure 4 Steps in mathematical programming approach to process synthesis and design	Field Code Changed
problems (Grossman, 1990; Floudas, 1995; Novak et al., 1996)	Field Code Changed
Figure 5 Nodes in the graph of a superstructure: (a) mixer; (b) splitter; and (c) Un	Field Code Changed
	Field Code Changed
<u>component2521</u>	Field Code Changed
Figure 6 STN Representation for a mixture of four components (Caballero &	Field Code Changed Field Code Changed
Grossmann, 1999)	Field Code Changed
Figure 7 SEN Representation for a mixture of four components (Caballero &	Field Code Changed
Grossmann, 1999)	Field Code Changed
Figure 8 Intermediate Representation for a mixture of four components(Caballero &	Field Code Changed
<u>Grossmann, 1999)</u>	Field Code Changed
Figure 9 Intermediate Representation of Distillation Sequencing for Olefin Production	Field Code Changed
<u>3928</u>	Field Code Changed
Figure 10 Module for total flow with sharp split	Field Code Changed
Figure 11 Optimal flowsheet distillation sequence for Ethane Feedstock from EPEMSB	Field Code Changed
	Field Code Changed
	Field Code Changed
Figure 12 Optimal flowsheet for distillation sequencing using naphtha composition	Field Code Changed
from University of Manchester's Centre for Process Integration (2005)	Field Code Changed
Figure 13 Flowsheet Configuration from Titan Petrochemicals (M) Sdn. Bhd7156	Field Code Changed
Figure 14 The C-E Lummus process for the cracking of naphtha or gas oil for the	Field Code Changed
production of ethylene (Hatch & Matar, 1975)	Field Code Changed Field Code Changed
Figure 1	
Figure 2 Production of Petrochemical Feedstock (as at January 2005) *	
Figure 3 — Description of Olefin Cracking Process	
Figure 4 <u>A typical flow sheet of naphtha cracking plant (Ren, et al. 2006)</u>	

Figure 5	Steps in mathematical programming approach to process synthesis and
design probl	ems (Grossman, 1990; Floudas, 1995; Novak et al., 1996)
Figure 6	Nodes in the graph of a superstructure: (a) mixer; (b) splitter; and (c) Un
component.	
Figure 7	STN Representation for a mixture of four components (Caballero &
Grossmann,	<u>1999)</u>
Figure 8	SEN Representation for a mixture of four components (Caballero &
Grossmann,	<u>1999)</u>
Figure 9	Intermediate Representation for a mixture of four components(Caballero
& Grossmar	<u>m, 1999)</u>
Figure 10	Intermediate Representation of Distillation Sequencing for Olefin
Production	
Figure 11	- Module for total flow with sharp split
Figure 12	Optimal flowsheet distillation sequence for Ethane Feedstock from
EDEMOD	
EPEMSB	
<u>EPEMSB</u> Figure 13	
Figure 13	
Figure 13	Flowsheet configuration for Ethylene Polyethylene (M) Sdn. Bhd., which
Figure 13 uses ethane Figure 14	Flowsheet configuration for Ethylene Polyethylene (M) Sdn. Bhd., which as the feedstock
Figure 13 uses ethane Figure 14	51 Flowsheet configuration for Ethylene Polyethylene (M) Sdn. Bhd., which as the feedstock Optimal flowsheet for distillation sequencing using naphtha composition
Figure 13 uses ethane Figure 14 from Univer	51 Flowsheet configuration for Ethylene Polyethylene (M) Sdn. Bhd., which as the feedstock Optimal flowsheet for distillation sequencing using naphtha composition sity of Manchester's Centre for Process Integration (2005)

Formatted: Font: 12 pt

LIST OF TABLES

Table 1 Typical yield of feedstocks in olefin production	Formatted: Justified, Line spacing: 1.5 lines
Table 2 Ethylene Production Cost Components ^{a,b} 2319	
Table 3 Constraint representation of logical relations as algebraic linear inequalities	
(Adapted from Raman and Grossmann (1991) and Williams (1999))	
Table 4 Comparison between STN and SEN 3827	
Table 5 Split fraction based on mass composition from University Manchester's	
Centre for Process Integration (2005)	
Table 6 Mass balance for each intermediate product	
Table 7 Logical constraints on design specifications (DS) for the separation	
subsystem using intermediate representation	
Table 8(a) Logical constraints on structural specifications for interconnectivity	Field Code Changed
relationships for the separation subsystem using intermediate representation which	
involve the overhead and bottom products	Field Code Changed
Table 8(b) Logical constraints on structural specifications that involve inlet/feed to	Formatted: Font: 12 pt, Not Bold Formatted: Caption, Justified, Line spacing:
columns	1.5 lines, Tab stops: Not at 1" + 5.89"
Table 9 Switching constraints for the separation subsystem using intermediate	Formatted: Justified, Line spacing: 1.5 lines
representation	Field Code Changed
Table 10 Typical yields of ethane feedstock from EPEMSB 6350	
Table 11 Typical yields of naphtha feedstock taken from CPI (2005)	
Table 12 Integer Cut for Ethane Gas Feedstock from EPEMSB	
Table 13 Integer cuts for naphtha liquid feedstock from University of Manchester's	
Centre for Process Integration (2005)	
Table 14 Model size and computational performance 8162	
Table 1 Ethylene Production Cost Components ^{a,b}	
Table 2 Constraint representation of logical relations as algebraic linear inequalities	
(Adapted from Raman and Grossmann (1991) and Williams (1999))	
Table 3 Comparison between STN and SEN 29	

Table 4 Split fraction based on mass composition from University Manchester's
Centre for Process Integration (2005)
Table 5 Mass balance for each intermediate product
Table 6 Logical constraints on design specifications (DS) for the separation
subsystem using intermediate representation
Table 7(a) Logical constraints on structural specifications for interconnectivity
relationships for the separation subsystem using intermediate representation which
involve the overhead and bottom products
Table 7(b) Logical constraints on structural specifications that involve inlet/feed to
columns
Table 8 Switching constraints for the separation subsystem using intermediate
representation
Table 9 Typical yields of ethane feedstock from EPEMSB
Table 10 Typical yields of naphtha feedstock taken from University of Manchester's
Centre for Process Integration (2005)
Table 11 Integer Cut for Ethane Gas Feedstock from EPEMSB
Table 12 Integer cuts for naphtha liquid feedstock from University of Manchester's
Centre for Process Integration (2005)61
Table 13 Model and Computational statistics of problem size

Formatted: Justified

ABBREVIATIONS & NOMENCLATURE

The following abbreviations and nomenclatures are used throughout this interim report.

	Abbrev. STN	Full name State Task Network		
	SEN	State Equipment Nnetwork		
	SEN	State Equipment Miletwork		
<u>sS</u> ets and <u>I</u> ind	ices			
<i>i</i> process i	units			
j process s	streams			
k final-pro	duct task as	represented by a column		
_				Formatted: Font: Not Italic
Parameters				Formatted: Font: Bold
				Formatted: Font: Not Italic
<u>TOTFEED</u>	total fee	ed flowrate	-	Formatted Table
SPLTFRC(T,S	S) <u>split fra</u>	ction associated with task and stream		
Continuous V	/orioblog			
<u>Continuous</u>	ariables			
<u>F(T)</u> <u>F</u>	lowrate asso	ociated with task		
<u>FSm</u> se	et of all colu	mns having intermediate product m as feed		
<u>PSm</u> se	et of all colu	umns that produce a given intermediate product m as	distillate	
	<u>bottoms</u>	minis that produce a given intermediate product in as	<u>distillate</u>	
		rmediate products		
				Formatted: Line spacing: single, Tab stops:
				Not at $0.5" + 1.13"$
				Formatted: Font: Not Italic
hRinom Vro	riables			Formatted: Font: Bold, Not Italic
<mark>bB</mark> inary <u>V</u> val	rables			Formatted: Font: Bold, Not Italic
				Formatted: Font: Bold, Not Italic

- y_i existence of process unit *i*
- z_j existence of material stream j

where PSm is the set of all columns that produce a given intermediate product m as distillate or bottoms,

<u>FSm is the set of all columns having intermediate product m as feed,</u> <u>IP is the set of all intermediate products</u>

CHAPTER 1

INTRODUCTION

1.1. Background Of Study

The goal of conceptual design (process synthesis) is the identification of best flow sheet structure system that must carry out for a specific task, such as conversion of raw material into a product or separation of a multi component mixture. To accomplish this goal, many alternatives design must be considered. There are three major approaches for determining an optimal topology or configuration of a petrochemical plant:

1) The heuristic and evolutionary approach

Heuristic method proposed by douglas relies on intuition and engineering knowledge. This method uses the 'onion diagram' approach where it considers the critical equipment like the reactors before progressing to the separation units and finally to heat transfer units. Douglas's method enables flow sheet structures to be determined at near optimal solution and at a faster time. (douglas, 1988)

- 2) Thermodynamic targets and physical insight approach (linnhoff et all., 1993) This method exploits the basic physical principles such as thermodynamics like pinch technology. This approach yields designs that features high energy efficiency and often near optimal solutions.
- 3) Algorithmic approach (Grossmann, 1996)

The algorithmic approach uses mathematical programming techniques. The formulation is based upon a superstructure that represents all possible process

flow sheets. It includes the simultaneous and rigorous considerations of all factors.

The study is aimed at exploring the third approach which is the algorithm approach to obtain the methodology for an optimal naphtha separation topology design.

1.2. Problem Statement

The problem addressed in this study can be stated as follows: given are the availability and composition olefin feedstock, product demands, coefficient for fixed cost and variable cost, and availability of process units in terms of different choices of task and equipment, and the interconnections among them. The problem in this study is to synthesize the optimal flow sheet distillation sequence and satisfies the criteria of cost.

The basic assumptions made in this study are:

- 1. Each distillation column performs a simple split. (i.e. One feed and two products)
- 2. Each distillation column performs a sharp separation (i.e. a component appears entirely on its own as a products; product is 100% pure component)

1.3. Objectives

This main objective of this research is to develop a Mixed-Integer Linear program (MILP), whose solution will determine the optimal design of distillation sequences for producing olefins. The main variable in the proposed modeling approach are: (1) the flow rates of the material streams; (2) the selection of the process units to be selected and the interconnectivities among the selected units that give rise to their sequence. In order to achieve the main objective, the following sub-objectives are formed.

1. To consider a suitable superstructure representation for olefin production such as STN, SEN, and intermediate;

- 2. To derive a mathematical programming model with discrete and continuous variables to predict an optimum flow sheet design that includes linear mass balances and constraints for the selection of the alternative routes for the olefin production;
- To solve the optimization model for optimal separation sequences for olefin production using modeling language interface GAMS (general algebraic modeling language);

1.4. Scope

The scope of the research is to formulate a mixed integer liner programming model (MILP)) for olefin production. The scope for final year project 1 (fypI) is to develop the suitable superstructure for olefin production, formulate the linear mass balance, and develop logical constraints. The scope for final year project II (fypII) is to model the MILP model in GAMS and validate the results obtained with literature review.

•		_
	Formatted: Centered	┥
	Formatted: Top: 2"	

l

CHAPTER 2

LITERATURE REVIEW

2.1 OLEFIN FEEDSTOCK

The typical feedstocks for petrochemical industry for olefin production are ethane, propane, naphtha and gas oil. Regardless of the feedstock, olefin production is a gigantic destroyer of energy, an enormous heat sink. Olefin production is very energy intensive (Hatch and Matar, 1981).

The gaseous feedstocks for ethylene production are ethane, propane, and *n*-butane, in various mixtures and proportions of these compounds (Hatch and Matar, 1981). The advantage of ethane as a feedstock is a high ultimate yield combined with a minimum of coproducts. The ultimate yields of ethylene is about 80% based on the ethane is being recycled to extinction (Hatch and Matar, 1981).For propane feedstock, it gives a lower ethylene yield and a larger quantity of coproducts than ethane feedstock (Figure-Table 1).

The major liquid feeds/feedstock for olefins production are light virgin naphtha, full range naphtha, reformer raffinate, atmospheric gas oil, vacuum gas oil, resids, and crude oil. The feedstock are usually cracked with lower residence times and higher temperatures and with higher steam dilution ratios than is used for gas feedstocks (Hatch and Matar, 1981). The advantage of naphtha over gas feestocks is the wider spectrum of coproducts (Figure Table 1). The important olefins and aromatics used for production in chemical industry are ethylene, propylene, butadiene, BTX. Thus, we wish to obtain a variety of copoducts. Figure Table 1 shows that as feedstocks progress

from ethane through heavier fractionation with lover H_2 content, the yield of ethylene is reduced and the variety of coproducts are increased.

		Petrochem	nicals: Olefi	<u>n</u>		
Typical yields are:			Eadat	o alva		
	Ethane	P	Feedst ropane	<u>Naphtha</u>		<u>Gas Oil</u>
	(wt %)		<u>wt %)</u>	<u>(wt %)</u>		(wt %)
\underline{H}_2	<u>3.6</u>		<u>1.3</u>	0.8		<u>0.6</u>
\underline{CH}_4	<u>4.2</u>		<u>24.7</u>	<u>15.3</u>		<u>10.6</u>
<u>C₂H₂</u>	<u>0.2</u>		<u>0.3</u>	<u>0.7</u>		<u>0.4</u>
$\underline{C_2H_4}$	<u>48.2</u>		<u>34.5</u>	<u>29.3</u>		<u>24.0</u>
<u>C₂H₆</u>	<u>40.0</u>		<u>4.4</u>	<u>3.8</u>		<u>3.2</u>
<u>C₃H₄</u>			<u>0.3</u>	<u>1.1</u>		<u>1.0</u>
<u>C₃H₆</u>	<u>1.3</u>		<u>14.0</u>	<u>14.1</u>		<u>14.5</u>
<u>C₃H₈</u>			<u>10.0</u>	<u>0.3</u>		<u>0.4</u>
<u>1.3-C₄H₆</u>				<u>4.8</u>		<u>4.7</u>
<u>C₄H₈</u>	<u>1.6</u>		<u>3.7</u>	<u>4.2</u>		<u>4.5</u>
$\underline{C_4}\underline{H_{10}}$				<u>0.3</u>		<u>0.1</u>
<u>Pyrolysis</u>	<u>0.9</u>		<u>5.9</u>	<u>21.0</u>		18.4
<u>Gasoline</u> <u>Fuel Oil</u>			0.9	3.8		17.6
 Typical yields an 		oonen	nicals: O			
i ypioar yloido ar	0.			stocks		
		Ethane	Propane	Naphtha	Gas Oil	
H ₂		3.6	1.3	0.8	0.6	
CH₄		4.2	24.7	15.3	10.6	
C_2H_2		0.2	0.3	0.7	0.4	
C ₂ H ₄		48.2	34.5	29.3	24.0	
		40.0	4.4	3.8	3.2	
C_2H_6			0.0			
C_3H_4			0.3	1.1	1.0	
C ₃ H ₄ C ₃ H ₆		} 1.3	14.0	14.1	14.5	
C ₃ H ₄ C ₃ H ₆ C ₃ H ₈		} 1.3		14.1 0.3	14.5 0.4	
C ₃ H ₄ C ₃ H ₆ C ₃ H ₈ 1,3-C ₄ H ₆) J	14.0 10.0	14.1 0.3 4.8	14.5 0.4 4.7	
C ₃ H ₄ C ₃ H ₆ C ₃ H ₈		<pre>} 1.3</pre> <pre>} 1.6</pre>	14.0	14.1 0.3	14.5 0.4	
C ₃ H ₄ C ₃ H ₈ C ₃ H ₈ 1,3-C ₄ H ₆ C ₄ H ₈	bline) J	14.0 10.0	14.1 0.3 4.8 4.2	14.5 0.4 4.7 4.5	

Formatted: Caption, Centered, Line spacing: single Formatted: Left, Line spacing: single Formatted Table

Formatted: Not Highlight

Formatted: Not Highlight

An olefins plant, which utilizes a liquid feedstock, requires an additional pyrolysis furnace for cracking coproduct ethane and propane and an effluent quench exchanger.

This is followed by an oil quench and a primary fractionator for fuel oil separation. In contrast, a gas cracker requires a simple direct-contact water quench tower off the cracking unit. A liquid feed cracker also contains a propylene tower and a methylacetylene removal unit. A unit for first stage hydrotreating of pyrolysis gasoline may also be included (Hatch and Matar, 1981).

2.2 Petrochemical Industry in Malaysia

The availability of hydrocarbon feedstocks from indigenous oil and gas has led to the development of the petrochemical industry. the two ethane crackers in kertih which use ethane from the six GPPs in Kertih and Tok Arun provide feedstock for the polyethylene plants, acetic acid plant and DOW PETRONAS ethylene derivatives complex. Condensates from the GPPs also provide feedstock to the aromatic plant in Kertih for the production of paraxylene and benzene.

Propane from the GPPs is the raw material for the propane dehydrogenation plant in Gebeng. This provides feedstock to the polypropylene and MTBE plants and also to the BASF Petronas highly integrated propylene derivatives complex for the production of acrylics, oxo alcohols, butanediol, butylacrylates, plasticizers and tetrahydrofurane.

Titan's integrated operation in Pasir Gudang-Tanjung Langsat, Johor includes a naphtha cracker which provides feedstock for its own production of polypropylene, polyethylene and aromatics. It also provides feedstock for the production of ethylene vinyl acetate (EVA). Naphtha is available from the petroleum refineries and Shell's middle distillates synthesis (MDS) plant in Bintulu, Sarawak. However a large proportion of the naphtha requirement is still being imported.

Petrochemical Products	Capacity (mtpa)	Company/Refinery
Naphtha	2,380,000	• Petronas Penapisan (Terengganu) Sdn Bhd
		• Petronas Penapisan (Melaka) Sdn Bhd
		Malaysia Refinery Company Sdn Bhd
		Shell Refinery Company (FOM) Bhd
		• Esso (Malaysia) Bhd
Methane (sales gas)	2,000	Petronas Gas Berhad
Olefins:	mmscfd	
Ethane	1,383,000	
Propane	1,799,000	
Butane	1,166,000	
Condensate	1,260,000	
Propane	148,400	• Malaysia LNG Tiga Sdn Bhd
Butane	273,900	
Liquefied Petroleum Gas (LPG)	137,700	
Ethylene	1,560,000	Titan Petrochemical (M) Sdn Bhd
		 Ethylene Malaysia Sdn Bhd
		 Optimal Olefins (M) Sdn Bhd
Propylene	766,000	 Titan Petrochemical (M) Sdn Bhd MTBE (M) Sdn Bhd
		Optimal Olefins (M) Sdn Bhd
Benzene, Toulene and Xylene (BTX)	775,000	 Titan Petrochemical (M) Sdn Bhd Aromatics Malaysia Sdn Bhd

Production of Petrochemical Feedstocks (as at January 2005)

Figure 1 Figure 2 Production of Petrochemical Feedstock (as at January 2005) (MIDA, 2005)

I

2.3 OVERVIEW ON PROCESS DESCRIPTION OF NAPHTHA CRACKING

The optimization-based mathematical model for the integration of flow from a refinery to a petrochemical plant is based on a process flowsheet superstructure representation that embeds all possible alternatives for the design of an olefin plant.

2.3.1 CRACKING OR PYROLYSIS SECTION

The primary process step in producing olefins from hydrocarbon feeds is thermal cracking, usually referred to as pyrolysis. This process converts the feed to lower molecular weight hydrocarbons at relatively high temperature and low pressure. Light naphtha is supplied to the cracker plant from storage tank via pumps. Pyrolysis is the heart of steam cracker. The naphtha feed is first entered to the convection section, where preheated to 650°C with a series of heat exchanger at the convection section. The naphtha is then vaporized with superheated steam and is passed into long, narrow tubes, which are made of chromium nickel alloys (ren et al., 2006). Recycle ethane and propane streams are mixed in the gas feed header while recycle C4 (hydrocarbon with four carbon atoms) are mixed preferentially with the fresh naphtha in the liquid feed header. Any excess of C4 will go to the gas feed header.

The cracking reactions take place mainly in the radiant section of the furnace, where the naphtha is cracked into smaller molecules via a free radical mechanism in the absence of catalyst. The free radicals lead to the formation of light olefins in gaseous state. The tubes in the radiant section are externally heated to 750-900°C (up to 1100°C) by fuel oil or gas fired burners (Ren et al., 2006). Dilution steam is added to reduce the hydrocarbon partial pressure to promote the production of olefins and minimize the rate of coke deposition. Periodic decoking is required to remove coke which accumulates gradually in the radiant coils and quench exchangers. The furnaces will be steam or air decoked when the tube metal temperature approaches its design limit.

Depending on the severity, naphtha is cracked into smaller molecules via a free radical mechanism in the absence of catalyst. Thus, the olefins are in the gaseous state. After

leaving the furnace, the hot gas mixture is subsequently quenched in the transfer line exchangers (TLE) to $550 - 650^{\circ}$ C or lower to 400° C (Ren et al., 2006). Super high pressure (SHP) steam is generated (500 °c and 105 kg/cm²g) and is used in the turbine driver for the cracked gas compressor. Rapid cooling is necessary to avoid secondary reactions which convert valuable products to heavier materials that tend to cause fouling in the exchangers. The steam generation pressure is set so that the tube wall temperature is high enough to prevent condensation of hydrocarbon in the TLE's.

2.3.2 PRIMARY FRACTIONATION, COMPRESSION AND QUENCH SYSTEM

Primary fractionation applies to the liquid feedstock of naphtha and gas oil feed only. In the primary fractionation section, gasoline and fuel oil streams (rich in aromatics) are condensed and fractionated. While this liquid fraction is extracted, the gaseous fraction is desuperheated in the quench tower by a circulating oil or water stream. The gaseous fraction is then passed through four or five stages of gas compression with temperatures at approximately 15-100 °C, then cooling and finally cleanup to remove acid gases, carbon dioxide and water. Most of the dilution steam is condensed, recovered and recycled. Product of primary fractionation are fuel il and BTX or aromatic gasoline which consists benzene, toluene, and xylene. The problem faced with compression is fouling with cracked gas compressors and after coolers. The build–up of polymers on the rotor and internal will leads to energy losses as well as mechanical problems. Wash oil and water used to reduce fouling (Ren et al., 2006).

Furnace effluent gas is cooled further by direct contact with circulating quench oil and fractionated in a quench oil tower to remove the heavy fraction. This quench oil material is stripped to control flash point and sent to storage as fuel oil product. The overhead from the quench oil tower will enter the quench water tower. Most of the dilution steam condenses in this tower, along with a portion of the gasoline fraction.

2.3.3 CAUSTIC WASHING & DRYING

The caustic wash tower is installed to remove hydrogen sulphide, mercaptans, and carbon dioxide formed during the cracking process. These acid gases are removed from the cracked gas for the following purposes:

- 1. to meet product quality requirements on the ethylene and propylene products
- to protect downstream catalytic operations, since some acid gas components are known to be catalyst poisons
- 3. to avoid corrosion
- 4. to avoid the possible formation of carbon dioxide ice within the cold process systems.

The caustic solution used in this process is caustic soda (sodium hydroxide). After four stages of compression, the acid gases of the cracked gas are removed by scrubbing the gas with circulating caustic solution in the caustic tower. The tower consists of three sections, only two of which provide the caustic scrubbing of the cracked gas. The middle and bottom sections are circulated with strong and weak caustic solutions, respectively. The top section is the water wash section, which washes the treated cracked gas to prevent caustic carryover into the downstream equipment.

Removal of acid gas at this point in the process allows all of the C4 and lighter hydrocarbons to be desulfurized together, eliminating the necessity to clean individual product streams. Overhead gas from the caustic tower is cooled with propylene refrigerant. The condensate is pumped forward to the high pressure (HP) depropanizer via the liquid dryer unit. Essentially, complete removal of water is necessary to prevent freeze-ups in subsequent low temperature equipment.

2.3.4 PRODUCT RECOVERY AND FRACTIONATION SECTON

This is essentially a separation process through distillation, refrigeration, and extraction. Equipment includes chilling trains and fractionation towers, which include refrigeration, demethanizer, deethanizer and others which shown in Figure 4.

i. Depropanizer

The dried gases are cooled and fed to the HP depropanizer, which separates the feed into an overhead vapor essentially free of C4 and heavier material and a bottoms product essentially free of C2 (hydrocarbon with two carbon atoms) and lighter material. Tower overhead vapor is compressed in the fifth stage of the cracked gas compressor. Net bottom flows to the low pressure (LP) depropanizer. The LP depropanizer produces a raw C3 (hydrocarbon with three carbon atoms) liquid distillate which is sent to C3 hydrogenation and a bottom stream which flows to the Debutanizer.

ii. Acetylene Removal

Gas from the fifth stage of the cracked gas compressor is catalytically hydrogenated to remove acetylene. The reactor feed gas may either be cooled or heated, depending on the age and activity of the catalyst. Catalyst life is expected to be at least three years between regeneration. Three catalyst beds are used, with inter-cooling between beds to limit the temperature rise per bed. Essentially, all acetylene is converted to ethylene and ethane. Some of the methylacetylene and propadiene is converted to propylene. a spare reactor is not required because on-line regeneration is not required. Effluent from the reactor is cooled and dried in a secondary dryer to remove any trace quantities of water. Dried gas is cooled and partially condensed to provide reflux for the hp depropanizer.

iii. Demethanizer

The effluent gas from the hydrogenation reactor is chilled by exchange with ethane recycle and successively colder levels of propylene and ethylene refrigeration. Liquids separated in the chilling train are fed to appropriate trays in the demethanizer prefractionator and demethanizer, according to composition. The prefractionator separates C3 and heavier material from C2 and lighter. The overhead vapor from the prefractionator, which contains essentially no C3 material, is sent to the demethanizer. The prefractionator bottom is sent to the deethanizer. The demethanizer makes a sharp separation between methane and ethylene.

iv. Deethanizer & C2 splitter systems

The deethanizer separates the feed into C2 and C3. The net overhead, consisting principally of ethylene and ethane, is taken as a liquid to a C2 splitter, while the net bottom is fed to C3 hydrogenation. The C2 splitter is a single tower operated at low pressure and temperature. Two feeds enter the tower; an ethylene rich vapor stream from the demethanizer and the overhead liquid product from the deethanizer.

The C2 splitter makes a sharp separation between ethylene and ethane. The ethylene product is pumped to high pressure, heated, and delivered to storage as a vapor product. If required, approximately 70% of the nameplate ethylene production can be subcooled and sent out entirely as a liquid product. Ethane bottom from the splitter is pumped and vaporized by exchange with demethanizer feed, and recycled to the cracking furnaces.

v. C3 hydrogenation, C3 splitter, Debutanizers Systems

Raw C3 from the deethanizer bottom and LP depropanizer overhead are catalytically hydrogenated to remove methylacetylene and propadiene. Methylacetylene and propadiene are converted to propylene.

Hydrogenated C3 are pumped to the C3 splitter which consists of two towers: a stripper and a rectifier. The overhead from the stripper is fed to the rectifier. Light ends, a result of the hydrogenation reaction, are removed in the pasteurizing section of the rectifier. Propylene is condensed and returned as reflux. Reflux for the stripper is obtained from the bottom of the rectifier. The rectifier overhead is condensed by cooling water. The polymer grade propylene product is taken off as a liquid side draw. A propane rich stream is removed as a vapor product from a location two trays above the bottom of the stripper to be recycle cracked in the furnaces. The net bottom liquid is recycled back to the LP depropanizer to remove any green oil produced in the C3 hydrogenation unit.

The debutanizer receives a liquid feed from the LP depropanizer bottom. A separation is made between C4 and C5 (hydrocarbon with five carbon atoms). The overhead is

condensed against cooling water. LP steam provides reboiler heat. The net overhead product is sent to the C4 hydrogenation unit and the bottom is combined with the distillate stripper bottom, cooled and sent to the pyrolysis gasoline hydrogenation unit.

vi. C4 and Pyrolysis & Hydrogenation Unit

The C4 hydrogenation unit selectively converts butadiene to butenes using high purity hydrogen. The unit consists of a single fixed-bed catalytic reaction system. The C4 product stream is recycle cracked in the cracking furnaces.

The pyrolysis gasoline hydrogenation unit is a one-stage catalytic reaction system to selectively hydrogenate diolefins and styrenic compounds. A stabilizer removes dissolved lights and a rerun tower removes gums from the gasoline product.

vii. Olefin Cracking Process

Based on UOP (2004), the Olefin Cracking process converts C_4 to C_8 olefins to propylene and ethylene at high propylene and ethylene ratio.See Figure 32, the Olefin Cracking Process features fixed bed reactors operating at temperatures between 500 and 600 0 C and pressures between1 to 5 bar gauge. The process utilizes a proprietary zeolitic catalyst and provides high yields of propylene. The catalyst minimizes the reactor size and operating costs by operating at high space velocities and high conversions and selectivities without requiring an inert diluent stream. A swing reactor system is used for catalyst regeneration. Separation facilities depend on how the unit is integrated into the processing system.

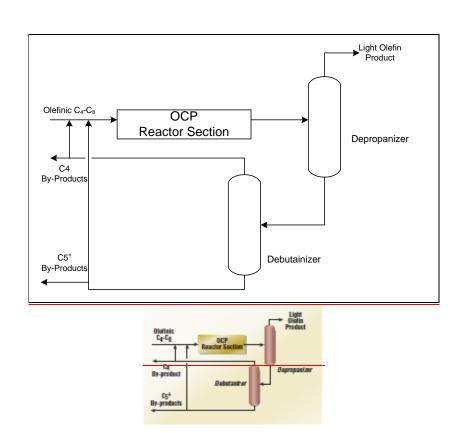
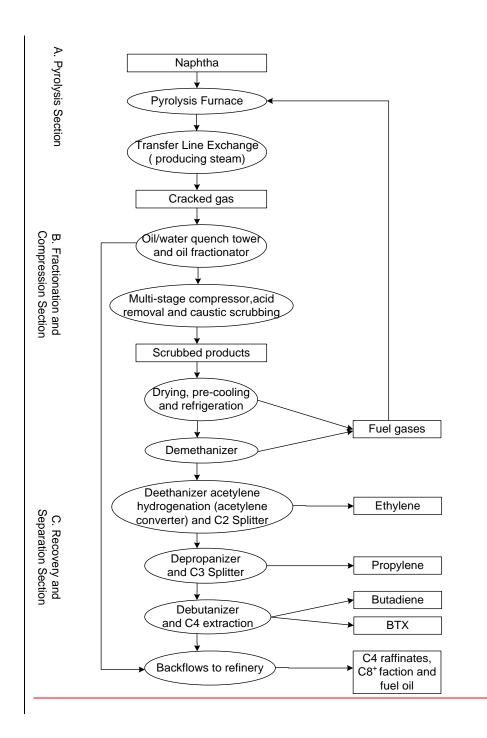
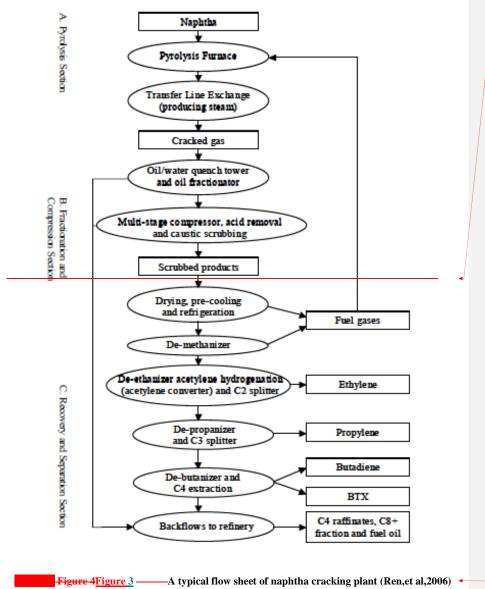


Figure 3-Figure 2 Description of Olefin Cracking Process


2.5 Overview of Process Description of Ethane Cracking


A typical ethane cracker has several identical pyrolysis furnaces in which fresh ethane feed and recycle ethane are cracked with steam as a diluent. The outlet temperature is usually in the 850 °C range. The furnace effluent is quenched in a heat exchanger and further cooled by direct contact in a water quench tower where the diluent steam is condensed. The water is recycled to the pyrolysis furnace. The cracked gas is compressed, acid constituents are removed, and the purified gas dried (Hatch and Matar, 1981).

Hydrogen and methane are removed from the pyrolysis products in the demethanizer, The product stream is hydrogenated to remove acetylene, or the acetylene is separated as a product. Ethylene is separated in the ethylene tower from the unreacted ethane and higher boiling products. The ethane is recycled to extinction. The other products are separated and either sold, burned as fuel, or absorbed into a refinery operation (Hatch and Matar, 1981).

The liquid feedstocks are usually cracked with lower residence times and higher temperatures and with higher steam ratios than is used for gas feedstocks. The reaction section of the plants is essentially same as with the gas feedstocks but the design of the convection and quenching section are different (Hatch & Matar, 1981). An olefin plant which utilizes a liquid feedstock requires an additional pyrolysis furnance for cracking co product ethane and propane and an effluent quench exchanger. This is followed by an oil quench and a primary fractionator for fuel oil separation. In contrast, a gas craker requires a simple direct-contact water quench tower off the cracking unit. A liquid feed cracker also contains a propylene tower and a methylacetylene removal unit. A unit for first stage hydrotreating of pyrolysis gasoline may be included (Hatch & Matar, 1981).

Formatted: Centered

Formatted: Caption, Left, Line spacing: single, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: Caption

CHAPTER 3

Methodology

In general, the mathematical programming approach to process synthesis and design activities and problems consists of the following four major steps (Grossmann, 1990; Floudas, 1995, pp. 233.234; Novak et al., 1996):

1. Development of the superstructure to represent the space of topological alternatives of the naphtha flow to petrochemical plant configuration;

2. Establishment of the general solution strategy to determine the optimal topology from the superstructure representation of candidates;

- > If model is largely linear, simultaneous solution strategy is used.
- If model is non-linear, sequential solution strategy is used (i.e. 1st stage, solve NLP (fix binary variables), 2nd stage, solve MILP using NLP solution).

3. Formulation or modeling of the postulated superstructure in a mathematical form that involves discrete and continuous variables for the selection of the configuration and operating levels, respectively; and

4. Solution of the corresponding mathematical form, i.e., the optimization model from which the optimal topology is determined.

The block diagram of the four major steps mentioned above is shown in Figure $\frac{54}{2}$.

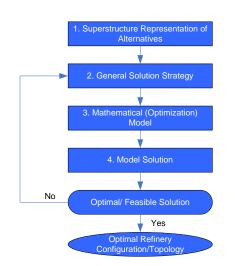


Figure 5 Figure 4 Steps in mathematical programming approach to process synthesis and design problems (Grossman, 1990; Floudas, 1995; Novak et al., 1996)

Formatted: Level 2

3.1 MILP Objective Function

In order to formulate a MILP program for this problem, it is important to devise an objective function which can be used to compare different alternatives. Thus, the objective function is to minimize the project cost, which is made up of capital expenses and operating expenses. This cost can be approximated by a function of the form of (1).

$$Cost = \sum_{k \in COL} CAPEX_k y_k + \sum_{k \in COL} OPEX_k F_k$$
(1)

Where FC = Fixed cost associated with the column

-----V = Slope of line relating the column cost ------F_k = stream flow rate associated with the column, *k* with process unit *i*

CAPEX = Capital Expenses

___OPEX = Operating Expenses

 y_k = Binary variable denoting the existence or nonexistence of column k

This objective function is subject to two types of constraints. Material balance constraints describe the permissible routes by which material may flow from one column in the superstructure to another. The second type of constraints which is integrality constraints, ensure consistency between the continuous variables and binary variables. The data of installed capital cost and operating cost are taken from Meyers (2005)(see Table $\frac{12}{2}$).

Table 221 Ethylene Production Cost Components ^{a,b}				
Location	N.E Asia/	Middle East	United States	
	W.Europe			
Feedstock	Naphtha	Ethane	Ethane	
Feedstock Cost (\$/t feed)	320 ^c	62 ^d	317 ^e	
Net Feedstock Cost ^f (\$/t C ₂ H ₄)	55	68	266	
Energy Cost (\$/ t C ₂ H ₄)	194	16	140	
Fixed Cost ^g (\$/t C ₂ H ₄)	66	56	51	
Total Production Cost ($/t C_2H_4$)	315	140	457	
Contract sales Price (\$/t C2H4)		650-700		

^aAmortazation costs for capital investment are excluded.

Formatted: Indent: Left: 0.63", Hanging: 0.13"

^bCost basis: first quarter 2004

^cN.E.Asia/W.Europe naphtha cost = approx. \$37.5/bbl (130% crude price)

^dMiddle East ethane cost = \$1.25/MMBtu

^eUnited States ethane cost =\$ 5.45/MMBtu natural gas + \$1.0/MMBtu extraction cost

^fNet feedstock cost = feedstock cost – price of total nonethylene co-products

^gFixed cost include labour, supervision, maintenance, insurance, overhead.

3.2 Logical Constraints

The propose procedure to develop the logical relationships in the model is as below:

1. Associate Boolean Variables with every note in the model.

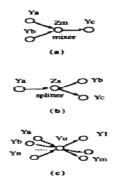
Boolean variables Y is used to represent the existence of all the units (U_n) in the superstructure while Z is used to represents the splitters, mixer, sources and sinks.

a. Mixer:

Mixes two or more streams, no other unit operation is involved

b. Splitter:

Splits a stream into multiple streams, no other unit operation is involved.


c. Unit:

Including units that perform a change in compositions, pressure and temperature in the output streams, e.g. reactor, distillation columns.

d. Sources and sinks:

Inlet and outlet of the process flowsheet.

2. Develop relationships between Boolean variables (Figure 65).

<u>Figure 5</u> Figure 6-Nodes in the graph of a superstructure: (a) mixer; (b) splitter; and (c) Un component.

Formatted: Left

a. Mixer:

$$Z_m \Longrightarrow Y_a \lor Y_b$$
$$Z_m \Longrightarrow Y_c$$

If $Y_a \lor Y_b \Rightarrow Z_m$ and $Y_c \Rightarrow Z_m$ are also valid, then the relations can be written as $Y_a \lor Y_b \Leftrightarrow Z_m$ and $Y_c \Leftrightarrow Z_m$, respectively.

b. Splitter:

$$Z_s \Longrightarrow Y_a$$
$$Z_s \Longrightarrow Y_b \lor Y_c$$

If $Y_a \Rightarrow Z_s$ and $Y_b \lor Y_c \Rightarrow Z_s$ are also valid, the relations can be written as $Z_s \Leftrightarrow Y_a$ and $Z_s \Leftrightarrow Y_b \lor Y_c$ respectively.

c. Units $u \in U_n$:

$$Y_u \Longrightarrow Y_a \wedge Y_b \dots \wedge Y_n$$

 $Y_u \Longrightarrow Y_a \wedge Y_b \dots \wedge Y_m$

3. User specification

User specifications limit on the unit selection and also take into account of the availability of the feed streams. The basic relation of Boolean Variable, Y with linear inequalities of binary variable, y is given in Table $\frac{23}{2}$.

Logical operator	Logic proposition	Logical Boolean expression	Representation as algebraic integer linear inequality/equality constraint
Logical OR		$Y_1 \lor Y_2 \lor \cdots \lor Y_r$	$y_1 + y_2 + \dots + y_r \ge 1$
Logical AND		$Y_1 \wedge Y_2 \wedge \cdots \wedge Y_r$	$y_1 \ge 1$ $y_2 \ge 1$ \dots $y_r \ge 1$
Implication	$Y_1 \implies Y_2$ is logically equivalent to $\neg Y_1 \lor Y_2$	$\neg Y_1 \lor Y_2$	$(1 - y_1) + y_2 \ge 1$ $y_1 - y_2 \le 0$ $y_1 \le y_2$
Equivalence	Y_1 if and only if Y_2 $(Y_1 \Rightarrow Y_2) \land (Y_2 \Rightarrow Y_1)$ which can also be written as: $Y_1 \Leftrightarrow Y_2$	$(\neg Y_1 \lor Y_2) \land (\neg Y_2 \lor Y_1)$	$y_1 = y_2$
Exclusive OR (EOR)	Exactly one of the variables is true	$Y_1 \oplus Y_2 \oplus \cdots \oplus Y_r$	$y_1 + y_2 + \cdots + y_r = 1$
Classification	$Q = \{Y_1, Y_2,, Y_r\}$ Q is true if any of the variables inside the brackets are true		$y_q = y_1 + y_2 + \dots + y_r$

Constraint representation of logical relations as algebraic linear inequalities (Adapted from Raman and Grossmann (1991) and Williams (1999))

The systematic procedure to convert a logical expression into its corresponding conjunctive normal consists of applying the following three steps to each logical proposition (Raman and Grossmann, 1991):

1. replace the implication by its equivalent disjunction:

1

Table 332

$$Y_1 \Longrightarrow Y_2 \Leftrightarrow \neg Y_1 \lor Y_2;$$

2. move the negation inward by applying DeMorgan's Theorem:

$$\neg (Y_1 \land Y_2) \Leftrightarrow \neg Y_1 \lor \neg Y_2;$$

$$\neg (Y_1 \lor Y_2) \Leftrightarrow \neg Y_1 \land \neg Y_2;$$

3. recursively distribute the "OR" over the "AND" by using the following equivalence:

$$(Y_1 \wedge Y_2) \lor Y_3 \Leftrightarrow (Y_1 \lor Y_3) \land (Y_2 \lor Y_3)$$

Formatted: Justified, None, Indent: Left: 1.5", First line: 0.5", Line spacing: 1.5 lines

3.3 Switching Constraints

To ensure that the non-existence of a process unit results in the corresponding input flowrates to the unit assuming the value of zero, we consider the formulation of big *M* logical constraints to impose the relations between the continuous variables, which in our case represent the flowrates of the streams, and the discrete binary 0–1 variables, which denote the existence of the streams and process units.

The general formulation of the big *M* logical constraints is given by:

$$\frac{Y_k \leq M_k y_k}{M_k + Y_k}$$

where

 F_{k}

= total flowrate of an input stream for process unit *k* in kg/day,

Ę

- $M_k = \text{maximum capacity of process unit } k$
- y_k = existence or non existence of process unit k.

We could see that when $y_i = 0$ (unit does not exist), then the constraint (2) becomes:

$$--F_k \leq 0 \tag{3}$$

but flowrate variables are either zero or takes on positive values, so equation (3) becomes $F_k = 0$, which stipulates the condition of zero input flowrate into a non existing unit. When $y_k = 1$ (unit exists), then the constraint (2) becomes:

$$-F_k \le M_k \tag{4}$$

which means that the input flowrate is bounded from above by the value of the big M constant. Here, it is clear that a suitable value for the big M constant is the maximum capacity of the unit.

For example equation (5), if the maximum capacity of a distillation column is equals to 100 m^3 , then the big M logical constraint for that unit becomes

$$-F_k \le \left(100 \text{ m}^3\right) y_k \tag{5}$$

Formatted: Left	J
 Formatted: Left	
Formatted: Left	_]

Formatted: Left

(2)

This constraint (4) is usually written for the input flowrate because it can be related to the output flowrates through the material balances.

The big *M* logical constraints are also sometimes termed as switching constraints in the literature (Rardin, 1998, p. 558). As mentioned, the main function of the switching constraints is to enforce the condition that no output flow exists if the unit does not exist. By extension, these constraints can be written as $_{i^*} \leq M_{i\bar{z}_i}$ to relate the stream flowrate to the binary variable z_i denoting the existence of the stream itself (instead of the unit from where it is produced). In our proposed approach, this is written for each column with the big *M* constant, *ta*ken to be an arbitrarily large number, 1000, which it acts as an upper bound for the corresponding feed flow rate of the initial mixture.

3.4 Linear Material Balances

According M.J.Andrecovich and A.W. Westerb<u>eurg (1985), material balance</u> constraints relate material flows into and out of columns in the superstructure. Each column separates its feed into two products streams whose amounts are related to the feed flow by equation (6)

$$\frac{D_k = \xi_D F_k}{B_k = \xi_B F_k = (1 - \xi_D) F_k}$$
(6)

Where ξ_D is the split fraction of the feed to column,k which leaves in the distillate and ξ_B is the split fraction that leaves in the bottoms. The constraint is written for each product produced by columns in the structure must equal to the amount of that intermediate product fed to columns which further separate the product. That is

$$-\underbrace{\sum_{k \in PS_m} \xi_k F_k}_{k \in FS_m} - \underbrace{\sum_{k \in FS_m} F_k}_{m \in IP} = 0 \qquad m \in IP - (7)$$

Where PS_m is the set of all columns which produce a given intermediate product *m* as distillate or bottoms, FS_m is the set of all columns having intermediate product *m* as

Formatted: Left

Formatted: Left, Indent: Left: 0", First line:

Formatted: Left

feed, F -is the total flow rate to a column, IP is the set of all intermediate products, and ξ is the split fraction relating distillate or bottoms flows to feed flows. This constraint (7) is written for each intermediate product.

A similar expression is necessary for the feed to the distillation system:

$$-\underbrace{\sum_{k \in FS_F} F_k = F_{TOT}}_{(8)}$$

Refer to equation (8), the total feed to the system must equal the sum of the feeds to all columns which process some portion of the feed stream.

CHAPTER 4

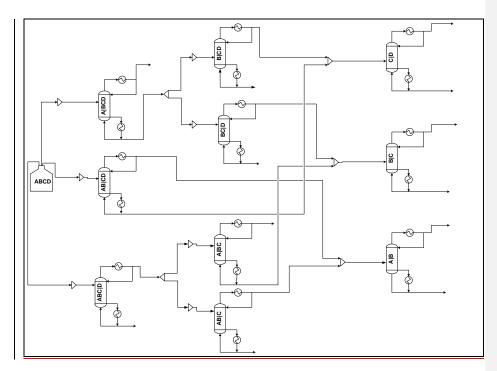
OPTIMIZATION MODEL FORMULATION

Due to time constraint, the project scope is narrowed down to the separation subsystem of the superstructure. An alternative superstructure representation that is proposed by Caballero and Grossmann (1999), termed simply as the intermediate representation is employed to represent the separation subsystem. In this project, intermediate superstructure representation was used for the distillation sequencing for olefin production.

4.1 Intermediate Superstructure Representation

Intermediate representation possesses the characteristics between the state-task network (STN) and the state-equipment network (SEN) superstructure representation.

For STN, the tasks and states are defined while the equipment assignment is generally unknown (See Figure <u>67</u>).For SEN, tasks and equipment are defined while the assignment of tasks to equipment must be determined (Yeomans and Grossmann, 1999)(See Figure <u>87</u>).In distillation sequencing problem, both SEN and STN are extreme cases because the number of columns is equal to the number of tasks for STN while the number of columns in SEN is the minimum necessary to perform the separation. Table <u>3-4</u> shows the comparison between STN and SEN.


Referring to Figure <u>89</u>, the number of columns in intermediate representation is in between these two extreme separations/cases (Caballero and Grossmann, 1999).Hence,

Formatted: Left

Formatted: Justified, Indent: Left: 1.5", First line: 0.5", Line spacing: 1.5 lines

intermediate representation superstructure will involve less number of equations compared to STN representation superstructure. Intermediate representation has shown

a good performance in reaching the global optimal solution (Caballero and Grossmann, 1999). Note also that for intermediate representation, both mixers and splitters are "single choice", that is, only one input stream from the mixer or only one output stream from the splitter takes a non-zero value (i.e., a value different from zero). A contribution of this work pertaining to systematic superstructure generation is on how we demonstrate that the intermediate representation of Caballero and Grossmann (199) can be readily and conveniently extended to include the representation of reactors (in this case, the catalytic hydrogenation reactor, the methyl acetylene and propadiene reactor (MAPD), the C_4 hydrogenation reactor, and the gasoline hydrogenation reactor (which is basically a hydrotreater).

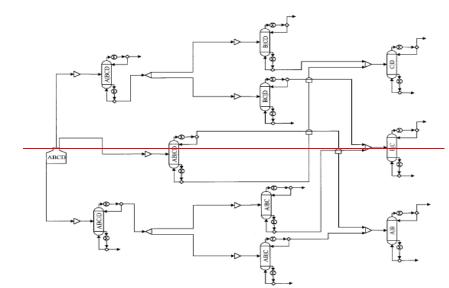


Figure 67 STN Representation for a mixture of four components (Caballero & Grossmann, 1999)

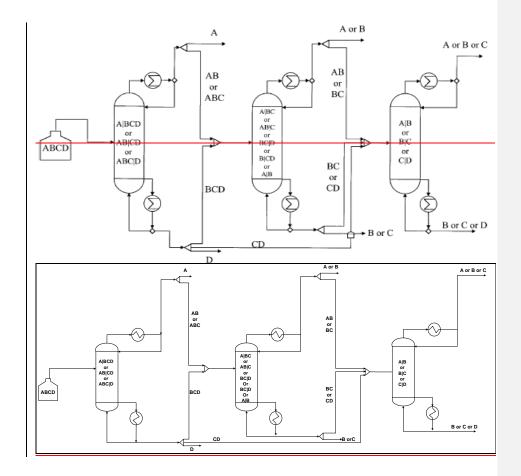


Figure <u>8-7</u>SEN Representation for a mixture of four components (Caballero & Grossmann, 1999)

Formatted: Normal, Left

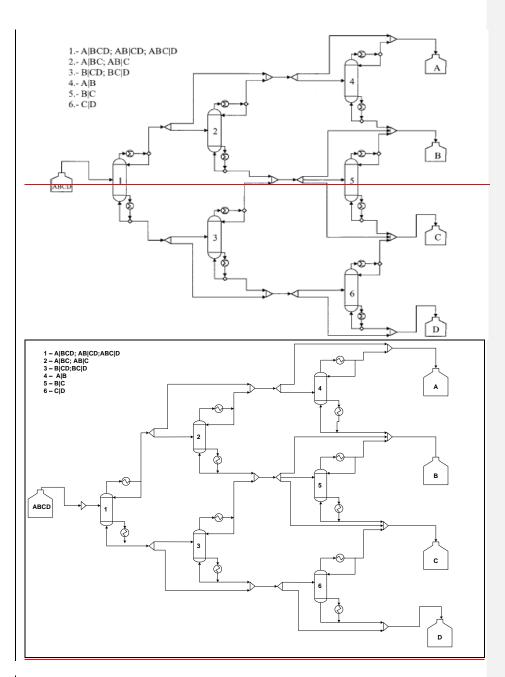


Figure <u>98</u> Intermediate Representation for a mixture of four components(Caballero & Grossmann, 1999)

Table 443 Comparison between STN and SEN

I

	STN	SEN		
Characteristic	Concerned with the selection of tasks, leaving the equipment assignment (or selection) to a second stage	Concerned with the selection of equipment, leaving the selection (or assignment) of tasks to a second stage		
Number of Columns	No. of columns = no. of tasks	No. of columns = minimum necessary to perform the separation (in the case that we are considering $(N-1)$ columns))		
Difference	One task one equipment (OTOE) Each task is assigned to a single equipment unit. If a task can be executed by two different equipments, the tasks will have to be redefined to distinguish one from the other.	Tradeoff between the smaller combinatorial problem for equipment selection and the increasing problem complexity in the state definition		

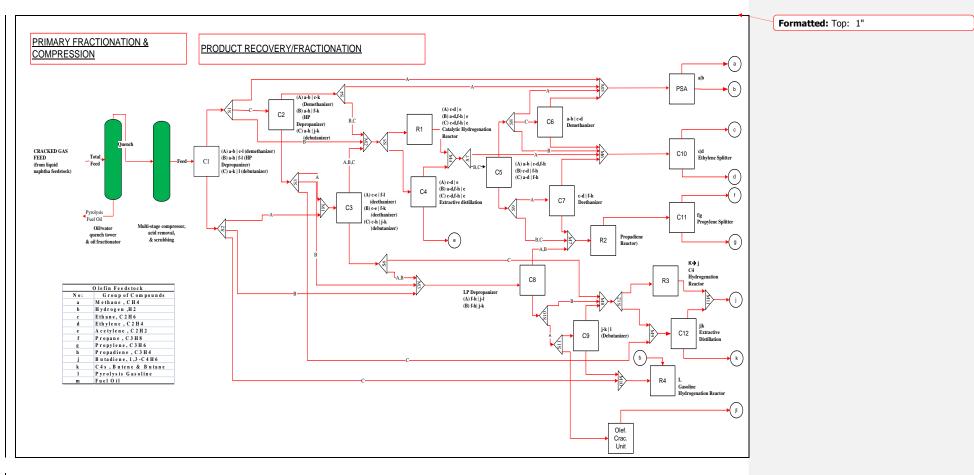


Figure 109 Intermediate Representation of Distillation Sequencing for Olefin Production

Figure 9 shows the intermediate representation of distillation sequencing for olefinproduction. The project scope is narrowed down to the product recovery or fractionation section. There are a few alternatives involved in the superstructure.

1. The first unit C1 consider different cuts :

- Demethanizer remove the light end first
- HP depropanizer use when the propane and heavier are main cracked feed.
- Debutainzer employs indirect sequence.
- 2. Different method to remove/separate acetylene from the stream:
 - Extractive distillation (task C4)
 - Catalytic hydrogenation reactor/ acetylene reactor (task R1) improve the quality of specific product, e.g. upgrade the chemical grade ethylene to polymer grade ethylene.
- 3. Different method to remove /separate butadiene from mixed C4s mixture
 - Extractive distillation (task C12)
 - Catalytic hydrogenation reactor (task R3) covert the butane and butane into butadiene.
- 4. ATOFINA/UOP Olefin Cracking Process (UOP, 2004) can be used to convert the heavy end product C4 to C8 olefin to propylene and ethylene at high propylene to ethylene ratio.
 - When integrated naphtha steam cracker the yield of propylene is increased dramatically for the same total naphtha flowrate.

Formatted: Justified, Line spacing: 1.5 lines

Formatted: Justified, Line spacing: 1.5 lines, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Tab after: 0.5" + Indent at: 0.5"

Formatted: Bullets and Numbering

Formatted: Justified, Indent: Left: 0.5", Hanging: 0.38", Line spacing: 1.5 lines, Bulleted + Level: 1 + Aligned at: 0.25" + Tab after: 0.5" + Indent at: 0.5", Tab stops: 0.88", List tab + Not at 0.5"

Formatted: Justified, Indent: Left: 0.5", Line spacing: 1.5 lines

Formatted: Line spacing: 1.5 lines, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Tab after: 0.5" + Indent at: 0.5"

Formatted: Bullets and Numbering

Formatted: Indent: Hanging: 0.5", Bulleted + Level: 2 + Aligned at: 0.75" + Tab after: 1" + Indent at: 1", Tab stops: 0.88", List tab + Not at 1"

Formatted: Indent: Left: 0.5"

Formatted: Line spacing: 1.5 lines, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Tab after: 0.5" + Indent at: 0.5"

Formatted: Bullets and Numbering

Formatted: Indent: Left: 0.5", Hanging: 0.38", Line spacing: 1.5 lines, Bulleted + Level: 1 + Aligned at: 0.25" + Tab after: 0.5" + Indent at: 0.5", Tab stops: 0.88", List tab + Not at 0.5"

Formatted: Indent: Left: 0.25", Line spacing: 1.5 lines

Formatted: Line spacing: 1.5 lines, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Tab after: 0.5" + Indent at: 0.5"

Formatted: Bullets and Numbering

Formatted: Font: (Default) Times New Roman

Formatted: Indent: Left: 0.5", Hanging: 0.38", Line spacing: 1.5 lines, Bulleted + Level: 1 + Aligned at: 0.25" + Tab after: 0.5" + Indent at: 0.5", Tab stops: 0.88", List tab + Not at 0.5"

Formatted: Font: (Default) Times New Roman

Formatted: Indent: Left: 0.25", Line spacing: 1.5 lines

4.34.2 Linear Material Balances

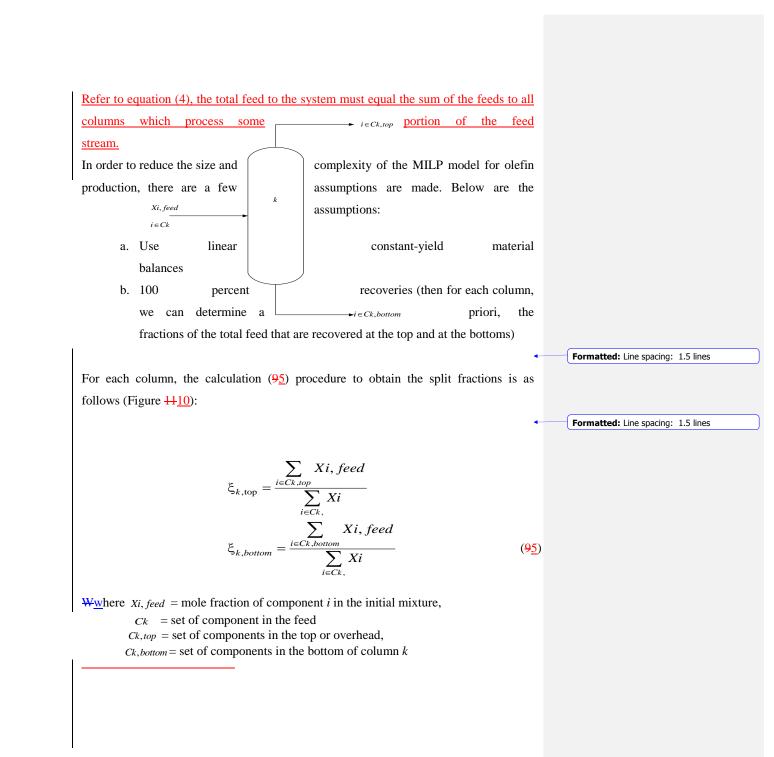
According Andrecovich and Westerberg (1985), material balance constraints relate material flows into and out of columns in the superstructure. Each column separates its feed into two products streams whose amounts are related to the feed flow by equation (2)

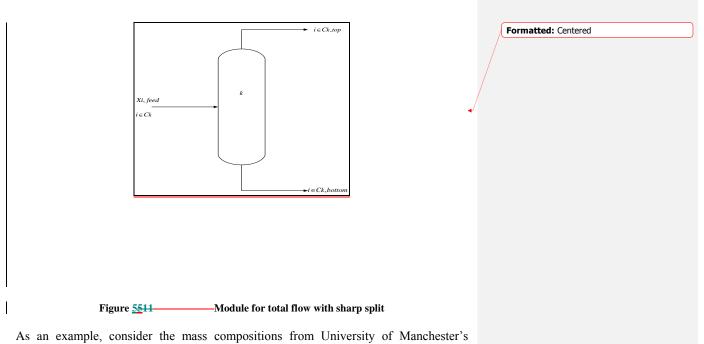
$$D_{k} = \xi_{D}F_{k}$$

$$B_{k} = \xi_{B}F_{k} = (1 - \xi_{D})F_{k}$$
(2)

Where $\underline{\xi}_{D}$ is the split fraction of the feed to column,k which leaves in the distillate and $\underline{\xi}_{B}$ is the split fraction that leaves in the bottoms. The constraint is written for each product produced by columns in the structure must equal to the amount of that intermediate product fed to columns which further separate the product. That is

$$\sum_{k \in PS_m} \xi_k F_k - \sum_{k \in FS_m} F_k = 0 \qquad m \in IP$$
(3)


<u>Where PS_m is the set of all columns which produce a given intermediate product *m* as distillate or bottoms, FS_m is the set of all columns having intermediate product *m* as feed, *F* is the total flow rate to a column, *IP* is the set of all intermediate products, and ξ is the split fraction relating distillate or bottoms flows to feed flows. This constraint (3) is written for each intermediate product.</u>


A similar expression is necessary for the feed to the distillation system:

$$\sum_{e \in FS_F} F_k = F_{TOT}$$

(4)

Formatted: Level 2 Formatted: Bullets and Numbering

As an example, consider the mass compositions from University of Manchester's Centre for Process Integration (2005), the corresponding split fraction are shown in Table $\underline{45}$.

 Table 554Split fraction based on mass composition from University Manchester's Centre for Process Integration (2005)

Split fraction based on mass composition from University of Manchester's Centre for Process Integration				
	(2005)			
$\xi^{a-l}_{TotalFeed} = 0.9618$	$\xi_{C3a}^{c-e} = 0.4246$	$\xi_{CAa}^{c-d} = 0.9793$		
$\xi^m_{TotalFeed} = 0.0382$	$\xi_{C3a}^{f-l} = 0.5754$	$\xi^{e}_{C4a} = 0.0207$		
$\xi_{C1a}^{a-b} = 0.1682$	$\xi_{C3b}^{c-e} = 0.5768$	$\xi_{C4b}^{ad-fh} = 0.9893$		
$\xi_{C1a}^{c-l} = 0.8318$	$\xi_{C3b}^{f-k} = 0.4232$	$\xi^{e}_{C4b} = 0.0107$		
$\xi_{C1b}^{a-h} = 0.7387$	$\xi_{C3c}^{c-h} = 0.8413$	$\xi_{C4c}^{cd-fh} = 0.9858$		
$\xi_{C1b}^{f-l} = 0.2613$	$\xi_{C3c}^{j-k} = 0.1587$	$\xi^{e}_{C4c} = 0.0142$		
$\xi_{C1c}^{a-k} = 0.7806$	$\xi_{_{R1a}}^{c-d} = 0.9793$	$\xi_{C5a}^{a-b} = 0.2488$		
$\xi_{C1c}^{l} = 0.2194$	$\xi^{e}_{_{R1a}} = 0.0207$	$\xi_{C5a}^{cd-fh} = 0.7512$		
$\xi_{C2a}^{a-b} = 0.2155$	$\xi_{_{R1b}}^{ad-fh}=0.9893$	$\xi_{C5b}^{c-d} = 0.6811$		
$\xi_{C2a}^{c-k} = 0.7845$	$\xi^{e}_{_{R1b}} = 0.0107$	$\xi_{C5b}^{f-h} = 0.3189$		

$\xi_{C2b}^{a-h} = 0.8632$	$\xi_{_{R1c}}^{_{cd-fh}} = 0.9858$	$\xi_{C5c}^{a-d} = 0.7604$
$\xi_{C2b}^{f-k} = 0.1368$	$\xi^{e}_{_{R1c}} = 0.0142$	$\xi_{C5c}^{f-h} = 0.2396$
$\xi_{C2c}^{a-h} = 0.8755$	$\xi_{C6}^{a-b} = 0.3272$	$\xi_{C7}^{c-d} = 0.6811$
$\xi_{C2c}^{j-k} = 0.1245$	$\xi_{C6}^{c-d} = 0.6728$	$\xi_{C7}^{f-h} = 0.3189$
$\xi_{C8a}^{f-h} = 0.3384$	$\xi_{C8b}^{f-h} = 0.6250$	$\xi_{C9}^{j-k} = 0.3069$
$\xi_{C8a}^{j-l} = 0.6616$	$\xi_{C8b}^{j-k} = 0.3750$	$\xi_{C9}^{j-k} = 0.6931$

For initial node in the network we have Equation (106),

$$\xi_{\text{TotalFeed}}^{a-l} F_{\text{Quench}} + \xi_{\text{TotalFeed}}^{m} F_{\text{Oil}} = \text{TOTFEED}$$

$$\xi_{\text{TotalFeed}}^{a-l} F_{\text{Quench}} + \xi_{\text{TotalFeed}}^{m} F_{\text{Oil}} = \text{TOTFEED}$$

$$(10)$$

For the remaining nodes in the network, mass balances for each intermediate product <u>arewas</u> considered. Based on the <u>split fractions of recoveriesy sections-calculatedgiven</u> in Table 4<u>5</u>, the mass balances for each intermediate product is as <u>listed in</u> follows(Table 56, as obtained from the following general constraint:):

$$\sum_{k \in PS_m} \xi_k F_k - \sum_{k \in FS_m} F_k = 0 \qquad m \in IP$$
(103)

where PS_m is the set of all columns that produce a given intermediate product m as distillate or bottoms, FS_m is the set of all columns having intermediate product m as feed, and IP is the set of all intermediate products.

Table 665 Mass balance for each intermediate product

Mass balances for each intermediate product

1. Intermediate (a-b) which is produced in C1a, C2a, C6 and C5a and directed to PSA.

-(Formatted: Line spacing: 1.	5 lines

Formatted: Line spacing: 1.5 lines

Field Code Changed

Formatted: Font: Not Bold Formatted: Line spacing: 1.5 lines, Tab stops: 2.95", Centered + 5.9", Right

Formatted: Line spacing: 1.5 lines

Formatted: Lowered by 17 pt Formatted: Font: Not Bold

Field Code Changed

(<u>106)</u>₄

Formatted: Justified, Line spacing: 1.5 lines
Formatted: Font: Italic
Formatted: Font: Italic, Subscript
Formatted: Font: Italic
Formatted: Font: Italic
Formatted: Font: Italic, Subscript
Formatted: Font: Italic
Formatted: Font: Italic

 $\xi_{C1a}^{a-b}F_{C1a} + \xi_{C2a}^{a-b}F_{C2a} + \xi_{C6}^{a-b}F_{C6} + \xi_{C5a}^{a-b}F_{C5a} - F_{PSA} = 0$

2. Intermediate (c-l) which is produced in C1a and directed to C3a.

$$\xi_{C1a}^{c-l} F_{C1a} - F_{C3a} = 0$$

3. Intermediate (a-h) which is produced in C1b,C2b and C2c and directed to R1b and C4b.

$$\xi_{C1b}^{a-h}F_{C1b} + \xi_{C2b}^{a-h}F_{C2b} + \xi_{C2c}^{a-h}F_{C2c} - F_{R1b} - F_{C4b} = 0$$

4. Intermediate (f-l) which is produced in C1b and C3a and directed to C8a.

$$\xi_{C1b}^{f-l}F_{C1b} + \xi_{C3a}^{f-l}F_{C3a} - F_{C8a} = 0$$

5. Intermediate (a-k) which is produced in C1c and directed to C2a, C2b and C2c.

$$\xi_{C1c}^{a-k}F_{C1c} - F_{C2a} - F_{C2b} - F_{C2c} = 0$$

6. Intermediate (1) which is produced in C1c and C9 and directed to R4.

$$\xi_{C1c}^l F_{C1c} + \xi_{C9}^l F_{C9} - F_{R4} = 0$$

7. Intermediate (c-k) which is produced in C2a and directed to C3b and C3c

$$\xi_{C2a}^{c-k}F_{C2a} - F_{C3b} - F_{C3c} = 0$$

8. Intermediate (f-k) which is produced in C2b and C3b and directed to C8b

$$\xi_{C2b}^{f-k}F_{C2b} + \xi_{C3b}^{f-k}F_{C3b} - F_{C8b} = 0$$

9. Intermediate (j-k) which is produced in C2c, C3c, C8b, and C9 and directed to C12

$$\xi_{C2c}^{j-k}F_{C2c} + \xi_{C3c}^{j-k}F_{C3c} + \xi_{C8b}^{j-k}F_{C8b} + \xi_{C9}^{j-k}F_{C9} - F_{C12} = 0$$

10. Intermediate (c-e) which is produced in C3a and C3b and directed to R1a and C4a

$$\xi_{C3a}^{c-e}F_{C3a} + \xi_{C3b}^{c-e}F_{C3b} - F_{R1a} - F_{C4a} = 0$$

11. Intermediate (c-h) which is produced in C3c and directed to R1c and C4c

$$\xi_{C3c}^{c-h}F_{C3c} - F_{R1c} - F_{C4c} = 0$$

12. Intermediate (c-d) which is produced in R1a,C4a,C6,C7 and C5b and C3b and directed to C10

$$\xi_{R1a}^{c-d}F_{R1a} + \xi_{C4a}^{c-d}F_{C4a} + \xi_{C6}^{c-d}F_{C6} + \xi_{C7}^{c-d}F_{C7} + \xi_{C5b}^{c-d}F_{C5b} - F_{C10} = 0$$

13. Intermediate (ad-fh) which is produced in R1b and C4b and C3b and directed to C5a and C5c

$$\xi^{ad-fh}_{R1b}F_{R1b} + \xi^{ad-fh}_{C4b}F_{C4b} - F_{C5a} - F_{C5c} = 0$$

14. Intermediate (cd-fh) which is produced in R1c, C4c and C5a and directed to C7.

$$\xi_{R1c}^{cd-fh}F_{R1c} + \xi_{C4c}^{cd-fh}F_{C4c} + \xi_{C5a}^{cd-fh}F_{C5a} - F_{C7} = 0$$

15. Intermediate (a-d) which is produced in C5c and directed to C6

$$\xi_{C5c}^{a-d} F_{C5c} - F_{C6} = 0$$

16. Intermediate (f-h) which is produced in C5b, C5c, C7, C8a and C8b and directed to R2

$$\xi_{C5b}^{f-h}F_{C5b} + \xi_{C5c}^{f-h}F_{C5c} + \xi_{C7}^{f-h}F_{C7} + \xi_{C8a}^{f-h}F_{C8a} + \xi_{C8b}^{f-h}F_{C8b} - F_{R2} = 0$$

17. Intermediate (j-l) which is produced in C8a and directed to C9 and OCU

4.2-3 Logical Constraints on Design Specifications, Interconnectivity Relationships and Switching Constraints

Logical constraints are developed for the intermediate representation superstructure in Figure $\frac{10 \cdot 9}{10}$ for the following purposes:

- to relate the continuous variables with the binary 0–1 variables, specifically to
 ensure that the non-selection of a process unit results in corresponding zero
 flowrates of the input and output streams associated with the process unit;
- to stipulate design specifications based on engineering knowledge and past design experience; and
- to enforce interconnectivity relationships among the states and tasks nodes in the superstructure.

The logical constraints and switching constraints are also developed for the entire Intermediate superstructure representation and they are included in Table $\frac{6-7}{2}$ and Table $\frac{78}{2}$.

The following notations and definitions are used in constructing these constraints:

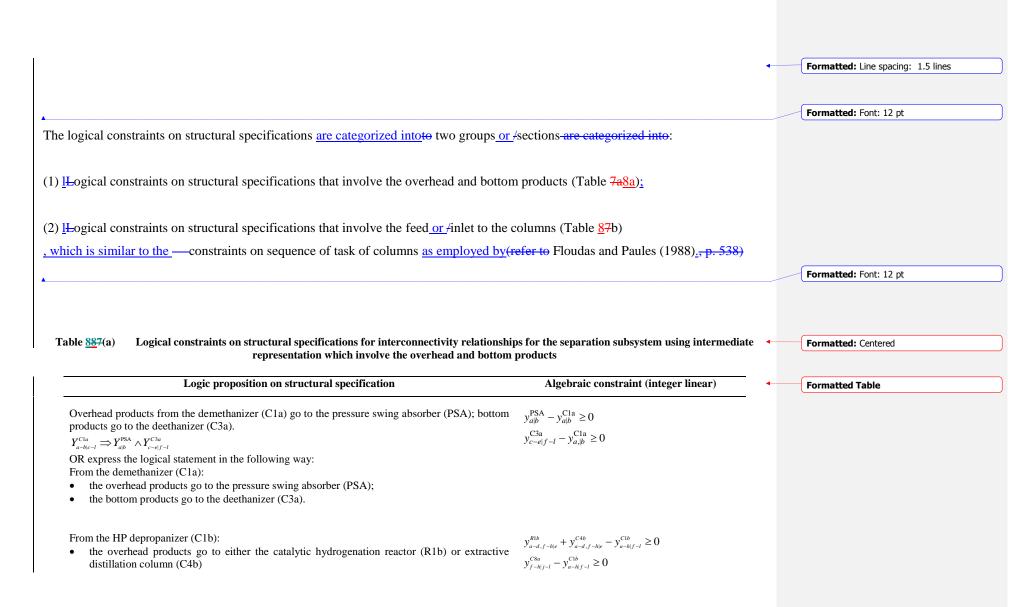
 Y_i : Boolean variable with value true denoting the existence of a process unit *i* (including mixers and splitters) and values false denoting its non-existence;

 y_i : binary variable associated with their corresponding Boolean variables with value equals to one (1) denoting the existence of a process unit *i* (including mixers and splitters) and value equals to zero (0) denoting its non-existence;

 F_j : flow rate variable of a state (or material stream) j; and

 M_i : maximum capacity of a process unit i to represent the upper bound on its outlet flow rate in stream *j*.

Note that in this work, we have found it desirable to only consider the selection of the process units; thus, we have omitted the modeling of the stream selection in the logical


constraints. The same reason has been stressed in Raman and Grossmann (1993), which goes on to assert that this is indeed commonly the case in problems of similar nature.

Tables 6-7 and 78, present the logical constraints on design specifications and logical constraints on interconnectivity relationships (structural specifications) respectively for the feed and cracking subsystem. Logical constraints on design specifications are needed especially for distillation columns (and reactors) in which selection of a single task that takes place in the column needs to be made.

Formatted: Top: 1"

Table 776 Logical constraints on design specifications (DS) for the separation subsystem using intermediate representation

	Logic proposition on design specification	Logical expression and clauses	Integer linear inequality	-	Formatted Table
DS1	 Select only one from among: demethanizer (task C1a) HP depropanizer (task C1b) debutanizer (C1c) 	$Y_{a ext{-}b c ext{-}l}^{C1a} \oplus Y_{a ext{-}b f ext{-}l}^{C1b} \oplus Y_{a ext{-}k l}^{C1c}$	$y_{a-b c-l}^{C1a} + y_{a-b f-l}^{C1b} + y_{a-b f}^{C1c} = 1$	-	
DS2	From among the demethanizer (C2a), HP depropanizer (C2b), and debutanizer (C2c), select none or only one (note: none of the task for C2 column can be selected because there is provision for it to be bypassed in the superstructure)	$Y^{\text{C2a}}_{a-b c-k} \vee Y^{\text{C2b}}_{a-i f-k} \vee Y^{\text{C2c}}_{a-i j-k}$	$y_{a-b c-k}^{\text{C2a}} + y_{a-i f-k}^{\text{C2b}} + y_{a-i j-k}^{\text{C2c}} \le 1$		
DS3	Select only one or none of the deethanizer (C3a, C3b) or debutanizer (C3c).	$Y^{C3a}_{c-e f-l} \lor Y^{C3b}_{c-e f-k} \lor Y^{C3c}_{c-i j-k}$	$y_{c-e f-l}^{C3a} + y_{c-e f-k}^{C3b} + y_{c-l j-k}^{C3c} \le 1$		
DS4	Catalytic hydrogenation reactor (R1) converts acetylene to ethane and ethylene. Components entering R1 depend on constraint DS1, i.e., whether HP depropanizer or debutanizer is selected upstream. (note that this might be a redundant constraint; this condition might have been enforced by other constraints)	$Y^{R1a}_{c-d e} \lor Y^{R1b}_{a-d,f-h e} \lor Y^{R1c}_{c-d,f-h e}$	$y_{c-d e}^{R1a} + y_{a-d,f-h e}^{R1b} + y_{c-d,f-h e}^{R1c} \le 1$		
DS5	Extractive distillation column (C4) separates acetylene from the other components. As in previous, components entering C4 depend on the unit selected upstream.	$Y^{C4a}_{c-d e} \lor Y^{C4b}_{a-d,f-h e} \lor Y^{C4c}_{c-d,f-h e}$	$y_{c-d e}^{C4a} + y_{a-d,f-h e}^{C4b} + y_{c-d,f-h e}^{C4c} \le 1$		
DS6	At most two of the tasks for similar categories of tasks involving the catalytic reactor R1 or column C4 can be selected		$\begin{split} y_{c-d e}^{R1a} + y_{c-d e}^{C4a} &\leq 2 \\ y_{a-d,f-h e}^{R1b} + y_{a-d,f-h e}^{C4b} &\leq 2 \\ y_{c-d,f-h e}^{R1c} + y_{c-d,f-h e}^{C4c} &\leq 2 \end{split}$		
DS7	Select at most one from among demethanizer (C5a), deethanizer (C5b), and depropanizer (C5c).		$y_{a-b c-d,f-h}^{CSa} + y_{c-d f-h}^{CSb} + y_{a-d f-h}^{CSc} \le 1$		
DS8	Select only one or none from among LP depropanizer (C8a) and C8b $% \left(\mathcal{C}_{1}^{2}\right) =0$	$Y^{C8a}_{f-h j-l} \lor Y^{C8b}_{f-h j-k}$	$y_{f-h j-l}^{C8a} + y_{f-h j-k}^{C8b} \le 1$		
DS9	At most two tasks can be selected between C4 hydrogenation reactor R3 and extractive distillation column C12		$y_{j k}^{R3} + y_{j k}^{C12} \le 2$		

• the bottom products go to the LP depropanizer (C8a).

$$\begin{split} Y^{Clb}_{a-h|f-l} & \Longrightarrow \left(Y^{Rlb}_{a-d,f-h|e} \lor Y^{C4b}_{a-d,f-h|e}\right) \land Y^{C8a}_{f-h|j-l} \\ \left(\neg Y^{Clb}_{a-h|f-l} \lor Y^{Rlb}_{a-d,f-h|e} \lor Y^{C4b}_{a-d,f-h|e}\right) \land \left(\neg Y^{Clb}_{a-h|f-l} \lor Y^{C8a}_{f-h|j-l}\right) \end{split}$$

 $\begin{array}{ll} \text{Overhead products from debutanizer (C1c) go to demethanizer (C2a), depropanizer (C2b) or} & y_{a-b|c-k}^{c2a} + y_{a-h|f-k}^{c2b} + y_{1-9|10,11}^{c2c} - y_{a-i|f-k}^{c2c} \ge 0 \\ \text{debutanizer (C2c). Bottom products go to gasoline hydrogenation reactor (R4).} & y_{a-b|c-k}^{c2a} + y_{a-h|f-k}^{c2b} + y_{1-9|10,11}^{c2c} - y_{a-i|f-k}^{c2c} \ge 0 \\ Y_{a-k|l}^{c1c} \Rightarrow \left(Y_{a-b|c-k}^{c2a} \vee Y_{a-h|f-k}^{c2c} \vee Y_{a-h|f-k}^{c2c} \vee Y_{a-h|f-k}^{c2c} \right) \wedge Y_{l}^{R4} & y_{a-h|f-k}^{c1c} \ge 0 \end{array}$

$$\left(-Y^{\scriptscriptstyle C1c}_{a-k|l}\vee Y^{\scriptscriptstyle C2a}_{a-b|c-k}\vee Y^{\scriptscriptstyle C2b}_{a-b|f-k}\vee Y^{\scriptscriptstyle C2c}_{a-i|j-k}\right)\wedge \left(-Y^{\scriptscriptstyle C1c}_{a-k|l}\vee Y^{\scriptscriptstyle R4}_{l}\right)$$

Overhead products from demethanizer (C2a) go to pressure swing absorber (PSA). Bottom $y_{a|b}^{PSA} - y_{a-b|c-k}^{C2a} \ge 0$ products go to deethanizer(C3b) or debutanizer (C3c).

$$\begin{cases} Y_{a-b|c-k}^{C2a} \Rightarrow Y_{a|b}^{PSA} \land \left(Y_{c-e|f-k}^{C3b} \lor Y_{c-e|j-k}^{C3c}\right) & y_{c-e|f-k}^{C3c} + y_{c-e|f-k}^{C3c} - y_{a-b|c-k}^{C3c} \ge 0 \\ \left(\neg Y_{a-b|c-k}^{C2a} \lor Y_{a|b}^{PSA}\right) \land \left(\neg Y_{a-b|c-k}^{C2a} \lor Y_{c-e|f-k}^{C3b} \lor Y_{c-e|f-k}^{C3c}\right) & y_{c-e|f-k}^{C3c} \ge 0 \end{cases}$$

Overhead products from depropanizer (C2b) go to catalytic hydrogenation reactor (R1b) or extractive distillation column (C4b). Bottom products go to depropanizer (C8b). $V^{C2b} \longrightarrow \left(V^{R1b} \rightarrow V^{C4b}\right) \land V^{C8b} \land V^{C8b} \land V^{C8b}$

$$\begin{split} Y^{C2b}_{a-h|f-k} & \Rightarrow \left(Y^{R1b}_{a-d,f-h|e} \lor Y^{C4b}_{a-d,f-h|e} \right) \land Y^{C8b}_{f-h|j-k} \\ \left(\neg Y^{C2b}_{a-h|f-k} \lor Y^{R1b}_{a-d,f-h|e} \lor Y^{C4b}_{a-d,f-h|e} \right) \land \left(\neg Y^{C2b}_{1-9|6-11} \lor Y^{C8b}_{f-h|j-k} \right) \end{split}$$

Overhead products from the deethanizer (C3a) go to the catalytic hydrogenation reactor (R1a) or extractive distillation column (C4a). Bottom products go to depropanizer (C8a). $Y^{C3a} \rightarrow (Y^{R1a} \lor Y^{C4a}) \land Y^{C8a} \land Y^{C8a}$

$$\begin{pmatrix} -Y_{c-e|f-l}^{C3a} \lor Y_{c-d|e}^{R1a} \lor Y_{c-d|e}^{C4a} \end{pmatrix} \land \begin{pmatrix} -Y_{c-e|f-l}^{C3a} \lor Y_{f-h|j-l}^{C8a} \end{pmatrix}$$

Overhead products from the deethanizer (C3b) go to the catalytic hydrogenation reactor (R1a) or extractive distillation column (C4a). Bottom products go to depropanizer (C8b). $\mathbf{y}^{C3b} \longrightarrow \left(\mathbf{y}^{Ra} \lor \mathbf{y}^{C4a}\right) \diamond \mathbf{y}^{C8b} = 0$

$$\begin{split} Y^{C3b}_{c-e|f-k} & \Longrightarrow \left(Y^{R1a}_{c-d|e} \lor Y^{C4a}_{c-d|e} \right) \land Y^{C8b}_{f-h|j-k} \\ \left(\neg Y^{C3b}_{c-e|f-k} \lor Y^{R1a}_{c-d|e} \lor Y^{C4a}_{c-d|e} \right) \land \left(\neg Y^{C3b}_{c-e|f-k} \lor Y^{C8b}_{f-h|j-k} \end{split}$$

Overhead products from debutanizer (C3c) go to catalytic hydrogenation reactor (R1c) or extractive distillation column (C4c). Bottom products go to extractive distillation column (C12) or C4 hydrogenatioan reactor (R3). $y_{c-d,f-h|e}^{R1c} + y_{c-d,f-h|e}^{C4c} - y_{c-h|f-k}^{C3c} \ge 0$

$$\begin{split} Y_{c-h|j-k}^{C3c} \Rightarrow & \left(Y_{c-d,f-h|e}^{R1c} \lor Y_{c-d,f-h|e}^{C4c}\right) \land \left(Y_{j|k}^{C12} \lor Y_{j|k}^{R3}\right) \\ & \left(\neg Y_{3-9|10,11}^{C3c} \lor Y_{c-d,f-h|e}^{R1c} \lor Y_{c-d,f-h|e}^{C4c}\right) \land \left(\neg Y_{3-9|10,11}^{C3c} \lor Y_{j|k}^{C12} \lor Y_{j|k}^{R3}\right) \end{split}$$

Products from catalytic hydrogenation reactor (R1a) go to ethylene splitter (C10).

 $egin{aligned} &Y^{R1a}_{c-d|e} \Rightarrow Y^{C10}_{c|d} \ &
onumber \ &$

Products from catalytic hydrogenation reactor (R1b) go to demethanizer (C5a) or depropanizer $y_{a-b|c-d,f-h}^{C5a} + y_{a-d|f-h}^{C5c} - y_{a-d,f-h|e}^{R1b} \ge 0$ (C5c).

 $y_{c|d}^{C10} - y_{c-d|e}^{R1a} \ge 0$

 $y_{c-d|f-h}^{C5b} - y_{c-d,f-h|e}^{R1c} \ge 0$

 $y_{c|d}^{C10} - y_{c-d|e}^{C4a} \ge 0$

$$\begin{split} Y^{R1b}_{a-d,f-h|e} &\Longrightarrow Y^{C5a}_{a-b|c-d,f-h} \lor Y^{C5c}_{a-d|f-h} \\ \neg Y^{R1b}_{a-d,f-h|5} \lor Y^{C5a}_{a-b|c-d,f-h} \lor Y^{C5c}_{a-d|f-h} \end{split}$$

Products from catalytic hydrogenation reactor (R1c) go to demethanizer (C5b).

$$\begin{split} Y^{\text{Rlc}}_{c-d,f-h|e} &\Longrightarrow Y^{\text{C5b}}_{c-d|f-h} \\ \neg Y^{\text{Rlc}}_{c-d,f-h|e} \lor Y^{\text{C5b}}_{c-d|f-h} \end{split}$$

Overhead products of extractive distillation (C4a) go to ethylene splitter (C10).

 $egin{aligned} &Y^{C4a}_{c-d|e} \Longrightarrow Y^{C10}_{c|d} \ &
egn Y^{C4a}_{c-d|e} \lor Y^{C10}_{c|d} \end{aligned}$

Overhead products from extractive distillation (C4b) go to demethanizer (C5a) or depropanizer $y_{a-b|c-d,f-h}^{C5a} + y_{a-d|f-h}^{C5c} - y_{a-d,f-h|e}^{C4b} \ge 0$ (C5c).

$$\begin{split} Y^{C4b}_{a-d,f-h|e} \Rightarrow Y^{C5a}_{a-b|c-d,f-h} \lor Y^{C5c}_{a-d|f-h} \\ \neg Y^{C4b}_{a-d,f-h|e} \lor \left(Y^{C5a}_{a-b|c-d,f-h} \lor Y^{C5c}_{a-d|f-h}\right) \end{split}$$

(NOTE: Boolean variable for column C5b $Y_{3,4/6-9}^{C5b}$ is not considered in the logic proposition

because it does not involve components 1 and 2.)

Overhead products from extractive distillation (C4c) go to deeethanizer (C5b)

 $Y^{C4c}_{c-d,f-h|e} \Longrightarrow Y^{C5b}_{c-d|f-h}$

$$\neg Y_{c-d,f-h|e}^{C4c} \lor Y_{c-d|f-h}^{C5b}$$

Overhead products demethanizer (C5a) go to pressure swing absorber (PSA). Bottom products go $y_{a|b}^{PSA} - y_{a-b|c-d,f-h}^{C5a} \ge 0$ to deethanizer (C7).

 $y_{c-d|f-h}^{C5b} - y_{c-d,f-h|e}^{C4c} \ge 0$

$$\begin{split} Y^{C5b}_{c-d|f-h} &\Longrightarrow Y^{C10}_{c|d} \wedge Y^{R2}_{f-h} \\ \left(\neg Y^{C5b}_{c-d|f-h} \vee Y^{C10}_{c|d}\right) \wedge \left(\neg Y^{C5b}_{c-d|f-h} \vee Y^{R2}_{f-h}\right) \end{split}$$

Overhead products depropanizer (C5c) go to demethanizer (C6). Bottom products go to methyl $y_{a-b|c-d}^{C6} - y_{a-d|c-d,f-h}^{C5c} \ge 0$ acetylene & propadiene reactor (R2).

 $\begin{aligned} &Y_{a-d|c-d,f-h}^{CSc} \to Y_{a-b|c-d}^{C6} \wedge Y_{f-h}^{R2} & y_{f-h}^{CSc} \to y_{a-d|c-d,f-h}^{CSc} \ge 0 \\ & \left(-Y_{a-d|c-d,f-h}^{CSc} \vee Y_{a-b|c-d}^{C6} \right) \wedge \left(-Y_{a-d|c-d,f-h}^{CSc} \vee Y_{f-h}^{R2} \right) \end{aligned}$

$$\begin{split} Y^{C6}_{a \rightarrow b|c - d} &\Longrightarrow Y^{PSA}_{a|b} \wedge Y^{C10}_{c|d} \\ \left(\neg Y^{C6}_{a \rightarrow b|c - d} \vee Y^{PSA}_{a|b} \right) \wedge \left(\neg Y^{C6}_{a - b|c - d} \vee Y^{C10}_{c|d} \right) \end{split}$$

Overhead product from deethanizer (C7) go to ethylene splitter (C10) and bottom product go to $y_{cld}^{C10} - y_{c-dlf-h}^{C7} \ge 0$ methyl acetylene & propadiene reactor (R2). $y_{cl}^{R2} \longrightarrow y_{cl}^{R2} \longrightarrow y_{c-dlf-h}^{R2} \ge 0$

$$\begin{split} Y^{C7}_{c-d\mid f-h} &\Longrightarrow Y^{C10}_{c\mid d} \wedge Y^{R2}_{f-h} \\ \left(\neg Y^{C7}_{c-d\mid f-h} \vee Y^{C10}_{c\mid d}\right) \wedge \left(\neg Y^{C7}_{c-d\mid f-h} \vee Y^{R2}_{f-h}\right) \end{split}$$

Overhead products from depropanizer (C8a) go to methyl acetylene & propadiene reactor (R2). Bottom products will either got to debutanizer (C9) or olefin cracking unit (OCU). $y_{f-h}^{R2} - y_{f-h_{j-l}}^{C8a} \ge 0$ $y_{f-h}^{C9} + y_{f-l}^{C1} - y_{f-h_{j-l}}^{C8a} \ge 0$

$$\begin{split} &Y_{f-h|j-l}^{C8a} \Longrightarrow Y_{f-h}^{R2} \land \left(Y_{j-kl}^{C9} \lor Y_{j-l}^{OCU}\right) \\ & \left(\neg Y_{6-9|l0-12, l4-18}^{C8a} \lor Y_{f-h}^{R2}\right) \land \left(\neg Y_{f-h|j-l}^{C8a} \lor Y_{j-kl}^{C9} \lor Y_{j-l}^{OCU}\right) \end{split}$$

Overhead products from depropanizer (C8b) go to methyl acetylene and propadiene reactor (R2). Bottom products will either go to C4 hydrogenation reactor (R3), extractive distillation (C12) $y_{f-h}^{R2} - y_{f-h|f-k}^{C8b} \ge 0$

Bottom products will either go to C4 hydrogenation reactor (K5), extractive distintation (C12)

$$Y_{f-hj-k}^{C8b} \Rightarrow Y_{f-h}^{R2} \wedge \left(Y_{jk}^{R3} \vee Y_{jk}^{C12}\right)$$

$$\left(-Y_{f-hj-k}^{C8b} \vee Y_{f-h}^{R2}\right) \wedge \left(-Y_{6-9|10-11}^{C8b} \vee Y_{jk}^{R3} \vee Y_{jk}^{C12}\right)$$

Products from methyl acetylene and propadiene reactor (R2) go to propylene splitter (C11) (*note*: equivalence relation is used in the logical statement because involving single choice decision) $Y_{f-h}^{R2} \Leftrightarrow Y_{f|g}^{C11}$ $y_{f-h}^{R2} > 0$

 $\left(\neg Y_{\scriptscriptstyle f-h}^{\scriptscriptstyle R2} \lor Y_{\scriptscriptstyle f|g}^{\scriptscriptstyle C11}\right) \land \left(Y_{\scriptscriptstyle f-h}^{\scriptscriptstyle R2} \lor \neg Y_{\scriptscriptstyle f|g}^{\scriptscriptstyle C11}\right)$

Overhead products from debutanizer (C9) will either go to C4 hydrogenation reactor (R3) or extractive distillation (C12). Bottom products go to gasoline hydrogenation reactor (R4).

 $y_{j|k}^{R3} + y_{j|k}^{C12} - y_{j-k|l}^{C9} \ge 0$ $y_{l}^{R4} - y_{j-k|l}^{C9} \ge 0$

$$\begin{split} Y_{j-k|l}^{C9} &\Longrightarrow \left(Y_{j|k}^{R3} \lor Y_{j|k}^{C12}\right) \land Y_l^{R4} \\ \left(\neg Y_{j-k|l}^{C9} \lor Y_{j|k}^{R3} \lor Y_{j|k}^{C12}\right) \land \left(\neg Y_{j-k|l}^{C9} \lor Y_l^{R4}\right) \end{split}$$

Logic proposition on structural specification	Algebraic constraint (integer linear)	Formatted Table
The inlet of demethanizer (C2a), depropanizer (C2b), and debutanizer (C2c) is the overhead product of debutanizer (C1c).	$y_{a-k l}^{C1c} - y_{a-b c-k}^{C2a} \ge 0$	
$Y^{C2a}_{a-b c-k} \lor Y^{C2b}_{a-h f-k} \lor Y^{C2c}_{a-h j-k} \Rightarrow Y^{C1c}_{a-k j}$	$y_{a-k l}^{C1c} - y_{a-h f-k}^{C2b} \ge 0$	
$\left(\neg Y^{C2a}_{a-b c-k} \lor Y^{C1c}_{a-k l}\right) \land \left(\neg Y^{C2b}_{a-h f-k} \lor Y^{C1c}_{a-k l}\right) \land \left(\neg Y^{C2c}_{a-h j-k} \lor Y^{C1c}_{a-k l}\right)$	$y_{a-k l}^{Clc} - y_{a-h j-k}^{C2c} \ge 0$	
The inlet of deethanizer (C3a) is the bottom product of demethanizer (C1a). $Y_{c^{-e_lf-l}}^{C3a} \Rightarrow Y_{a^{-b_lc-l}}^{C1a}$ $\neg Y_{c^{-e_lf-l}}^{C3a} \lor Y_{a^{-b_lc-l}}^{C1a}$	$y_{a-b c-l}^{C1a} - y_{c-e f-l}^{C3a} \ge 0$	
The inlet of deethanizer (C3b) or debutanizer (C3c) is the bottom product of demethanizer (C2a).		
$Y^{C3b}_{c-e f-k} \lor Y^{C3c}_{c-h j-k} \Rightarrow Y^{C2a}_{a-b c-k}$	$y_{a-b c-k}^{C2a} - y_{c-e f-k}^{C3b} \ge 0$	
$ eg \left(Y^{C3b}_{c-e f-k} \lor Y^{C3c}_{c-h j-k} ight) \lor Y^{C2a}_{a-b c-k}$	$y_{a-b c-k}^{C2a} - y_{c-b j-k}^{C3c} \ge 0$	
$\left(eg Y^{C3b}_{c-e f-k} \wedge eg Y^{C3c}_{c-h j-k} ight) arphi Y^{C2a}_{a-b c-k}$		
$\left(\neg Y_{c-e f-k}^{C3b} \lor Y_{a-b c-k}^{C2a}\right) \land \left(\neg Y_{c-h j-k}^{C3c} \lor Y_{a-b c-k}^{C2a}\right)$		
The inlet of catalytic hydrogenation reactor (R1a) is either from demethanizer (C3a) or demethanizer (C3b). $Y_{c-d e}^{Ra} \Rightarrow Y_{c-e f-l}^{C3a} \lor Y_{c-e f-l}^{C3b}$ $\neg Y_{c-d e}^{Ra} \lor Y_{c-e f-l}^{C3a} \lor Y_{c-e f-l}^{C3b}$	$y_{c-e f-l}^{C3a} + y_{c-e f-l}^{C3b} - y_{c-d e}^{R1a} \ge 0$	
The inlet of catalytic hydrogenation reactor (R1b) is either from depropanizer (C2b), debutanizer (C2c) or HP depropanizer (C1b). $Y_{a-d,f-h e}^{Rlb} \Rightarrow Y_{a-h f-k}^{C2b} \lor Y_{a-h f-k}^{C2c} \lor Y_{a-h f-l}^{Clb}$ $\neg Y_{a-d,f-h e}^{Rlb} \lor Y_{a-h f-k}^{C2b} \lor Y_{a-h f-l}^{C2c} \lor Y_{a-h f-l}^{Clb}$	$y_{a-h f-k}^{C2b} + y_{a-h f-k}^{C2c} + y_{a-h f-l}^{C1b} - y_{a-d,f-h c}^{R1b} \ge 0$	
The inlet of catalytic hydrogenation reactor (R1c) is from debutanizer (C3c).	$y_{c-h j-k}^{C3c} - y_{c-d,f-h e}^{R1c} \ge 0$	

Table 78(b) Logical constraints on structural specifications that involve inlet/feed to columns

54

$$\begin{split} Y^{R_{1c}}_{c-d,f-h|e} &\Longrightarrow Y^{C3c}_{c-h|j-k} \\ \neg Y^{R_{1c}}_{c-d,f-h|e} \lor Y^{C3c}_{c-h|j-k} \end{split}$$

The inlet of extractive distillation (C4a) is either from deethanizer (C3a) or deethanizer (C3b).

 $y_{c-e|f-l}^{C3a} + y_{c-e|f-k}^{C3b} - y_{c-d|e}^{C4a} \ge 0$

 $y_{c-h|i-k}^{C3c} - y_{c-d,f-h|e}^{C4c} \ge 0$

$$\begin{split} Y^{C4a}_{c-d|e} \Longrightarrow Y^{C3a}_{c-e|f-l} \lor Y^{C3b}_{c-e|f-k} \\ \neg Y^{C4a}_{c-d|e} \lor Y^{C3a}_{c-e|f-l} \lor Y^{C3b}_{c-e|f-k} \end{split}$$

The inlet of extractive distillation (C4b) is either from depropanizer (C2b), debutanizer (C2c) or $y_{a-h|f-k}^{C2b} + y_{a-h|f-k}^{C1b} + y_{a-h|f-k}^{C4b} \ge 0$ HP depropanizer (C1b).

 $Y^{C4b}_{a-d,f-h|e} \Longrightarrow Y^{C2b}_{a-h|f-k} \lor Y^{C2c}_{a-h|j-k} \lor Y^{C1b}_{a-k|l}$

 $\neg Y^{C4b}_{a-d,f-h|e} \lor Y^{C2b}_{a-h|f-k} \lor Y^{C2c}_{a-h|j-k} \lor Y^{C1b}_{a-k|l}$

The inlet of extractive distillation (C4c) is from debutanizer (C3c).

 $egin{aligned} &Y^{C4c}_{c-d,f-h|e} \Longrightarrow Y^{C3c}_{c-h|j-k} \ &
onumber \ &
onumber$

The inlet of demethanizer (C5a) or depropanizer (C5c) is either from catalytic hydrogenation $y_{a-d,f-h|e}^{RLb} + y_{a-d,f-h|e}^{C4b} + y_{a-d,f-h|e}^{$

$$\begin{split} Y^{C5a}_{a \ b|c \ d, f \ -h} & \lor Y^{C5c}_{a \ d|f \ -h} \Longrightarrow Y^{Rlb}_{a \ d, f \ -h|c} \lor Y^{C4b}_{a \ d, f \ -h|c} \\ & (\neg Y^{C5a}_{a \ b|c \ d, f \ -h} \land \neg Y^{C5c}_{a \ d|f \ -h}) \lor (Y^{Rlb}_{1 \ 4, 6 \ 9|5} \lor Y^{C4b}_{1 \ 4, 6 \ 9|5}) \end{split}$$

The inlet of deethanizer (C5b) is either from catalytic hydrogenation reactor (R1c) or extractive $y_{c-d,f-h|e}^{R1c} + y_{c-d,f-h|e}^{C4c} - y_{c-d,f-h|e}^{C5b} \ge 0$ distillation (C4c).

$$\begin{split} Y^{C5b}_{c-d|f-h} &\Longrightarrow Y^{R1c}_{c-d,f-h|e} \lor Y^{C4c}_{c-d,f-h|e} \\ \neg Y^{C5b}_{c-d|f-h} \lor Y^{R1c}_{c-d,f-h|e} \lor Y^{C4c}_{c-d,f-h|e} \end{split}$$

The inlet of demethanizer (C6) is from depropanizer (C5c).

 $Y^{C6}_{a-b|c-d} \Longrightarrow Y^{C5c}_{a-d|f-h}$

$$\neg Y_{a-b|c-d}^{C6} \lor Y_{a-d|f-h}^{C5c}$$

The inlet of deethanizer (C7) is from demethanizer (C5a).

$$\begin{split} y_{a-d,f-h|e}^{Rlb} + y_{a-d,f-h|e}^{C4b} - y_{a-b|c-d,f-h}^{C5a} \ge 0\\ y_{a-d,f-h|e}^{Rlb} + y_{a-d,f-h|e}^{C4b} - y_{a-d|f-h}^{C5c} \ge 0 \end{split}$$

 $y_{a-d|f-h}^{C5c} - y_{a-b|c-d}^{C6} \ge 0$

 $y_{a-b|c-d,f-h}^{C5a} - y_{c-d|f-h}^{C7} \ge 0$

 $Y_{c-d|f-h}^{C7} \Longrightarrow Y_{a-b|c-d,f-h}^{C5a}$ $\neg Y_{c-d|f-h}^{C7} \lor Y_{a-b|c-d|f-h}^{C5a}$ The inlet to depropanizer (C8a) is either from deethanizer (C3a) or HP depropanizer (C1b). $y_{c-e|f-l}^{C3a} + y_{a-h|f-l}^{C1b} - y_{f-h|j-l}^{C8a} \ge 0$ $Y_{f-h|i-l}^{C8a} \Longrightarrow Y_{c-e|f-l}^{C3a} \lor Y_{a-h|f-l}^{C1b}$ $\neg Y^{C8a}_{f-h|j-l} \lor Y^{C3a}_{c-e|f-l} \lor Y^{C1b}_{a-h|f-l}$ The inlet to depropanizer (C8b) is either from deethanizer (C3b) or HP depropanizer (C2b). $y_{c-e|f-k}^{C3b} + y_{a-h|f-k}^{C2b} - y_{f-h|i-k}^{C8b} \ge 0$ $Y_{f-h|j-k}^{C8b} \Longrightarrow Y_{c-e|f-k}^{C3b} \lor Y_{a-h|f-k}^{C2b}$ $\neg Y_{f-h|j-k}^{C8b} \lor Y_{c-e|f-k}^{C3b} \lor Y_{a-h|f-k}^{C2b}$ The inlet of olefin cracking unit (OCU) is either from depropanizer (C8a) or depropanizer (C8b). $y_{f-h|i-l}^{C8a} + y_{f-h|i-k}^{C8b} - y_{i-l}^{OCU} \ge 0$ $Y_{i-l}^{OCU} \Longrightarrow Y_{f-h|i-l}^{C8a} \lor Y_{f-h|i-k}^{C8b}$ $\neg Y_{i-l}^{OCU} \lor Y_{f-h|i-l}^{C8a} \lor Y_{f-h|i-k}^{C8b}$ The inlet of MAPD(R2) is from either from C7, C5b, C5c, C8a or C8b. $y_{c-d|f-h}^{C7} + y_{c-d|f-h}^{C5b} + y_{a-d|f-h}^{C5c} + y_{f-h|j-l}^{C8a} + y_{f-h|j-k}^{C8b} - y_{f-h}^{R2} \ge 0$ $Y^{\scriptscriptstyle R2}_{\scriptscriptstyle f-h} \Longrightarrow Y^{\scriptscriptstyle C7}_{\scriptscriptstyle c-d|f-h} \lor Y^{\scriptscriptstyle C5b}_{\scriptscriptstyle c-d|f-h} \lor Y^{\scriptscriptstyle C5c}_{\scriptscriptstyle a-d|f-h} \lor Y^{\scriptscriptstyle C8a}_{\scriptscriptstyle f-h|j-l} \lor Y^{\scriptscriptstyle C8b}_{f-h|j-k}$ $\neg Y_{f-h}^{R2} \lor Y_{c-d|f-h}^{C7} \lor Y_{c-d|f-h}^{C5b} \lor Y_{a-d|f-h}^{C5c} \lor Y_{f-h|i-l}^{C8a} \lor Y_{f-h|i-k}^{C8b}$ The inlet to pressure swing absorber (PSA) is either from demethanizer (C1a), demethanizer $y_{a-b|c-l}^{C1a} + y_{a-b|c-k}^{C2a} + y_{a-b|c-d,f-h}^{C5a} + y_{a-b|c-d,f-h}^{C6} + y_{a-b|c-d}^{C6} - y_{a|b}^{PSA} \ge 0$ (C2a), demethanizer (C5a) or demethanizer (C6). $Y_{a|b}^{PSA} \Longrightarrow Y_{a-b|c-l}^{C1a} \lor Y_{a-b|c-k}^{C2a} \lor Y_{a-b|c-d,f-h}^{C5a} \lor Y_{a-b|c-d,f-h}^{C6} \lor Y_{a-b|c-d}^{C6}$ $\neg Y_{a|b}^{PSA} \lor Y_{a-b|c-l}^{C1a} \lor Y_{a-b|c-k}^{C2a} \lor Y_{a-b|c-d,f-h}^{C5a} \lor Y_{a-b|c-d,f-h}^{C6}$ The inlet of debutanizer (C9) is from depropanizer (C8a). $y_{f-h|i-l}^{C8a} - y_{i-k|l}^{C9} \ge 0$ $Y^{C9}_{j-k|l} \Longrightarrow Y^{C8a}_{f-h|j-l}$ $\neg Y^{C9}_{i-k|l} \lor Y^{C8a}_{f-h|j-l}$ The inlet to ethylene splitter (C10) is either from catalytic hydrogenation reator (R1a), extractive $y_{c-d|e}^{R_{1a}} + y_{c-d|e}^{C_{4a}} + y_{c-d|f-h}^{C_{5b}} + y_{a-b|c-d}^{C_{6}} + y_{c-d|f-h}^{C_{7}} - y_{c|d}^{C_{10}} \ge 0$ distillation (C4a), depropanizer (C5) or demethanizer (C6) or deethanizer (C7).

$$\begin{split} Y^{C10}_{c|d} & \Longrightarrow Y^{R1a}_{c-d|e} \lor Y^{C4a}_{c-d|e} \lor Y^{C5b}_{c-d|f-h} \lor Y^{C6}_{a-b|c-d} \lor Y^{C7}_{c-d|f-h} \\ & \neg Y^{C10}_{c|d} \lor Y^{R1a}_{c-d|e} \lor Y^{C4a}_{c-d|e} \lor Y^{C5b}_{c-d|f-h} \lor Y^{C6}_{a-b|c-d} \lor Y^{C7}_{c-d|f-h} \end{split}$$

The inlet of C11 is from MAPD (R2) $Y_{f|g}^{C11} \Rightarrow Y_{f-h}^{R2}$ $\neg Y_{f|g}^{C11} \lor Y_{f-h}^{R2}$

 $y_{f-h}^{R2} - y_{f|g}^{C11} \ge 0$

The inlet to C4 hydrogenation reactor (R3) is either from debutanizer (C9), depropanizer (C8b), $y_{j-k|l}^{C9} + y_{j-h|j-k}^{C8b} + y_{c-h|j-k}^{C3c} - y_{j|k}^{R3} \ge 0$ debutanizer (C3c).

$$\begin{split} Y^{R3}_{j|k} &\Longrightarrow Y^{C9}_{j-k|l} \lor Y^{C8b}_{f-h|j-k} \lor Y^{C3c}_{c-h|j-k} \\ \neg Y^{R3}_{j|k} \lor & \left(Y^{C9}_{j-k|l} \lor Y^{C8b}_{f-h|j-k} \lor Y^{C3c}_{c-h|j-k}\right) \end{split}$$

The inlet to extractive distillation (C12) is either from debutanizer (C9), depropanizer (C8b), $y_{j-k|l}^{C9} + y_{j-k|j-k}^{C8b} + y_{a-h|j-k}^{C3c} - y_{j|k}^{C12} \ge 0$ debutanizer (C3c) or debutanizer (C2c).

$$\begin{split} \mathbf{Y}_{j|k}^{C12} \Longrightarrow \mathbf{Y}_{j-k|l}^{C9} & \vee \mathbf{Y}_{f-h|j-k}^{C8b} \vee \mathbf{Y}_{c-h|j-k}^{C3c} \vee \mathbf{Y}_{a-h|j-k}^{C2c} \\ \neg \mathbf{Y}_{j|k}^{C12} \vee \mathbf{Y}_{j-k|l}^{C9} \vee \mathbf{Y}_{f-h|j-k}^{C8b} \vee \mathbf{Y}_{c-h|j-k}^{C3c} \vee \mathbf{Y}_{a-h|j-k}^{C2c} \end{split}$$

The inlet of gasoline dehydrogenation reactor (R4) is either from debutanizer (C9) or debutanizer $y_{j-k|l}^{C9} + y_{a-k|l}^{C1c} - y_l^{R4} \ge 0$ (C1c).

 $egin{aligned} &Y_l^{R4} \Longrightarrow Y_{j-k|l}^{C9} \lor Y_{a-k|l}^{C1c} \ &
onumber \ &
onu$

4.4 Switching Constraints

To ensure that the non-existence of a process unit results in the corresponding input flowrates to the unit assuming the value of zero, we consider the formulation of big-M logical constraints to impose the relations between the continuous variables, which in our case represent the flowrates of the streams, and the discrete binary 0–1 variables, which denote the existence of the streams and process units.

The general formulation of the big-*M* logical constraints is given by:

$$F_{k} \leq M_{k}y_{k} \qquad (7)$$
where $F_{k} \equiv \text{total flowrate of an input stream for process unit k in kg/day,
 $M_{k} \equiv \text{maximum capacity of process unit k}
 $y_{k} \equiv \text{existence or non existence of process unit k}.$
We could see that when $y_{l} = 0$ (unit does not exist), then the constraint (7) becomes:

$$F_{k} \leq 0 \qquad (8)$$
but flowrate variables are either zero or takes on positive values, so equation (8)
becomes $F_{k} = 0$, which stipulates the condition of zero input flowrate into a non-existing
unit. When $y_{k} = 1$ (unit exists), then the constraint (7) becomes:

$$F_{k} \leq M_{k} \qquad (9)$$
which means that the input flowrate is bounded from above by the value of the big-M
constant. Here, it is clear that a suitable value for the big-M constant is the maximum
capacity of the unit.
For example equation (7), if the maximum capacity of a distillation column is equals to$$

100 m³, then the big-M logical constraint for that unit becomes

$$\underline{\qquad} F_k \le \left(100 \text{ m}^3\right) y_k \underline{\qquad} (8)$$

Formatted: Font: Bold Formatted: Level 2 This constraint (7) is usually written for the input flowrate because it can be related to the output flowrates through the material balances.

The big-*M* logical constraints are also sometimes termed as switching constraints in the literature (Rardin, 1998, p. 558). As mentioned, the main function of the switching constraints is to enforce the condition that no output flow exists if the unit does not exist. By extension, these constraints can be written as $j \leq M_{j}z_{j}$ to relate the stream flowrate to the binary variable z_{i} denoting the existence of the stream itself (instead of the unit from where it is produced). In our proposed approach, this is written for each column with the big-*M* constant, *ta*ken to be an arbitrarily large number, 1000, which it acts as an upper bound for the corresponding feed flow rate of the initial mixture.

Formatted: Left

Task/Process Unit	Switching Constraint
C1	$F^{C1a} \le M_{C1a} y^{C1a}$
	$F^{C1b} \le M_{C1b} \mathrm{y}^{C1b}$
	$F^{Clc} \le M_{Clc} y^{Clc}$
C2	$F^{C2a} \le M_{C2a} y^{C2a}$
	$F^{C2b} \le M_{C2b} y^{C2b}$
	$F^{C2c} \le M_{C2c} y^{C2c}$
C3	$F^{C3a} \le M_{C3a} y^{C3a}$
	$F^{C3b} \le M_{C3b} y^{C3b}$
	$F^{C3c} \le M_{C3c} y^{C3c}$
R1	$F^{\text{Rla}} \le M_{\text{Rla}} y^{\text{Rla}}$
	$F^{\text{R1b}} \le M_{\text{R1b}} y^{\text{R1b}}$
	$F^{\text{Rlc}} \leq M_{\text{Rlb}} y^{\text{Rlc}}$
C4	$F^{C4a} \le M_{C4a} y^{C4a}$
	$F^{C4b} \le M_{C4b} y^{C4b}$
	$F^{C4c} \le M_{C4c} y^{C4c}$

 $Table \ \underline{998} \ Switching \ constraints \ for \ the \ separation \ subsystem \ using \ intermediate \ representation$

С5	$F^{C5a} \le M_{C5a} y^{C5a}$ $F^{C5b} \le M_{C5b} y^{C5b}$ $F^{C5c} \le M_{C5c} y^{C5c}$
C6	$F^{C6} \le M_{C6} y^{C6}$
C7	$F^{C7} \le M_{C7} y^{C7}$
C8	$F^{C8a} \le M_{C8a} y^{C8a}$ $F^{C8b} \le M_{C8b} y^{C8b}$
R2	$F^{R2} \le M_{R2} y^{R2}$
С9	$F^{C9} \le M_{C9} y^{C9}$
C10	$F^{C10} \le M_{C10} y^{C10}$
C11	$F_{8,9\to6,7}^{R2} \le M_{\rm C11} y_{6 7}^{\rm C11}$
R3	$F^{\mathbf{R}3} \le M_{\mathbf{R}3} y^{\mathbf{R}3}$
C12	$F^{\rm C12} \le M_{\rm C12} y^{\rm C12}$
Pressure Swing Absorber (PSA)	$F^{\rm PSA} \le M_{\rm PSA} y^{\rm PSA}$
Olefin Cracking Unit (OCU)	$F_{\rm OCU} \le M_{\rm OCU} y^{\rm OCU}$
R4	$F^{R4} \le M_{R4} y^{R4}$

The complete formulation of the optimization model for the distillation sequences for olefin production is <u>summarized as followspresented as below</u>:

$$\begin{array}{ll} \min & Z = \sum_{k \in COL} CAPEX_k y_k + \sum_{k \in COL} OPEX_k F_k \\ \text{s.t} \\ & \sum_{k \in FS_F} F_k = F_{TOT} \\ & \sum_{k \in FS_m} \xi_k F_k - \sum_{k \in FS_m} F_k = 0 \quad m \in IP \quad (\text{material balances for each intermediate product}) \\ & F_k \leq M_k y_k \quad \forall k \in COL \quad (\text{big-}M \text{ logical constraints}) \\ & \sum_{k \in FS_F} y_k = 1 \quad (\text{logical constraints on leading columns}) \\ & \sum_{k \in FS_m} y_k \leq 1 \quad (\text{logical constraints on intermediate columns}) \\ & \sum_{k \in FS_m} y_k = \sum_{k \in FS_m} y_k \geq 0 \quad (\text{logical constraints on structural specifications}) \\ & y_k = 0 \text{ or } 1 \quad \forall k \in COL \end{array}$$

The decision variables in this formulation are the binary variable, y_k and the flowrates to each column, F_k .

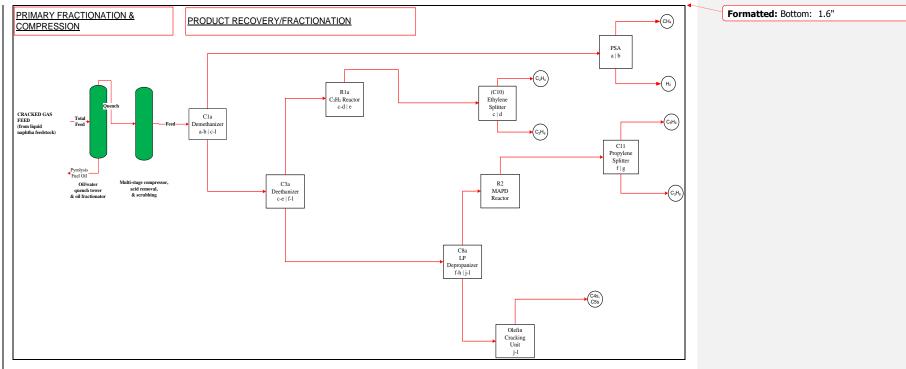
CHAPTER 5

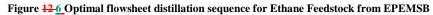
COMPUTATIONAL EXPERIMENTS AND DISCUSSIONS ON NUMERICAL RESULTS

To demonstrate the implementation of the proposed model formulation for determining the optimal separation sequence, we consider different olefin feedstock as the feed compositions and by utilizing the method of integer cuts constraints.

5.1 Comparison of distillation sequencing using different olefin feedstocks

Three cases of different olefin feedstock are evaluated using our proposed model formulation.


5.1.1 Case 1: Ethane feedstock from Ethylene Polyethylene (M) Sdn. Bhd (EPEMSB)


Formatted: Level 3

	Feed Composition of Ethane Yield							
No:	Group of Compounds	Typical Yields (wt %)						
а	Methane, CH ₄	24.56						
b	Hydrogen ,H ₂	0.65						
с	Ethane, C_2H_6	27.91						
d	Ethylene , C_2H_4	41.83						
e	Acetylene , C_2H_2	0.32						
f	Propane, C_3H_8	0.22						
g	Propylene, C_3H_6	1.12						
h	Propadiene/ Methylacetyl , C3H4	0.02						
j	Butadiene, 1,3-C ₄ H ₆	1.23						
k	C4s, Butene & Butane	0.35						
1	Pyrolysis Gasoline	1.67						
m	Fuel Oil	0.12						

Table 10109 Typical yields of ethane feedstock from EPEMSB

This feed composition of ethane yield from EPEMSB as shown in Table 9-10 is tested in our optimization model. The optimum distillation sequence from the result is shown in Figure 1211.

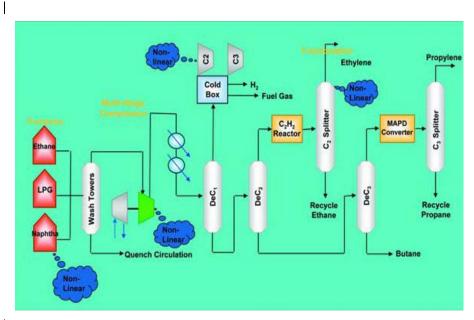


Figure 13 Flowsheet configuration for Ethylene Polyethylene (M) Sdn. Bhd., which uses ethane as the feedstock

Compared to the distillation column sequence of the existing configuration of the ethylene plant of Ethylene Polyethylene (M) Sdn. Bhd (Figure 13)., which uses ethane as its feedstock, the optimal distillation sequence obtained from our computational experiments differs only in that the Pressure Swing Absorption (PSA) is also selected.

The optimal solution is in agreement with the following three common heuristic guidelines for distillation sequencing in accordance with Douglas et al. (1985):

Heuristic 1. Remove the lightest component first and;

Heuristic 2. Remove the most plentiful component first; and

Heuristic 3: perform difficult separation last.

The optimal solution follows <u>h</u>Heuristic 1 as the first column is the demethanizer, which removes the lightest components of hydrogen and methane first. This is known as the direct sequence, which requires less energy as the light material (hydrogen and

methane) is vaporized once in the direct sequence. In another way, it requires less minimum vapor flow rate for reboiler duty and condenser duty.

The optimal solution also follows the Hheuristic 2 as the bottom of demethanizer goes to deethanizer in order to remove the <u>most</u> plentiful components <u>first</u>, which is C2s at the top and C3s above at the bottom of <u>the</u>task Depropanizer (C3a). Besides that, the optimal solution also performs the difficult separation last which <u>is</u> consistent with the Hheuristic 3-,e.g. propylene fractionator and ethylene fractionator.

5.1.2 Case 2: Naphtha Composition from University of Manchester's Centre for Process Integration (CPI) (2005)

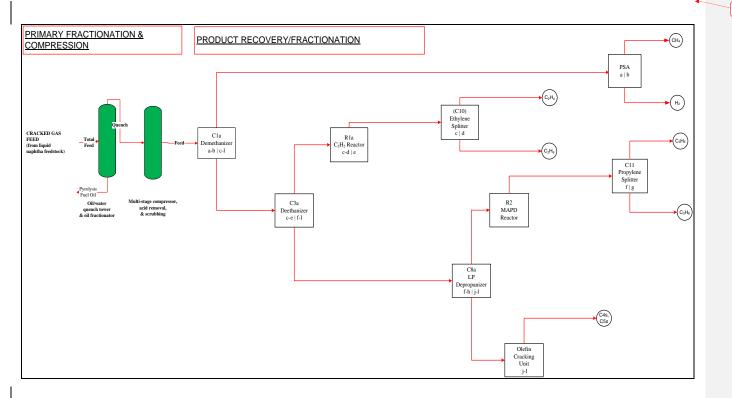

Formatted: Level 3

 Table 111110

 Typical yields of naphtha feedstock taken from University of Manchester's Centre for Process Integration CPI (2005)

Feed Composition of Naphtha Cracking Yield from UMIST								
No:	Group of Compounds Typical Yields (wt %							
а	Methane, CH4	15.3						
b	Hydrogen ,H2	0.8						
c	Ethane, C2H6	3.8						
d	Ethylene, C2H4	29.3						
e	Acetylene, C2H2	0.7						
f	Propane, C3H8	0.3						
g	Propylene, C3H6	14.1						
h	Propadiene, C3H4	1.1						
j	Butadiene, 1,3-C4H6	4.8						
k	C4s, Butene & Butane	4.5						
1	Pyrolysis Gasoline	21						
m	Fuel Oil	3.8						

Theis feed composition of typical_naphtha typical_yield_as reported by from University of Manchester's Centre for Process Integration or University of Manchester's Centre for Process IntegrationCPI, for short,-(2005) iswhich shown in Table 10-11 and is tested in our optimization model. The optimum distillation sequencing using this_naphtha feedstock from University of Manchester's Centre for Process Integration (2005) produces from the optimal flowsheetresult is shown in Figure 1412. Formatted: Font: Not Bold

Formatted: Top: 1.6", Bottom: 1.6"

Figure 14

Figure 7–Optimal flowsheet for distillation sequencing using naphtha composition from University of Manchester's Centre for Process Integration (2005) Formatted: Keep with next

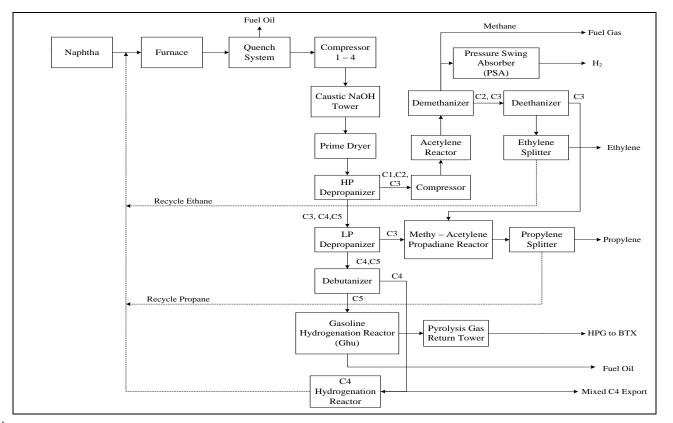
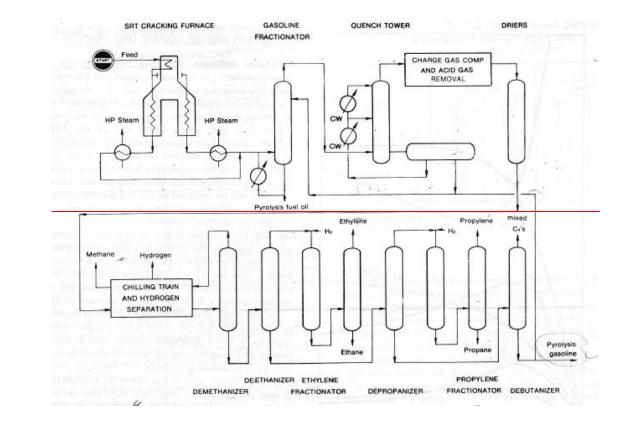



Figure 15-8 Flowsheet Configuration from Titan Petrochemicals (M) Sdn. Bhd

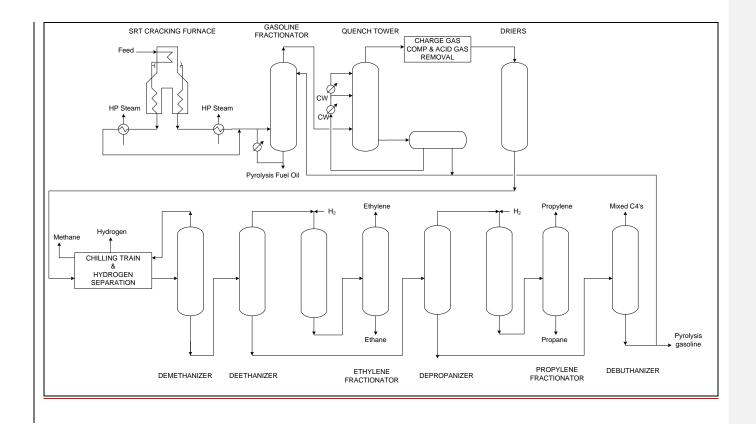


Figure <u>16-9</u> The C-E Lummus process for the cracking of naphtha or gas oil for the production of ethylene (Hydrocarbon Processingatch & <u>Matar</u>, 1975)

The optimal distillation sequence obtained from our computational experiments using naphtha composition from University of Manchester's Process Integration (2005) is different from Titan Petrochemical (M) Sdn. Bhd. However, the optimal distillation sequence obtained from our model formulation using naphtha composition from University of Manchester's Process Integration (2005) has the same demethanizer at the up front s the C E Lummus process fro the cracking of naphtha for the production of ethylene. The different for C E Lumus from optimal distillation sequencing solution are without the unit of PSA and debutanizer (Figure 16).

The optimal distillation sequence obtained from our computational experiments using the CPI naphtha composition is compared against the configuration of Titan Petrochemical (M) Sdn. Bhd, which uses a similar feedstock of liquid naphtha. The major difference is that Titan's configuration uses a high pressure (HP) depropanizer at the front-end. According to Meyer (2005, p. 6.60), a front-end depropanizer is used when propane and heavier materials are the primary cracked feed.

On the other hand, our optimal configuration based on CPI's naphtha composition as the feed has demethanizer at the front-end, similar to the C-E Lummus naphtha cracking process configuration for ethylene production. However, compared to our configuration, the C-E Lummus topology does not include an acetylene reactor, a <u>a</u> PSA., and an <u>MAPD reactor.</u>

For the Titan Petrochemicals (M) Sdn.Bhd (Figure 15), the distillation configuration is different by using depropanizer at the front end. According to Meyer (2005), front end depropanizer is used when propane and heavier material is the primary cracked feed.

From the<u>It is seen from our</u> computational results that both forms of feed composition of typical gaseous ethane feedstock ₅(such as that of EPEMSB) and typical<u>using</u> feedstock of ethane from EPEMSB and feedstock of<u>liquid</u> naphtha <u>feedstock (such as</u> that of CPI (2005)) from University of Manchester's Process Integration (2005) generatesyield the same optimal configuration or topology of distillation sequencing. Formatted: Not Highlight

5.2. Optimal and Suboptimal Distillation Sequences using Integer Cuts

Formatted: Left

By incorporating -using-integer cuts, we can obtain the second best, -and the third best, and subsequent "suboptimally best" -distillation configurations from the MILPan integer program. According to Floudas and Paules (,-1988)., it is important to consider the restriction of the branch and bound enumeration tree for the solution of an integer program-is important in the solution of mathematical formulation. From, the integer cuts, wWe can thus compare the solutions in terms of the annualized cost and the total mass flow-rate. Integer cut is a

type of weak integer cut that could be derived are the ones that will ensure that those previously considered integer combinations cannot be encountered again. For the case when the integer combination is an element of some unit hypercube (i.e., binary variables), the following well-known integer cut will perform the above tasks.

Lemma (Duran and Grossmann, 1986), Given any integer combination with index sets , s.t. $|B^i| + |NB^i| = m$, the integer constraint will be violated only by y_i and no other $y_k \cdot y^i$. Note that $|B^j|$ is the number of terms in the first summation. Formatted: Normal, Indent: Left: 0", First line: 0", Line spacing: 1.5 lines, Tab stops: 1.75", Left

Formatted: Normal, Indent: Left: 0", First line: 0", Line spacing: 1.5 lines, Tab stops: 1.75", Left Formatted: Font: 12 pt

Formatted: Font: 12 pt
Formatted: Line spacing: 1.5 lines
Formatted: Font: 12 pt
Formatted: Font: 12 pt
Formatted: Font: 12 pt
Formatted: Font: Times New Roman, 12 pt
Formatted: Font: 12 pt

Formatted: Level 3

5.2.1 Case 1: Ethane feedstock from Ethylene Polyethylene (M) Sdn. Bhd (EPEMSB)

Table 121211 Integer Cut for Ethane Gas Feedstock from EPEMSB

		Eth	ane Gas Feedsto	ock			
	Best Solution	Flow <u>rate</u> -(ton/hr)	2 nd Best Solution	Flow <u>rate</u> -(ton/hr)	3 <mark>rd-Best</mark> Solution	Flow <u>rate</u> -(ton/hr)	Formatted: Superscript
	C1a	998.9	C1a	998.8	C1a	998.80	
	C3a	746.803	C3a	746.803	C3a	746.803	
Distillation	PSA	251.997	PSA	251.997	PSA	251.997	
Sequenc <u>eing</u>	R1a	700.576	C4a	700.576	R1a	700.576	
	C8a	46.227	C8a	46.227	C8a	46.227	
	R2	13.679	R2	13.679	R2	13.679	

	C11 C10 OCU	13.679 697.423 32.548	C11 C10 OCU	13.679 697.423 32.548	<u>C11C12 <u>C10</u>R4 <u>C9</u>C11 <u>C12C10</u> <u>R4</u>C9</u>	<u>13.679</u> 15.845 <u>697.42316.704 <u>32.548</u>13.679 <u>15.845</u>697.423 <u>16.704</u>32.548</u>	
<u>Total Mass</u> Flowrate (ton/hr)		<u>3501.832</u> Total Mass Flow (ton/hr)		<u>3501.832</u> Total Mass Flow (ton/hr)		3534.281 Total Mass Flow (ton/hr)	Formatted Table
		3501.832		3501.832		3534.281	

Table <u>11–12 lists</u> the <u>optimal and suboptimal distillation sequences integer cuts</u> for <u>the feed composition of ethane</u> gas feedstock for <u>rom</u> EPEMSB. The optimal solution and <u>second2nd</u> best solution <u>involves</u> <u>lower</u> the least total mass flow-rate (3501.831 ton/hr) compared to the third-3rd best solution, which is consistent with the heuristic of selecting the sequence with minimum total mass flow-rate.

By in<u>corporatingtroducing</u> appropriate integer cuts<u>as</u> constraints in the model <u>formulation</u>, task R1a (acetylene catalytic hydrogenation reactor) is selected in the optimal solution-_while the-task C4a (extractive distillation) is selected in the second best solution. According to John-McKketta and William-Aaron (1984)_in the <u>authoritative McKetta's Encyclopedia of Chemical Processing and Design</u>, if economically attractive, the acetylene may be recovered by extractive distillation. In most cases, it is simply hydrogenated to ethylene and ethane, which involves less equipment and a higher production of ethylene.

Formatted: Font: Not Italic

5.2.2 Case 2: Naphtha Composition <u>offrom University of Manchester's</u> Centre for Process Integration<u>CPI</u> (2005)

Formatted: Level 3

Table <u>131312</u> Integer cuts for naphtha liquid feedstock from University of Manchester's Centre for Process Integration (2005)

		Naj	phtha Liquid	Feedstock				
	Best Solution	Flow (ton/hr)	2 nd Best Solution	Flow(ton/hr)	3 rd Best Solution	Flow (ton/hr)	<	Formatted: Superscript
	C1a	961.80	C1a	961.80	C1a	961.80		Formatted: Superscript
	C3a	800.025	C3a	800.025	C3a	800.025		
	PSA	161.775	PSA	161.775	PSA	161.775		
	R1a	339.709	R1a	339.709	R1a	339.709		
Distillation	C8a	460.316	C8a	460.316	C8a	460.316		
Sequenceing	R2	155.785	R2	155.785	R2	155.785		
Sequence <u>enne</u>	C11	155.785	R4	211.061	<u>R4</u> R3	<u>211.061</u> 93.470		
Ì	C10	322.674	C12	93.470	<u>R3</u> R4	<u>93.470</u> 211.061		
	OCU	304.531	C11	155.785	C11	155.785		
			C10	332.674	C10	332.674		
			C9	304.531	C9	304.531		
Total Mass		<u>3662.4</u> Total		<u>3976.931</u> Total		<u>3976.931</u> Total		
Flowrate		Mass Flow		Mass Flow		Mass Flow		
<u>(ton/hr)</u>		(ton/hr)		(ton/hr)		(ton/hr)		Formatted: Font:
		3662.4		3976.931		3976.931		Formatted: Font:
l								

Table <u>12–13 lists the optimal and suboptimal distillation sequences for the feed</u>composition of <u>shows the integer cuts for</u> naphtha liquid feedstock from University of Manchester's Centre for Process Integration <u>CPI</u> (2005)._-The optimal sequence for the naphtha has the least total mass flow <u>compared to the than 2nd second</u> best and <u>third3rd</u> best solutions, although the two best suboptimal solutions share the same mass flowrate. However, note that the process design textbook by Biegler, Grossmann, and Westerberg (1997) has reported an example in which

Referring to Andrevoich and Westerburg (1985) who developed the superstructure which has network of four components, also shown that the 3rd third best solution has a **Formatted:** Line spacing: 1.5 lines

Formatted: Normal

Formatted: Normal, Justified, Line spacing: 1.5 lines

Formatted: Tab stops: Not at 1.75"

lower total mass flow-rate (2250 kmol/hr)-than the second 2nd-best solutisolution.on (2400 kmol/hr).

5.3 Computational Experiments

<u>Table 134 summarizes the problem size and statistics on the performance of</u> <u>computational experiments conducted in this work.</u>

Formatted: Font: Not Bold
Formatted: Justified, None, Line spacing: 1.5 lines
Formatted: Font: Not Bold

Table <u>141413</u> Model <u>size</u> and <u>c</u>Computational statistics of problem size<u>performance</u>

Type of model	Mixed-integer linear programming (MILP)
Solver for MILP	CPLEX
No. of continuous variables	35
No. of binary variables	79
No. of constraints	142
No. of iterations	24

REMARKS ON COMPUTATIONAL EXPERIMENTS

-Solution of the MILP model using GAMS/CPLEX that does not account for the split-

flows between selections of parallel tasks will select task R1c in its optimal sequence.

 \pm <u>Also, Aa</u>ssumption on 100% recovery is not accurate and impacts on the computational results.

Formatted: Bullets and Numbering

l

CHAPTER 5

CONCLU<u>DING REMARKS</u>SIONS & RECOMMENDATIONS FOR FUTURE WORK

5.1. CONCLUDING REMARKS

<u>The In conclusion, ii</u>ntermediate <u>representation</u> superstructure <u>hais been employedused</u> to represent the optimization approaches and strategies for distillation separation for olefin production. According to Caballero and Grossman<u>(</u>,-1999<u>)</u>, <u>the</u> intermediate representation superstructure has shown a-good performance in reaching the global optimal solution. Furthermore, intermediate representation<u>this</u>-superstructure <u>form will</u> involve<u>s</u> less number of equations compared to STN representation superstructure.

A MILP model has been developed by representing the discrete and continuous variables for distillation sequencing for olefin production. By using different feedstocks, the computational results yield the same optimal sequencing. The optimal solution obtained is further validate by the most common heuristic which is the selection of column sequencing with least total mass flow rate.

5.2. RECOMMENDATIONS FOR FUTURE WORK

An immediate future work is to conduct more rigorous computational experiments in order to investigate the governing parameter, i.e., the most important parameter(s) that determines the selection of the optimal distillation sequence. Feed composition does not appear to be the governing parameter. The logical constraints could be a probable

Comment [sufen1]:

Formatted: Font: Bold

governing constraint that is too restrictive in its formulation, although more work is required to validate this preliminary hypothesis.

A more representative model could be developed by incorporating thermodynamic limitations on the operating process conditions such as temperature and pressure and the inclusion of important physical parameters such as relative volatility in distillation column separation. As well, there are merits in considering the real-life features of ethylene plants such as the operations involving drying and chilling train at the front-end.

A more rigorous of objective function by considering the raw material cost, capital investment, production cost and profitability for the olefin production process in order to justify the feasibility of the olefin production.

Consideration of demand and supply constraints should be taken into account in the future work in order to integrate with the production planning and scheduling.

REFERENCES

Biegler, L. T., Grossmann, I. E., and Westerberg, A. W. 1997. *Systematic Methods of Chemical Process Design*. New Jersey: Prentice Hall.

Caballero, J.A. and Grossmann I.E. 1999. Aggregated models for integrated distillation systems. *Ind. Eng. Chem. Res.* 38: 2330–2344.

Raman, R., Grossmann, I.E., 1990. Relation between MILP modeling and logical inference for chemical process synthesis. *Comput. Chem. Eng.*, 15, 2: 73.84

Raman, R., Grossmann, I.E., 1992. Symbolic integration of logic in mixed-integer linear programming techniques for process synthesis. *Comput. Chem. Eng.*, 17, 9: 909. 927

Yeomans H., Grossmann, I.E., 1999.A systematic modeling framework of superstructure optimization in process synthesis. *Comput. Chem. Eng.* 23, 709–731.

M.J. Andrecovich, A.W. Westerburg, 1985 An MLNP Formulation for Heat Integrated Distillation Sequence Synthesis, *AICHE Journal*, 31, No.9, 1461-1474

Tao Ren, Martin Patel, K.Blok, 2006, Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes, Energy, 31, 425-451

Formatted: Indent: Left: 0", First line: 0"

Malone M.F., Glinos K., Marquez F.E., & Douglas J.M., *Simple, Analytical Criteria for the Sequencing of Distillation Column*, AICHE Journal 31(4) (1985)

Hydrocarbon Processing, 1975 *Petrochemical Handbook*, Volume 54, No.11, 1975, pg 141.

Robert A. Meyers, *Handbook of Petrochemical Production Process*, -McGraw Hill, 2005.

Hatch, L. F. and S. Matar, *From Hydrocarbons to Petrochemicals*, Gulf Publishing Company, 1981.

UOP LLC, 2004, ATOFINA/UOP Olefin Cracking Process for Ethylene and Propylene Production, UOP 4217-38

John McKetta and , William Aaron, *Encyclopedia of Chemical Processing and Design*, Volume 20, CRC Press, 1984.

Formatted: Indent: Left: 0", First line: 0"
Formatted: Top: 1"

Formatted: Indent: Left: 0", First line: 0"

Formatted: Indent: Left: 0", First line: 0")
Formatted: Centered, Indent: Left: 0", First line: 0"	

APPENDICES I

GAMS CODE (Ethane/Naphtha))

÷

GAMS Rev 146 x86/MS Windows 06/03/06 22:29:18 Page 1 : Naphtha Separation Compilation <u>3</u> 4 _____ *=== _____ Ξ 6 *Declaration of Sets <u>7</u> *____ == Ξ ____ 8 SETS 9 *the set of all tasks in superstructure <u>10</u> <u>11</u> T Set of Task <u>12 /</u> <u>13 OIL_Fractionator</u> <u>14 QUENCH_Fractionator</u> 15 FEED . <u>16 C1a,C1b,C1c</u> <u>17 C2a,C2b,C2c</u> <u>18 C3a,C3b,C3c</u> <u>19 PSA</u> 20 R1a,R1b,R1c 21 C4a,C4b,C4c 22 C8a,C8b 23 R2,R3,R4 <u>24 C12,C11,C10,C9,C7,C6</u> <u>25 OCU</u> <u>20 UCU</u> <u>26 C5a,C5b,C5c</u> <u>27</u> <u>28</u> / <u>29</u> <u>30 U</u> <u>31 /</u> Set of Unit-Equipment-Column associated with different task

Formatted: German (Germany)

32 C1,C2,C3,C4,R1,R2,R3,R4,C8,C12,PSA,C10
<u>33</u>
<u>34 /</u>
35
$\frac{36}{97}$ 0 0 0 to (intermediate result of (or decomposition))
37 S Set of intermediate products (or streams or components)
$\frac{38}{20}$ at more that the first state of a state of the state of t
<u>39 al,m,ab,cl,ah,fl,ak,l,ck,fk,jk,ce,ch,cd,ad_fh,cd_fh,ad,fh,jl</u>
<u>40 /</u> 41
$\frac{41}{42}$
<u>42</u> <u>43 pm(T,S)</u> ! maps tasks to "Intermediate Product" s
treams(column produced)
44 /
<u>45 (C1a,C2a,C6,C5a).ab</u>
<u>46 (C1b,C2b,C2c).ah</u>
<u>47 C1a.cl</u>
48 (C1b,C3a).fl
49 C1c.ak
<u>50 (C1c,C9).</u>
<u>51 C2a.ck</u>
<u>52 (C2b,C3b).fk</u>
<u>53 (C2c,C3c,C8b,C9).jk</u>
<u>54 (C3a,C3b).ce</u>
<u>55 C3c.ch</u>
<u>56 (R1a,C4a,C6,C7,C5b).cd</u>
<u>57 (R1b,C4b).ad_fh</u>
<u>58 (R1c,C4c,C5a).cd_fh</u>
<u>59 C5c.ad</u>
<u>60 (C5b,C5c,C7,C8a,C8b).fh</u>
<u>61 C8a.jl</u> 62
63
65
66
67 fm(T,S) !Set maps Unit to "Intermediate Product Feed" Str
eams- COlumn Directed
68 /
69 PSA.ab
70 (R1b,C4b).ah
<u>71 C3a.cl</u>
<u>72 C8a.fl</u>
<u>73 (C2a,C2b,C2c).ak</u>
<u>74 R4.I</u>
<u>75 (C3b,C3c).ck</u>
<u>76 C8b.fk</u>
<u>77 (C12,R3).jk</u>
<u>78 (R1a,C4a).ce</u>
<u>79 (R1c,C4c).ch</u>

80 C10.cd
<u>81_(C5a,C5c).ad_fh</u>
82 (C7,C5b).cd_fh
<u>83 C6.ad</u>
84 R2.fh
85 (C9,OCU).jl
<u>_86</u>
<u>87</u>
90 04 tools producing ID(T.S), ISot for Logical Constraints for Structural tools
91 task_producing_IP(T,S) !Set for Logical Constraints for Structural task
<u>producing intermediate products</u> 92 /
<u>93 (C1a,C2a,C6,C5a).ab</u>
<u>94 C1c.ak</u>
95 C1a.cl
<u>96 C2a.ck</u>
<u>97 (C3a,C3b).ce</u>
<u>98 (C1b,C2b,C2c).ad_fh</u>
<u>99 C3c.cd_fh</u>
<u>100 C5c.cd</u>
<u>101 R2.fh</u>
<u>102 (C3a,C1b).fl</u>
<u>103_C8a.jl</u> <u>104_(R1a,C4a,C7,C6,C5b).cd</u>
105 (C9,C1c).l
106
107
<u>108 /</u>
109
<u>110</u>
<u>111 IP_feed_to_task(T,S)</u> !Set for Logical Constraints for Structural Spec-F
eed Source(From)
<u>112 /</u>
<u>113 PSA.ab</u> <u>114 C2a.ak</u>
115 C2b.ak
116 C2c.ak
<u>117 C3a.cl</u>
<u>118 C3b.ck</u>
<u>119 C3c.ck</u>
<u>119_C3c.ck</u> <u>120_(C4a,R1a).ce</u>
<u>119 C3c.ck</u> <u>120 (C4a,R1a).ce</u> <u>121 (C4b,R1b).ad_fh</u>
<u>119 C3c.ck</u> <u>120 (C4a,R1a).ce</u> <u>121 (C4b,R1b).ad fh</u> <u>122 (C4c,R1c).cd fh</u>
<u>119 C3c.ck</u> <u>120 (C4a,R1a).ce</u> <u>121 (C4b,R1b).ad_fh</u> <u>122 (C4c,R1c).cd_fh</u> <u>123 C6.cd</u>
<u>119 C3c.ck</u> <u>120 (C4a,R1a).ce</u> <u>121 (C4b,R1b).ad fh</u> <u>122 (C4c,R1c).cd fh</u> <u>123 C6.cd</u> <u>124 C11.fh</u>
<u>119 C3c.ck</u> <u>120 (C4a,R1a).ce</u> <u>121 (C4b,R1b).ad_fh</u> <u>122 (C4c,R1c).cd_fh</u> <u>123 C6.cd</u> <u>124 C11.fh</u> <u>125 C8a.fl</u>
<u>119 C3c.ck</u> <u>120 (C4a,R1a).ce</u> <u>121 (C4b,R1b).ad fh</u> <u>122 (C4c,R1c).cd fh</u> <u>123 C6.cd</u> <u>124 C11.fh</u>

400 040	
128 C10.cd 129 R4.l	
130	
<u>131 /</u>	
132	
133 134 outlet_column(T,S)	
135 /	
<u>136 PSA.ab,C3a.cl</u>	
<u>137 (R1b,C4b).ah,C8a.fl</u> <u>138 (C2a,C2b,C2c).ak,R4.l</u>	
<u>139 (C3b,C3c).ck</u>	
<u>140 C8b.fk</u>	
<u>141 C12.jk</u>	
<u>142 (R1a,C4a).ce</u> <u>143 (R1c,C4c).ch,(R3).jk</u>	
<u>144</u> C10.cd,(C5a,C5c).ad_fh,C5b.cd_fh	
<u>145 R2.fh,C6.ad</u>	
<u>146 (OCU,C9).jl</u> .147	
<u>148</u>	Formatted: German (Germany)
<u>149</u>	
$\frac{150}{454}$	
151 152 column(T,S)	
<u>153 /</u>	
<u>154 C1a.(ab,cl)</u>	
<u>155 C1b.(ah,fl)</u> 156 C1c.(ak,l)	
157 C2a.(ab,ck)	
<u>101 020.(00;00)</u>	
<u>158 C2b.(ah,fk)</u>	
158 C2b.(ah,fk) 159 C2c.(ah,jk)	
158 C2b.(ah,fk) 159 C2c.(ah,jk) 160 C3a.(ce,fl)	
158 C2b.(ah,fk) 159 C2c.(ah,jk) 160 C3a.(ce,fl) 161 C3b.(ce,fk) 162 C3c.(ch,jk)	
158 C2b.(ah,fk) 159 C2c.(ah,ik) 160 C3a.(ce,fl) 161 C3b.(ce,fk) 162 C3c.(ch,ik) 163 (C4a,R1a).(cd)	
158 C2b.(ah,fk) 159 C2c.(ah,jk) 160 C3a.(ce,fl) 161 C3b.(ce,fk) 162 C3c.(ch,jk) 163 (C4a,R1a).(cd) 164 (C4b,R1b).(ad_fh)	Formatted: German (Germany)
158 C2b.(ah,fk) 159 C2c.(ah,jk) 160 C3a.(ce,fl) 161 C3b.(ce,fk) 162 C3c.(ch,jk) 163 (C4a,R1a).(cd) 164 (C4b,R1b).(ad_fh) 165 (C4c,R1c).(cd_fh) 166 C5a.(ab)	Formatted: German (Germany)
$\begin{array}{c} 158 C2b.(ah,fk) \\ 159 C2c.(ah,jk) \\ 160 C3a.(ce,fl) \\ 161 C3b.(ce,fk) \\ 162 C3c.(ch,jk) \\ 163 (C4a,R1a).(cd) \\ 164 (C4b,R1b).(ad fh) \\ 165 (C4c,R1c).(cd fh) \\ 166 C5a.(ab) \\ 167 C5b.(cd,fh) \end{array}$	Formatted: German (Germany)
158 C2b.(ah,fk) 159 C2c.(ah,jk) 160 C3a.(ce,fl) 161 C3b.(ce,fk) 162 C3c.(ch,jk) 163 (C4a,R1a).(cd) 164 (C4b,R1b).(ad_fh) 165 (C4c,R1c).(cd_fh) 166 C5a.(ab) 167 C5b.(cd,fh) 168 C5c.(ad,fh)	
$\begin{array}{c} 158 \ \ C2b.(ah,fk) \\ 159 \ \ C2c.(ah,jk) \\ 160 \ \ C3a.(ce,fl) \\ 161 \ \ C3b.(ce,fk) \\ 162 \ \ C3c.(ch,jk) \\ 163 \ \ (C4a,R1a).(cd) \\ 163 \ \ (C4a,R1a).(cd) \\ 164 \ \ (C4b,R1b).(ad \ fh) \\ 165 \ \ (C4c,R1c).(cd \ fh) \\ 166 \ \ C5a.(ab) \\ 167 \ \ C5b.(cd,fh) \\ 168 \ \ C5c.(ad,fh) \\ 169 \ \ C6.(ab,cd) \\ 170 \ \ C7.(cd,fh) \end{array}$	Formatted: German (Germany) Formatted: German (Germany)
$\begin{array}{c} 158 \ C2b.(ah,fk) \\ 159 \ C2c.(ah,jk) \\ 160 \ C3a.(ce,fl) \\ 161 \ C3b.(ce,fk) \\ 162 \ C3c.(ch,jk) \\ 163 \ (C4a,R1a).(cd) \\ 164 \ (C4b,R1b).(ad \ fh) \\ 165 \ (C4c,R1c).(cd \ fh) \\ 166 \ C5a.(ab) \\ 167 \ C5b.(cd,fh) \\ 168 \ C5c.(ad,fh) \\ 168 \ C5c.(ad,fh) \\ 169 \ C6.(ab,cd) \\ 170 \ C7.(cd,fh) \\ 171 \ C8a.(fh,jl) \end{array}$	
$\begin{array}{c} 158 \ \mbox{C2b.}(ah,fk) \\ 159 \ \mbox{C2c.}(ah,jk) \\ 160 \ \mbox{C3a.}(ce,fl) \\ 161 \ \mbox{C3b.}(ce,fk) \\ 162 \ \mbox{C3c.}(ch,jk) \\ 163 \ \mbox{(C4a,R1a).}(cd) \\ 164 \ \mbox{(C4b,R1b).}(ad \ fh) \\ 165 \ \mbox{(C4c,R1c).}(cd \ fh) \\ 166 \ \mbox{C5a.}(ab) \\ 167 \ \mbox{C5b.}(cd,fh) \\ 168 \ \mbox{C5c.}(ad,fh) \\ 168 \ \mbox{C5c.}(ad,fh) \\ 169 \ \mbox{C6.}(ab,cd) \\ 170 \ \mbox{C7.}(cd,fh) \\ 171 \ \mbox{C8a.}(fh,jl) \\ 172 \ \mbox{C8b.}(fh,jk) \end{array}$	
$\begin{array}{c} 158 \ C2b.(ah,fk) \\ 159 \ C2c.(ah,jk) \\ 160 \ C3a.(ce,fl) \\ 161 \ C3b.(ce,fk) \\ 162 \ C3c.(ch,jk) \\ 163 \ (C4a,R1a).(cd) \\ 164 \ (C4b,R1b).(ad \ fh) \\ 165 \ (C4c,R1c).(cd \ fh) \\ 166 \ C5a.(ab) \\ 167 \ C5b.(cd,fh) \\ 168 \ C5c.(ad,fh) \\ 168 \ C5c.(ad,fh) \\ 169 \ C6.(ab,cd) \\ 170 \ C7.(cd,fh) \\ 171 \ C8a.(fh,jl) \end{array}$	
$\begin{array}{c} 158 \ C2b.(ah,fk) \\ 159 \ C2c.(ah,jk) \\ 160 \ C3a.(ce,fl) \\ 161 \ C3b.(ce,fk) \\ 162 \ C3c.(ch,jk) \\ 163 \ (C4a,R1a).(cd) \\ 164 \ (C4b,R1b).(ad \ fh) \\ 165 \ (C4c,R1c).(cd \ fh) \\ 166 \ C5a.(ab) \\ 167 \ C5b.(cd,fh) \\ 168 \ C5c.(ad,fh) \\ 168 \ C5c.(ad,fh) \\ 168 \ C5c.(ad,fh) \\ 170 \ C7.(cd,fh) \\ 177 \ C8a.(fh,jl) \\ 177 \ C8b.(fh,jk) \\ 173 \ C9.(jk,l) \\ 173 \ C9.(jk,l) \\ 174 \\ 175 \end{array}$	
$\begin{array}{c} \underline{158\ C2b.(ah,fk)}\\ \underline{159\ C2c.(ah,jk)}\\ \underline{160\ C3a.(ce,fl)}\\ \underline{161\ C3b.(ce,fk)}\\ \underline{161\ C3b.(ce,fk)}\\ \underline{162\ C3c.(ch,jk)}\\ \underline{163\ (C4a,R1a).(cd)}\\ \underline{164\ (C4b,R1b).(ad\ fh)}\\ \underline{165\ (C4c,R1c).(cd\ fh)}\\ \underline{166\ C5a.(ab)}\\ \underline{166\ C5a.(ab)}\\ \underline{166\ C5c.(ad,fh)}\\ \underline{168\ C5c.(ad,fh)}\\ \underline{168\ C5c.(ad,fh)}\\ \underline{169\ C6.(ab,cd)}\\ \underline{170\ C7.(cd,fh)}\\ \underline{171\ C8a.(fh,jl)}\\ \underline{171\ C8a.(fh,jk)}\\ \underline{173\ C9.(jk,l)}\\ \underline{174}\\ \end{array}$	

<u>178</u> 179
$\frac{173}{180}$;
181
182
<u>183</u>
<u>184 ALIAS (S,S1);</u>
<u>185 AIIAS (T,T1);</u> 186
<u>100</u> *
Ξ
<u>187</u> *Declaration of Parameters for rest of model
<u>188</u> *
======================================
189 PARAMETER
190 191 M/T) Big M Constant 1000 is the upper bound as it corresponds to the fee
<u>191 M(T) Big M Constant-1000 is the upper bound as it corresponds to the fee</u> d flow rate of the intial mixture;
192
<u>193 M(T)=1000;</u>
<u>194</u>
<u>195 PARAMETER</u>
196 197 spltfrc(T,S) Split Fraction maps to unit to Intermediate Product str
eams
198 /
199 QUENCH_FRACTIONATOR.al 0.9988,
200 OIL_FRACTIONATOR.m 0.0012,
<u>201 C1a.ab</u> 0.2523, 202 C1a al 0.7477
<u>202 C1a.cl</u> 0.7477, 203 C1b.ah 0.9798,
204 C1b.fl 0.0202,
205 C1c.ak 0.9833,
<u>206 C1c.I 0.0167,</u>
<u>207 C2a.ab</u> 0.2566,
<u>208 C2a.ck 0.7434,</u> 200 C2b.ab 0.0882
<u>209 C2b.ah</u> 0.9883, 210 C2b.fk 0.0117,
211 C2c.ah 0.9839,
<u>212 C2c.jk 0.0161.</u>
<u>213 C3a.ce 0.9381,</u>
<u>214 C3a.fl</u> 0.0619,
<u>215 C3b.ce 0.9596,</u> 216 C3b ft 0.0404
<u>216 C3b.fk 0.0404,</u> <u>217 C3c.ch 0.9783,</u>
218 C3c.jk 0.0217,
<u>219 C4a.cd 0.9955,</u>

<u>220 C4b.ad_fh 0.9967,</u>	
<u>221 C4c.cd_fh</u> 0.9955,	
<u>222 C5a.ab</u> 0.2617,	
<u>223 C5a.cd fh</u> 0.7383,	
<u>224 C5b.cd 0.9808,</u>	
<u>225 C5b.fh</u> 0.0192,	
<u>226 C5c.ad 0.9858,</u>	
<u>227 C5c.fh</u> 0.0142,	
<u>228 R1a.cd</u> 0.9955, 229 R1b.ad_fh 0.9967,	
<u>229 Rib.au in 0.9907,</u> <u>230 Ric.cd_fh 0.9955,</u>	
<u>231 C8a.fh</u> 0.2959,	
<u>232 C8a.jl</u> 0.7041,	
<u>233 C8b.fh</u> 0.4633,	
<u>234 C8b.jk</u> 0.5367,	
<u>235 C6.ab 0.2655,</u>	 Formatted: German (Germany)
236 C6.cd 0.7345,	
<u>237 C9.jk 0.4868,</u>	
<u>238 C9.1</u> 0.5132.	
<u>239 C7.cd</u> 0.9808,	
<u>240 C7.fh</u> 0.0192	
241	
<u>242</u> <u>243</u> /	
$\frac{243}{244}$	
245 *Ethylene Production = 450 kT/year	
246 Fixed_Cost(T) Fixed Cost per year (for ethane: 56 \$ per ton C2H4 in	
Middle East)	
247 Operating Cost(T) Operating Cost or total production cost(140 \$ per ton	
C2H4 in Middle East)	
<u>248 ;</u>	
<u>250 Fixed_Cost(T) = 56000; #(in unit of \$/year)</u>	
<u>251 Operating Cost(T) = 140000;</u> 252 ;	
<u>252</u> , <u>253</u>	
<u>254</u>	
255	
256	
*	
Ξ	
257 *Define scalar quantities for rest of model	
<u>258</u>	
<u>258</u> <u>*</u>	
208 *	
= 259	
= = <u>259</u> <u>260 SCALARS</u>	
= 259	
= = <u>259</u> <u>260 SCALARS</u>	

<u>262 TOTFEED total feed flow rate(feedstock in tonnage) to superstructure /1</u>
000/ :
<u>263 *646</u>
<u>_264</u>
<u>_265</u>
*
<u>266 *Declaration of variables</u>
<u>_267</u>
*
E
268 VARIABLE
269 Z Objective function
270
271 ;
272
273 BINARY VARIABLES
274 Y(T) Columns selection in superstruture associated with T Tasks(exist
ance Or Non-existance)
275 ;
276
277 POSITIVE VARIABLES
278 F(T) Flow Rate of selected T task associated with S streams
279 Fraction(T)
<u>280 ;</u>
281
282
<u>LUL</u> *
283 *Declaration of Equations
284
 *
286 *for logical constraitns on design specifications, structural specificatio
ns. _287_*for switching constraints
288
289 EQUATIONS
290 OBJECTIVE Objective function
291 TotalFeed, Oil,Feed_Column
292 Initial_FEED Initial Column_Feed to superstructure
293
294 MB_Unit Material Balances for Unit
<u>295 MB_C11</u>
<u>_296</u>

<u>297</u>	
<u>298</u>	
299 *SPLIT1,SPLIT2,SPLIT3,SPLIT4,SPLIT5,SPLIT6,SPLIT7,SPLIT8	
300	
<u>301 DS1</u> 302 DS2	
303 DS3	
304 DS4	
305 DS5	
<u>306 DS6a,DS6b,DS6c</u>	
<u>307 DS7,</u>	
<u>308 DS9</u>	
<u>309 DS8</u>	
310	
$\frac{311}{242}$	
<u>312</u> 313 Inlet(T.S) Inlet Condition	
313 Inlet(T,S) Inlet Condition 314 InletC5a,InletC5b,InletC5c,InletC7,InletR2,InletC8b	
315	
316 STRUCTURAL SPEC LC(T,S) Overhead & Bottom	
<u>317 SP_C5a</u>	
318 BigM Big M Logical Constraints-Switching Constraints with T ta	
sks	
<u>319 *INTEGER_CUT_1</u>	
320 *\$ontext	
321 *CUTS 2nd Optimum 322 *CUTS 3rd Optimum	
323 *\$offtext	
324 ;	
325	
326 *******Objective Function************************************	

<u>327</u> *OBJECTIVE Z=E= SUM(T, Capital_Cost(T)*SUM(T,F(T));	
<u>328 OBJECTIVE</u> <u>Z=E= SUM(T,Fixed_Cost(T)*Y(T)) + SUM(T,Operating_Cost(T)*</u>	Formatted: German (Germany)
<u>F(T));</u> 329	
<u>330</u>	
331	
332 *Initial Feed to Superstructure	
333	
334 TotalFeed TOTFEED =E= spltfrc('QUENCH_FRACTIONATOR','al')*F('QUENCH	
FRACTIONATOR') + spltfrc('OIL_FRACTIONATOR','m')*F('OIL_FRACTIONATOR');	
335	
336 337 Oil F('OIL FRACTIONATOR')=E= (TOTFEED-F('FEED'))/ spltfrc('OI	
$\frac{1}{2} \frac{1}{2} \frac{1}$	
338 *Cannot find the flow rate of Oil Fractionaor	
339	
340 Feed_Column spltfrc('QUENCH_FRACTIONATOR','al')*F('QUENCH_FRACTIONATO	
R')-F('FEED')=E=0;	

<u>341</u>	
<u>342 Initial_FEED F('FEED') =E= F('C1a')+ F('C1b')+F('C1c');</u> 343	
344 345 *Unit/Task	
346 MB_Unit(S) <u>SUM(T\$pm(T,S), spltfrc(T,S)*F(T)) =E= SUM(T \$ fm(T,S),F(T)</u>	Formatted: German (Germany)
<u>);</u> <u>347</u>	
<u>348 MB_C11</u> F('R2')=E=F('C11'); <u>349</u>	
<u>350</u> SPLIT1 F('R1c') =E= Fraction('R1c')*spltfrc('C3c','ch')*F('C3c');	
SPLIT2 F('C4c') =E= Fraction('C4c')*spltfrc('C3c','ch')*F('C3c');	
<u>SPLIT3</u> F('R1b') =E= Fraction('R1b')*(spltfrc('C1b','ah')*F('C1b') + spltfrc('C2b','ah')*F('C2b') + spltfrc('C2c','ah')*F('C2c'));	
<u>SPLIT4.</u> F('C4b') =E= Fraction('C4b')*(spltfrc('C1b','ah')*F('C1b') + spltfrc('C2b','ah')*F('C2b') + spltfrc('C2c','ah')*F('C2c'));	
<u>SPLIT5</u> F('R1a') =E= Fraction('R1a')*(spltfrc('C3a','ce')*F('C3a') + spltfrc('C3b','ce')*F('C3b'));	
SPLIT6 F('C4a') =E= Fraction('C4a')*(spltfrc('C3a','ce')*F('C3a') +	
spltfrc('C3b','ce')*F('C3b'));	
SPLIT7 F('R3')=E= Fraction('R3')*(spltfrc('C2c','jk')*F('C2c') + spl tfrc('C3c','jk')*F('C3c') + spltfrc('C8b','jk')*F('C8b') + spltfrc('C9','j	
k')*F('C9'));	
SPLIT8. $F('C12')=E=Fraction('C12')*(splitfrc('C2c','jk')*F('C2c') + s)$	
pltfrc('C3c','jk')*F('C3c') + spltfrc('C8b','jk')*F('C8b') + spltfrc('C9', _'jk')*F('C9'));	
<u>368</u> <u>369</u>	
<u>370 *Only One Task is selected for Every unit</u> <u>371 DS1 Y('C1a') + Y('C1b') + Y('C1c') = E=1;</u>	
<u>372</u> <u>373</u> *No more than 1 process allowed(none or 1 process selected)	
374 DS2 Y('C2a')+ Y('C2b')+Y('C2c')=L=1; 375 DS3 Y('C3a')+ Y('C3b')+Y('C3c')=L=1;	
$\frac{376 \text{ DS4} Y(\text{R1a}) + Y(\text{R1b}) + Y(\text{R1c}) = L=1;}{377 \text{ DS5} Y(\text{C4a}) + Y(\text{C4b}) + Y(\text{C4c}) = L=1;}$	
378	
<u>379</u> *More than 1 process allowed(None, 1 or 2 process selected) <u>380</u>	
<u>381 DS6a Y('R1a')+ Y('C4a')=L=2;</u> <u>382 DS6b Y('R1b')+Y('C4b')=L=2;</u>	
<u>383 DS6c Y('R1c')+ Y('C4c')=L=2;</u>	
98	

<u>_384</u>	
385 *No more than 1 process allowed(none or 1 process selected)	
$\frac{386}{202} DS7 Y('C5a') + Y('C5b') + Y('C5c') = L = 1;$	
<u>387 DS8 Y('C8a')+ Y('C8b')=L=1;</u> 388	
389 *More than 1 process allowed(None, 1 or 2 process selected)	
390	
<u>391 DS9 Y('R3')+ Y('C12')=L=2;</u>	
<u>392</u> 393	
394 *Big-M Logical Constraints	
<u>395 BiqM(T)</u> F(T)=L=M(T)*Y(T);	
<u>396</u>	
<u>397 *Limit Choice of Overhead & Bottom</u>	
<u>398 STRUCTURAL SPEC LC(T,S)\$column(T,S).</u> SUM(T1 \$ outlet column(T1,S), Y(T1))-Y(T) =G= 0;	
399	
400 SP_C5a Y('C7')-Y('C5a') =G=0;	
401	
402 403 *Inlet Condition	
404 Inlet(T,S) \$ IP_feed_to_task(T,S) SUM(T1 \$ task_producing_IP(T1,S),	
<u>Y(T1)</u> - Y(T) =G= 0;	Formatted: German (Germany)
406 InletC5a Y('C4b')+Y('R1b')-Y('C5a')=G=0;	
407 InletC5b Y('C4c')+ Y('R1c') - Y('C5b')=G=0; 408 InletC5c Y('C4b')+Y('R1b')-Y('C5c')=G=0;	
407 InletC5b Y('C4c')+ Y('R1c') - Y('C5b')=G=0; 408 InletC5c Y('C4b')+Y('R1b')-Y('C5c')=G=0; 409	
408 InletC5c Y('C4b')+Y('R1b')-Y('C5c')=G=0; 409	
408 InletC5c Y('C4b')+Y('R1b')-Y('C5c')=G=0; 409	
408 InletC5c Y('C4b')+Y('R1b')-Y('C5c')=G=0; 409	
408 InletC5c Y('C4b')+Y('R1b')-Y('C5c')=G=0; 409	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
408 InletC5c Y('C4b')+Y('R1b')-Y('C5c')=G=0; 409 410 InletC7 Y('C5a')-Y('C7')=G=0; 411 InletR2 Y('C5b')+Y('C5c')+Y('C7')+Y('C8a') +Y('C8b')-Y('R2')=G=0; 412 412 413 InletC8b 414 415 *Integer Cuts to obtain second best solution	
408 InletC5c Y('C4b')+Y('R1b')-Y('C5c')=G=0; 409 410 InletC7 Y('C5a')-Y('C7')=G=0; 411 InletR2 Y('C5b')+Y('C5c')+Y('C7')+Y('C8a') +Y('C8b')-Y('R2')=G=0; 411 412 412 413 InletC8b Y('C3b')+Y('C2b')-Y('C8b')=G=0; 414 415 *Integer Cuts to obtain second best solution 416 *CUTS 2nd Optimum Y('OIL Fractionator') + Y('QUENCH	
408 InletC5c Y('C4b')+Y('R1b')-Y('C5c')=G=0; 409	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{r llllllllllllllllllllllllllllllllllll$	
408 InletC5c Y('C4b')+Y('R1b')-Y('C5c')=G=0; 409 410 InletC7 Y('C5a')-Y('C7')=G=0; 411 InletR2 Y('C5b')+Y('C5c')+Y('C7')+Y('C8a') +Y('C8b')-Y('R2')=G=0; 411 412 Y('C3b')+Y('C2b')-Y('C8b')=G=0; 413 InletC8b Y('C3b')+Y('C2b')-Y('C8b')=G=0; 414 Y('C1b')+Y('C2b')-Y('C8b')=G=0; 415 *Integer Cuts to obtain second best solution 416 *CUTS 2nd Optimum Y('OIL Fractionator') + Y('QUENCH Fractionator')+ Y('FEED')+Y('C1a') + Y('C3a')+Y('PSA')+Y('R1a')+Y('C8a')+Y '(R2')+Y('C11')+Y('C10')+Y('OCU')=L=11; 417 418<*Integer Cuts to obtain 3rd best solution	
$\begin{array}{r llllllllllllllllllllllllllllllllllll$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Formatted: German (Germany)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Formatted: German (Germany)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Formatted: German (Germany)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Formatted: German (Germany)

426 *sum(i,sign(ycolk(i,k)-0.5)*ycol(i)) =l= sum(i,ycolk(i,k)) - 1;			
427 *INTEGER_CUT_1 Y('OIL_Fractionator') + Y('QUENCH_Fractionator') + Y(
'FEED') + Y('C1c') + Y('C2a') + Y('C3c') + Y('C5b') + Y('PSA') + Y('R1c')			
+ Y('C4c') + Y('R2') + Y('R3') + Y('R4') + Y('C10') + Y('C11') + Y('C12')			
<u>+ Y('C13') =L= 15;</u>			
428			
429			
<u>Y('C13')-Y('R4')=G=0;</u> directed SP			
Y('R4')-Y('C13')=G=0; inlet of C13			
<u>Y('C14')-Y('C13')=G=0; bottom SP</u>			
<u>Y('C13')-Y('C14')=G=0; inlet of C14</u>			
<u>Y('C15')-Y('C14')=G=0; bottom SP</u>			
<u>Y('C14')-Y('C15')=G=0;</u> inlet of C15			
<u>Y('C16')-Y('C15')=G=0; bottom SP</u>			
<u>Y('C15')-Y('C16')=G=0; inlet of C16</u>			
$\frac{Y('R5')-Y('C16')=G=0;}{Y('C16')=G=0;} top SP$			
<u>Y('C16')-Y('R5')=G=0; inlet of R5</u>			
V//C47/V//DE/V C Or directed CD			
<u>Y('C17')-Y('R5')=G=0; directed SP</u> Y('R5')-Y('C17')=G=0; inlet of C17			
$\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) = 0 = 0, \qquad \text{Inter or } 0 = 17$			
Y('C18')-Y('C17')=G=0; bottom SP			
Y('C17')-Y('C18')=G=0; inlet of C18			
Y('C18')-Y('C19')=G=0; inlet C19			
Y('C20')-Y('C19')=G=0; SP			
Y('C19')-Y('C18')=G=0; overhead SP			
Y('C20')-Y('C18')=G=0; bottom SP			
Y('C18')+Y('C19') -Y('C20')=G=0; inlet of C20			
<u>Y('C21')-Y('C20')=G=0;</u> directed SP			
Y('C20')-Y('C21')=G=0; inlet of C21			
465			
<u>466 ;</u>			
467			
468			
470 MODEL NAPHTHA			
$\frac{471}{470}$			
472 ALL			
$\frac{473}{474}$			
<u>474 /;</u>			

475	
475 *Intial values and bound are given to avoid getting stuck at an infeasible	
point wen the NLP solver starts up	
<u>477</u>	Formatted: German (Germany)
478	Tormatted. Germany)
479 F.up(T)=TOTFEED;	
480 Y.up(T)=1;	
481	
482	
483 Fraction.LO(T) = 0.00 ;	
484 Fraction.UP(T) = 1.00;	
485	
486	
<u>487 *OPTION</u>	
<u>488 OPTION</u>	
<u>489 *MINLP = BARON</u>	
490 MIP = CPLEX	
<u>491 *MINLP = SBB</u>	
492 *MINLP = DICOPT # DICOPT returns infeasible solution to this problem	
493 LIMROW = 0	
$\frac{494}{100} \text{LIMCOL} = 0$	
<u>495 ;</u>	
<u>496</u> <u>497</u>	
497	
<u>498</u> <u>499</u>	
500	
500 SOLVE NAPHTHA USING MIP MINIMIZING Z	
<u>502 ;</u>	
503	
504 DISPLAY Z.L, Y.L, F.L;	
COMPILATION TIME = 0.010 SECONDS 3 Mb WIN223-146 Nov 21, 2006	

 GAMS Rev 146
 x86/MS Windows
 06/03/06 22:29:18 Page 2

 : Naphtha Separation
 Model Statistics
 SOLVE NAPHTHA Using MIP From line 501

MODEL STATISTICS

BLOCKS OF EQUATIONS	28	SINGLE EQUATIONS	134
BLOCKS OF VARIABLES	3	SINGLE VARIABLES	69
NON ZERO ELEMENTS	419	DISCRETE VARIABLES	34

GENERATION TIME = 0.010 SECONDS 4 Mb WIN223-146 Nov 21, 2006

EXECUTION TIME = 0.020 SECONDS 4 Mb WIN223-146 Nov 21, 2006

GAMS Rev 146 x86/MS Windows 06/03/06 22:29:18 Page 3 : Naphtha Separation	
Solution Report SOLVE NAPHTHA Using MIP From line 501	
SOLVE SUMMARY	
MODEL NAPHTHA OBJECTIVE Z	
TYPE MIP DIRECTION MINIMIZE SOLVER CPLEX FROM LINE 501	
***** SOLVER STATUS 1 NORMAL COMPLETION ***** MODEL STATUS 8 INTEGER SOLUTION	
**** OBJECTIVE VALUE 910746413.5937	
RESOURCE USAGE, LIMIT0.2401000.000ITERATION COUNT, LIMIT2410000	
GAMS/Cplex Nov 27, 2006 WIN.CP.CP 22.3 032.035.041.VIS For Cplex 10.1 Cplex 10.1.0, GAMS Link 32	
Solution satisfies tolerances.	
MIP Solution: 910746413.593735 (24 iterations, 0 nodes) Final Solve: 910746413.593724 (0 iterations)	
Best possible: 910682452.747934 Absolute gap: 63960.845801	
Relative gap: 0.000070	
LOWER LEVEL UPPER MARGINAL	
EQU OBJECTIVE	Formatted: German (Germany)
EQU Oil 8.3333E+5 8.3333E+5 756.998	
EQU Initial_F~4.908E+5	
OBJECTIVE Objective function Initial FEED Initial Column Feed to superstructure	
EQU MB_Unit Material Balances for Unit	
LOWER LEVEL UPPER MARGINAL	
<u>ab 1.400E+5</u> <u>cl4.220E+5</u>	Formatted: German (Germany)
<u>ah</u> <u>fl3.214E+5</u>	

ak		<u> </u>
<u> </u>		<u> </u>
<u>ck</u>		<u> </u>
<u>fk</u>		<u> </u>
<u>jk</u>		<u> </u>
се		2.794E+5
<u>ch</u>		<u> </u>
cd		1.400E+5
<u>ad_fh</u>		<u> </u>
<u>cd_fh</u>		<u> </u>
ad		<u> </u>
fh		2.800E+5
<u>jl</u>		<u>1.400E+5</u>

LOWER LEVEL UPPER MARGINAL

EQU MB_C11		1.400E+5
EQU DS1	1.000	1.000 1.000 .
EQU DS2	-INF	. <u>1.000</u> .
EQU DS3	-INF	1.000 1.000 .
EQU DS4	-INF	<u>1.000 1.000 .</u>
EQU DS5	-INF	. 1.000 .
EQU DS6a	-INF	<u>1.000 2.000 .</u>
EQU DS6b	-INF	. 2.000 .
EQU DS6c	-INF	. 2.000 .
EQU DS7	-INF	. 1.000 .
EQU DS9	-INF	. 2.000 .
EQU DS8	-INF	1.000 1.000 .

---- EQU Inlet Inlet Condition

LOWER LEVEL UPPER MARGINAL

<u>C2a.ak</u> .	. +INF .
C2b.ak .	. +INF .
C2c.ak .	. +INF .
<u>C3a.cl .</u>	<u>. +INF .</u>
C3b.ck .	<u>. +INF .</u>
<u>C3c.ck</u> .	<u>. +INF .</u>
<u>PSA.ab .</u>	<u>. +INF .</u>
R1a.ce .	. +INF .
R1b.ad_fh .	. <u>,+INF .</u>
R1c.cd_fh .	. +INF .
C4a.ce .	1.000 +INF .
C4b.ad_fh .	. <u>.+INF .</u>
C4c.cd_fh .	. +INF .
C8a.fl .	. +INF .
R4.I .	. +INF .
C11.fh .	. +INF .
C10.cd .	. +INF .

Formatted:	German (Germany)	

Formatted: German (Germany)

Formatted: German (Germany)

<u>C9.jl . 1.000 +INF .</u>	
<u>C6.cd</u> . 1.000 +INF .	
OCU.jl +INF .	
LOWER LEVEL UPPER MARGINAL	
EQU InletC5a +INF .	
EQU InletC5b +INF .	
EQU InletC5c +INF . EQU InletC7 +INF .	
EQU Inlet 7 +INF .	
EQU InletC8b +INF .	
EQU STRUCTURAL_SPEC_LC_Overhead & Bottom	
LOWER LEVEL UPPER MARGINAL	
C1a.ab HNF .	Formatted: German (Germany)
C1a.cl +INF .	
C1b.ah +INF .	
<u>C1b.fl . 1.000 +INF .</u>	
<u>C1c.ak +INF .</u>	
<u>C1c.I +INF .</u>	
<u>C2a.ab . 1.000 +INF .</u>	
<u>C2a.ck</u> <u>+INF</u> .	
<u>C2b.ah</u> +INF	
<u>C2b.fk</u> +INF .	
C2c.ah +INF .	
<u>C2c.jk +INF .</u> C3a.fl +INF .	
<u>C3a.fl +INF .</u> <u>C3a.ce +INF .</u>	
$\frac{\text{CSALCE}}{\text{C3b.fk}} \cdot \frac{1}{\text{NF}} \cdot $	
<u>C3b.ce . 1.000 +INF .</u>	
<u>C3c.jk +INF .</u>	
C3c.ch +INF .	
R1a.cd +INF .	
R1b.ad_fh +INF .	Formatted: German (Germany)
R1c.cd_fh +INF .	
<u>C4a.cd</u> . <u>1.000</u> +INF .	
<u>C4b.ad fh +INF .</u>	Formatted: German (Germany)
<u>C4c.cd_fh</u> +INF .	
<u>C8a.fh</u> +INF	
<u>C8a.jl +INF .</u>	
<u>C8b.fh</u> . 1.000 +INF .	
<u>C9.l +INF .</u> <u>C9.jk +INF .</u>	
<u>C9.jk . +INF .</u> <u>C7.cd . 1.000 +INF .</u>	
<u>C7.6d</u> . <u>1.000 +INF</u> . <u>C7.fh</u> . <u>1.000 +INF</u> .	
$\frac{C7.111}{C6.ab} \cdot 1.000 + INF \cdot$	
105	

+INF 1.000 C6 .cd C5a.ab 1.000 +INF C5b.cd 1.000 +INF C5b.fh 1.000 +INF +INF C5c.ad C5c.fh 1.000 +INF LOWER LEVEL UPPER MARGINAL ---- EQU SP_C5a +INF ---- EQU BigM Big M Logical Constraints-Switching Constraints with T tasks LOWER LEVEL UPPER MARGINAL OIL_Fractionator -INF QUENCH_Fractionator -INF . FEED -INF -1.200 ____ C1a C1b -INF -1.200 Formatted: German (Germany) -INF -3.443E+5 C1c -3.508E+5 -INF <u>C2a</u> -INF -INF C2b . <u>C2c</u> -INF . C3a -INF -253.197 C3b -INF Formatted: German (Germany) . <u>C3c</u> PSA -INF --748.003 -INF R1a -INF -299.424 <u>R1b</u> -INF <u>R1c</u> C4a C4b -INF -INF -INF -INF <u>C4c</u> -953.773 C8a -INF C8b -INF Formatted: German (Germany) R2 -INF -986.321 R3 -INF <u>R4</u> -INF C12 -INF C11 -986.321 -INF C10 -INF -302.577 <u>C9</u> -INF C7 -INF . <u>C6</u> -INF . OCU C5a -INF -967.452 -INF . <u>C5b</u> -INF -INF <u>C5c</u>

LOWER LEVEL UPPER MARGINAL	
VAR Z -INF 9.1075E+8 +INF .	Formatted: German (Germany)
Z Objective function	
VAR Y Columns selection in superstruture associated with T Tasks(existance	
Or Non-existance)	
LOWER LEVEL UPPER MARGINAL	
OIL_Fractionator . 1.000 1.000 56000.000	
QUENCH_Fractionator . 1.000 1.000 56000.000	
FEED . 1.000 1.000 56000.000 C1a . 1.000 1.000 56000.000	
C1b 1.000 -3.443E+8	
C1c 1.000 -3.508E+8	
<u>C2a</u> 1.000 56000.000	
<u>C2b 1.000 56000.000</u>	
<u>C2c 1.000 56000.000</u>	
<u>C3a</u> . <u>1.000</u> <u>1.000</u> <u>56000.000</u>	
<u>C3b</u> <u>1.000 56000.000</u>	
<u>C3c . 1.000 56000.000</u> <u>PSA . 1.000 1.000 56000.000</u>	
R1a . 1.000 1.000 56000.000	
R1b 1.000 56000.000	
R1c 1.000 56000.000	
<u>C4a 1.000 56000.000</u>	
<u>C4b 1.000 56000.000</u>	
<u>C4c 1.000 56000.000</u>	
C8a . 1.000 56000.000 C8b . . 1.000 56000.000	
C8b . 1.000 56000.000 R2 . 1.000 1.000 56000.000	
R3 1.000 56000.000	
R4 1.000 56000.000	
<u>C12 1.000 56000.000</u>	
<u>C11</u> . 1.000 1.000 56000.000	
<u>C10</u> . <u>1.000</u> <u>1.000</u> <u>56000.000</u>	
<u>C9</u> <u>1.000 56000.000</u> C7 <u>1.000 56000.000</u>	
<u>C6 . 1.000 56000.000</u>	
OCU . 1.000 1.000 56000.000	
<u>C5a</u> 1.000 56000.000	
<u>C5b 1.000 56000.000</u>	
<u>C5c 1.000 56000.000</u>	
VAR F Flow Rate of selected T task associated with S streams	
LOWER LEVEL UPPER MARGINAL	
107	
107	

OIL_Fract	ionator . 1000.000 1000.000 .	
	_Fractionator . 1000.000 1000.000 -1.158E+8	
FEED	. 998.800 1000.000 .	
C1a		
C1b	. 1000.000 .	
C1c	1000.000 .	
C2a	<u>1000.000 1.7592E+5</u>	
C2b	1000.000 1.4000E+5	
C2c	1000.000 1.4000E+5	
C3a	. 746.803 1000.000 .	
C3b	1000.000 4.0808E+5	
C3c	<u>1000.000 1.4000E+5</u>	
PSA	. <u>251.997 1000.000</u> .	
<u>R1a</u>	. <u>700.576 1000.000</u> .	
<u>R1b</u>	<u>1000.000 1.4000E+5</u>	
<u>R1c</u>	<u>1000.000 1.4000E+5</u>	
C4a	<u>1000.000 7.219E-12</u>	
C4b	<u>1000.000 1.4000E+5</u>	
<u>C4c</u>	<u>1000.000 1.4000E+5</u>	
<u>C8a</u>	<u>. 46.227 1000.000 .</u>	
<u>C8b</u>	<u>1000.000 2.6972E+5</u>	
<u>R2</u>	<u>. 13.679 1000.000 .</u>	
R3	<u>1000.000 1.4000E+5</u>	
<u>R4</u>	<u>1000.000 1.4000E+5</u>	
<u>C12</u>		
<u>C11</u>	. 13.679 1000.000 .	
<u>C10</u>	<u>. 697.423 1000.000 .</u>	
<u>C9</u>	1000.000 EPS	
<u>C7</u>	<u>1000.000 2.8269E+5</u>	
<u>C6</u>	1000.000 2.8000E+5	
<u>0CU</u>	. 32.548 1000.000 .	
<u>C5a</u>	<u>1000.000 1.7664E+5</u>	
C5b	1000.000 2.8269E+5	
<u>C5c</u>	1000.000 1.4398E+5	
**** 0500		
**** REPORT SUMMARY : 0 NONOPT 0 INFEASIBLE		
0 UNBOUNDED		

Formatted: German (Germany)

Execution = 9.107464E+8 Objective function	: Naphtha Separation	Formatted: German (Germany)
		l'officiate definiar (definiarity)
asks(existance Or Non-existance) OIL Fractionator 1.000, QUENCH Fractionator 1.000 FEED 1.000, Cta 1.000, CSa 1.000 R1a 1.000, CSa 1.000 R2 1.000, OCU 1.000 C10 1.000, OCU 1.000 C11 1.000 000 C12 1.000, OCU 1.000 C13 700.000, QUENCH Fractionator 1000.000 FEED 998.800, C1a 998.800 C3a 746.803, PSA 251.997 R1a 700.576, C8a 46.227 R2 13.679, C11 13.679 C10 697.423, OCU 32.548 EXECUTION TIME = 0.010 SECONDS Stopt course about mathematical programming DC5953 </td <td> 504 VARIABLE Z.L = 9.107464E+8 Objective function</td> <td></td>	504 VARIABLE Z.L = 9.107464E+8 Objective function	
asks(existance Or Non-existance) OIL Fractionator 1.000, QUENCH Fractionator 1.000 FEED 1.000, Cta 1.000, CSa 1.000 R1a 1.000, CSa 1.000 R2 1.000, OCU 1.000 C10 1.000, OCU 1.000 C11 1.000 00 C12 1.000, OCU 1.000 C13 1.000, OCU 1.000 C14 1.000, 000, 000 000 C3a 746.803, PSA 251.997 R1a 700.576, C8a 46.227 R2 13.679 C11 13.679 C10 697.423, OCU 32.548 EXECUTION TIME = 0.010 SECONDS 3 Mb WIN223-146 Nov 21, 2006 USER: course a		
OIL Fractionator 1.000, QUENCH Fractionator 1.000 C3a 1.000, C1a 1.000 R1a 1.000, C8a 1.000 R2 1.000, C11 1.000 C10 1.000, OCU 1.000 C11 1.000 0.000, QUENCH Fractionator 1000.000 FEED 998.800, C1a 998.800 C3a 746.803, PSA 251.997 R1a 700.576, C8a 46.227 R2 13.679, C11 13.879 C10 697.423, OCU 32.548 EXECUTION TIME = 0.010 SECONDS 3 Mb WIN223-146 Nov 21, 2006 USER: course license S060628:0842AL-WIN Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions **** FILE SUMMARY Input C:Documents and Settings\leesufen\Desktop\May FYP\Ethane_EPMS_24May.		
FEED 1.000, C1a 1.000 C3a 1.000, PSA 1.000 R1a 1.000, C11 1.000 C10 1.000, OCU 1.000		
C3a 1.000, PSA 1.000 R1a 1.000, C8a 1.000 R2 1.000, OCU 1.000 C10 1.000, OCU 1.000 C11 1.000, OCU 998.800 C3a 746.803, PSA 251.997 R1a 700.576, C8a 46.227 R2 13.679, C11 13.679 C10 697.423, OCU 32.548 EXECUTION TIME = 0.010 SECONDS 3 Mb WIN223-146 Nov 21, 2006 USER: course license S060628:0842AL-WIN Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions ***** FILE SUMMARY Input C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May_		
R2 1.000, C11 1.000 C10 1.000, OCU 1.000 504 VARIABLE F.L. Flow Rate of selected T task associated with S streams OIL Fractionator 1000.000, QUENCH Fractionator 1000.000 FEED 998.800, C1a 998.800 C3a 746.803, PSA 251.997 R1a 700.576, C8a 46.227 R2 13.679, C11 13.679 C10 697.423, OCU 32.548 EXECUTION TIME = 0.010 SECONDS 3 Mb WIN223-146 Nov 21, 2006 USER: course license S060628:0842AL-WIN Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions **** FILE SUMMARY Input_C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May.		
C10 1.000 0CU 1.000 504 VARIABLE F.L Flow Rate of selected T task associated with S streams OIL Fractionator 1000.000, QUENCH Fractionator 1000.000 FEED 998.800 C1a 998.800 C3a 746.803, PSA 251.997 R1a 700.576, C8a 46.227 R2 13.679 C10 697.423, OCU C10 697.423, OCU 32.548 EXECUTION TIME = 0.010 SECONDS 3 Mb WIN223-146 Nov 21, 2006 USER: course license S060628:0842AL-WIN Phd course about mathematical programming DC5953 DC5953 License for teaching and research at degree granting institutions **** FILE SUMMARY Input C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May		
504 VARIABLE F.L. Flow Rate of selected T task associated with S streams OIL Fractionator 1000.000, QUENCH Fractionator 1000.000 FEED 998.800, C1a 998.800 C3a 746.803, PSA 251.997 R1a 700.576, C8a 46.227 R2 13.679, C11 13.679 C10 697.423, OCU 32.548 EXECUTION TIME = 0.010 SECONDS 3 Mb WIN223-146 Nov 21, 2006 USER: course license S060628:0842AL-WIN Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions **** FILE SUMMARY Input C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May.		
OIL Fractionator 1000.000, QUENCH Fractionator 1000.000 FEED 998.800, C1a 998.800 C3a 746.803, PSA 251.997 R1a 700.576, C8a 46.227 R2 13.679, C11 13.679 C10 697.423, OCU 32.548 EXECUTION TIME = 0.010 SECONDS 3 Mb WIN223-146 Nov 21, 2006 USER: course license S060628:0842AL-WIN Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions **** FILE SUMMARY Input C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May. ms Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan		
OIL Fractionator 1000.000, QUENCH Fractionator 1000.000 FEED 998.800, C1a 998.800 C3a 746.803, PSA 251.997 R1a 700.576, C8a 46.227 R2 13.679, C11 13.679 C10 697.423, OCU 32.548 EXECUTION TIME = 0.010 SECONDS 3 Mb WIN223-146 Nov 21, 2006 USER: course license S060628:0842AL-WIN Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions **** FILE SUMMARY Input C:Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May. ms Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan		
FEED 998.800, C1a 998.800 C3a 746.803, PSA 251.997 R1a 700.576, C8a 46.227 R2 13.679, C11 13.679 C10 697.423, OCU 32.548 EXECUTION TIME = 0.010 SECONDS 3 Mb WIN223-146 Nov 21, 2006 USER: course license S060628:0842AL-WIN Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions **** FILE SUMMARY Input C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May. gms Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan	JU4 VARIABLE F.L FIOW RATE OF SELECTED I TASK ASSOCIATED with S streams	
C3a 746.803, PSA 251.997 R1a 700.576, C8a 46.227 R2 13.679, C11 13.679 C10 697.423, OCU 32.548 EXECUTION TIME = 0.010 SECONDS 3 Mb WIN223-146 Nov 21, 2006 USER: course license S060628:0842AL-WIN Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions ***** FILE SUMMARY Input C:\Documents and Settings\leesufen\Desktop\May FYP\Ethane EPMS 24May. gms Output Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan		
R1a 700.576, C8a 46.227 R2 13.679, C11 13.679 C10 697.423, OCU 32.548 EXECUTION TIME = 0.010 SECONDS 3 Mb WIN223-146 Nov 21, 2006 USER: course license S060628:0842AL-WIN Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions **** FILE SUMMARY Input C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May. gms Output Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan		
C10 697.423, OCU 32.548 EXECUTION TIME = 0.010 SECONDS 3 Mb WIN223-146 Nov 21, 2006 USER: course license S060628:0842AL-WIN Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions ***** FILE SUMMARY Input C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May. gms Output C:\Documents and Settings\leesufen\My_Documents\gamsdir\projdir\Ethan		
EXECUTION TIME = 0.010 SECONDS 3 Mb WIN223-146 Nov 21, 2006 USER: course license S060628:0842AL-WIN Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions ***** FILE SUMMARY Input C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May. gms Output C:\Documents and Settings\leesufen\My_Documents\gamsdir\projdir\Ethan	R2 13.679, C11 13.679	
USER: course license S060628:0842AL-WIN Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions ***** FILE SUMMARY Input C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May. gms Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan	<u>C10 697.423, OCU 32.548</u>	
USER: course license S060628:0842AL-WIN Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions ***** FILE SUMMARY Input C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May. gms Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan		
USER: course license S060628:0842AL-WIN Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions ***** FILE SUMMARY Input C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May. gms Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan		
Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions ***** FILE SUMMARY Input C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May. gms Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan	EXECUTION TIME = 0.010 SECONDS 3 Mb WIN223-146 Nov 21, 2006	
Phd course about mathematical programming DC5953 License for teaching and research at degree granting institutions ***** FILE SUMMARY Input C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May. gms Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan		
License for teaching and research at degree granting institutions ***** FILE SUMMARY Input C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May		
Input <u>C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May.</u> <u>gms</u> Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan		
Input <u>C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May.</u> <u>gms</u> Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan		
Input <u>C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May.</u> <u>gms</u> Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan	**** FILE SUMMARY	
gms Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan		
Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan		
e_EPMS_24May.lst	Output C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan	
	e_EPMS_24May.lst	

APPENDICES II	Formatted: Level 1
GAMS CODE (NAPHTHA)	
<u>۸</u>	Formatted: Font: (Default) Times New Roman, 12 pt

+	Formatted: Left	
	Formatted: Left: column	1.6", Section start: New

l