
Behavioural Codes of Clock Integrated Circuit

By

Mohammad Rafi Bin Dan

Dissertation

Submitted in partial fulfilment of

the requirements for the

Bachelor ofElectrical and Electronics Engineering (Hons)

June 2007

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Behavioural Codes of Clock Integrated Circuit

by

Mohammad Rafi Bin Dan

A project dissertation submitted to the

Electrical and Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment ofthe requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Approved by,

JlgU^NuifrA/A/
(Ms. Smina Mohmad)

CERTIFICATION OF ORIGINALITY

This is to certifythat I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

(MOHAMMAD RAFI BIN DAN)

in

ABSTRACT

We are now submerging into a world where big-board-circuits been replaced

by integrated circuits. So to goes into this race, I had been given a task to

develop a Very-Large-Scale Integrated (VLSI) Circuit that is capable to run

and display a real clock on various displays such as computer monitor or any

specific display. This built I.C. will receive a clock signal wave from a wide

range of frequencies and able to compute exact time up to milliseconds. It

shall able not just to display correct local time and date but also can be reset

and display time and date for various locality. The first important step is to

master and develop the behavioural code of this clock system. There are two

choices of codes, which are Verilog and Verilog Hardware Description

Language (VHDL). Only then this develop system will be implemented to the

Field Programmable Gate Array (FPGA). A FPGA is a semiconductor device

containing programmable interconnections. This FPGA should be connected

to a computer clock simulator and run the Clock Integrated Circuit built.

IV

ACKNOWLEDGEMENT

The author would like to thank God for revealing some ofHis knowledge to

the author in the course ofthis project. The successful implementation and

completion of this project has been made possible through the help and support

ofmany individuals. First and foremost is the author's supervisor, Ms. Salina

Mohmad, for his guidance have enabled the author to understand the subject

matter at hand, and overcoming all the obstacles along the way. Thanks also to

the Electrical & Electronics Engineering Department lecturers for their

teachings, and last but not least, many thanks to the author's course mate for

all their input during this project. The author also likes to give his appreciation

to his family, for their continuing support for him, and their understanding.

They are the main motivator for the author in his studies. Finally the author

would like to thank Electrical & Electronics Engineering Department of

University Teknologi PETRONAS and all those who have help him in one

way or another to make this Final Year Project a success.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL ii

CERTIFICATION OF ORIGINALITY iii

ABSTRACT iv

ACKNOWLEDGEMENT V

TABLE OF CONTENTS 3

Chapter 1 INTRODUCTION 5

1.1 Background 5

1.2 Problem Statement 6

1.3 Objectives and Scope of Duty 6

Chapter 2 LITERITURE REVIEW AND THEORY 8

Chapter 3 METHODOLOGY/PROJECT WORK 11

Chapter 4 RESULTS AND FINDING 12

Chapter 5 CONCLUSION 20

REFERENCES 21

APPENDICES:

Appendix I : Code for Centisecond's module.

Appendix II : Code for Second's module.

Appendix III : Code for Minute's module.

Appendix IV ; Code for Hour's module.

Appendix V : Code for Day's module.

Appendix VI : Code for Month's module.

Appendix VII : Code for Alarm's module.

Appendix VIII: Code for Stopwatch's module.

Appendix IX : Code for Time Zone Conversion's module.

List of figures:

Figure 4.1 : Module blocks for clock counter 12

Figure 4.1.1 : Waveform of centisecond's module at the initial value 14

Figure 4.2.1 : Waveform of second's module at the initial until clear —'1' 14

Figure 4.2.2 : Waveform of second's module at counter reached 60 15

Figure 4.3.1 : Waveform of minute's module at the initial 15

Figure 4.3.2 : Waveform of minute's module when counter reached 60 16

Figure4.4.1 : Waveform ofhour's module at the initial 16

Figure 4.4.2 : Waveform ofhour's module when counter reached 24 17

Figure 4.5.1 : Waveform of day's module 17

Figure 4.6.1 : Waveform of month's module 18

Figure 4.7.1 : Waveform of alarm's module 18

Figure4.8.1 : Waveform of stopwatch's module 19

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

An FPGA is a semiconductor device containing programmable logic

components and interconnects. The programmable logic components can be

programmed to duplicate the functionality of basic logic gates such as AND,

OR, XOR, NOT or more complex combinational functions such as decoders

or simple math functions. In most FPGAs, these programmable logic

components also include memory elements, which may be simple flip-flops

or more complete blocks of memory. A hierarchy of programmable

interconnects allows the logic blocks of an FPGA to be interconnected as

needed by the system designer. These logic blocks and interconnects can be

programmed after the manufacturing process by the customer/designer so that

the FPGA can perform whatever logical function is needed. To define the

behaviour of the FPGA, users are provided with a Hardware Description

language (HDL) or schematic design. Common HDLs are Verilog and

VHDL. Then these behavioural languages would be compiled and simulated

using the simulator or compiler such as Xilinx Project Manager, ModelSim,

Quartus or many more appropriate simulators/compilers available. Then

using an electronic design automation tool, a technology-mapped netlist is

generated. This netlist can then be fitted to the actual FPGA architecture

using a process called place-and-route. Once this procedure had been

performed, they can not be reconfigured to fit the system.

1.2 PROBLEM STATEMENT

Technologies were developed to fulfil human desires. Since inventions

started to play a big roll in human life, they are still developing until now and

much more useful inventions keep being invented. One of these inventions is

clock and it is an extremely useful device in human daily life. There are so

many type of clock available in the market with variable sizes and functions.

However, what attract costumers more nowadays are the multifunction

products and this become the competitive point for all manufacturer

worldwide.

1.3 OBJECTIVES & SCOPE OF WORKS

1.3.1 Objectives

Objectives of this project are to develop behavioural codes for a VLS

Integrated Circuit that is capable to run and display a real clock on a various

type of displays such as seven-segment, computer monitor and many other

types of display. This clock will be able to compute exact time up to

centisecond and shall display correct time and date for various locality. It also

can be reset at any time and has additional function such as stopwatch and

alarm Successfully behavioural codes should create an FPGA

implementation and can be further develop as an integrated circuit for a

multifunction digital watch that stored data of time and date for various

localities.

1.3.2 Scope ofWork

Student are given two semesters to work with this project and hope that this

time frame will be enough to develop the Hardware Description Languages

needed for clock integrated circuit. Below is the scope ofwork for the project

within these two semesters for the project:

First Semester

a) To do a Hterature study about the behavioural languages (Verilog and

VHDL).

b) To develop the behavioural code.

Second Semester

a) To develop full behavioural code of Clock Integrated circuit:

i) Basic clock's modules (centisecond, second, minute, hour).

ii) Date's module (day, month),

iii) Stopwatch's module.

iv) Alarm's module

v) Time zone's module.

b) Simulation of the behavioural codes.

CHAPTER 2

LITERATURE REVIEW & THEORY

In the beginning, hardware designers were programmers and vice versa. The world

of hardware design and software design fragmented into separate camps during the

1950s and 1960s as advancing technology made software programming easier [1],

The industry needs many more programmers than hardware designers and

programmers require far less knowledge of the physical machine than hardware

designers. Despite this, the role of software designers and hardware designers is

essentially the same; solve a problem. Although many hardware designers realized in

the 1960s and 1970s that their primary job was to develop an algorithm that solves a

problem and translate that algorithm into hardware, some hardware designers lost

sight of this essential truth. An early notation for describing digital hardware that

provides tremendous clarity in this regard is the Algorithmic State Machine (ASM),

which was invented in early 1960s by T.E. Osborne [1]. As the name suggests, the

ASM notation emphasizes the algorithmic nature of the machines being designed.

Unfortunately, hardware designers were inundated with the overwhelming

technological changes that occurred with semiconductor electronics. Many hardware

designers lost track of the advances in design methodology that occurred in software.

Around 1980s, as semiconductor technology advanced, it got more and more difficult

to design hardware. Designers realized that the ever-increasing power of general-

purpose computer could be harnessed to aid them in designing the next generation of

chips. The goal of usingthe current generation of general-purpose computers to help

design the next generation of special and general-purpose computers required

bringing the worlds of hardware and softwareback together again.

Out of this union was born the concept of the Hardware Description Language

(HDL). Being a computer language, an HDL allows use of many of the timesaving

software methodologies that hardware designers had been lacking [1]. But as the

computer language, the HDL allows the expression of concepts that previously could

only be expressed by manual notations, such as the ASM notation and circuit

diagrams.

Common HDLs are VHDL and Verilog. Although there are lot of similarity between

those two, but each of them had they own advantages. VHDL stands for the VHSIC

Hardware Description Language and VHSIC refers to the Very High-Speed

Integrated Circuit program. This VHDL was developed in 1981, initiated by

Department of Defense (DoD) of United States aimed to develop anew generation of

high-speed integrated circuit [7]. At the early stage, continuous advances in

semiconductor technologies increased the complexity of digital system and were

found to have a fundamental impact on the economics of the design of military and

space electronic systems. Furthermore it became more difficult to share designs of

subsystems across contractors. Finally standardized representation of digital system

became the prior concern. The contract to develop this language was awarded to a

DoD team and this resulting a first version of VHDL, released in 1985. Subsequently

this language was transferred to the IEEE for standardization and further

development by representatives from industry, government and academe.

Subsequently the language was ratified in 1987 and became the IEEE 1076-1987

standard [3].

At the other hand, Verilog was started initially as a proprietary hardware modelling

language by Gateway Design Automation Inc. around 1984. It is rumoured that the

original language was designed by taking features from the most popular HDL

language of the time, called HiLo, as well as from traditional computer languages

such as C. At that time, Verilog was not standardized and the language modified

itself in almost all the revisions that came out within 1984 to 1990. In 1990, Cadence

recognized that if Verilog remained a closed language, the pressures of

standardization would eventually causethe industry to shift to VHDL. Consequently,

Cadence organized the Open Verilog International (OVI), and in 1991 gave it the

documentation for the Verilog Hardware Description Language. This was the event

which "opened" the language [8].

Conventional semiconductor technology will someday reach its limit (based on the

minimum size of transistor and the speed of light). Technologies based on

recombinate DNA, photonics, quantum mechanics, superconductivity and

nanomechanics are all contenders to be the computer technology of the twenty-first

century [1]. The point is that it does not matter; technology changes every day, but

the concepts endure.

10

CHAPTER 3

METHODOLOGY/PROJECT WORK

There are certain steps to be followed while managing this project and they

are as shown below;

Research - Hardware Description Languages.

Study these behavioural languages from the textbooks, refer to the references of code

examples taken from the internet and also from some tutorials from supervisor. There

have two choice of languages recommended, that are VHDL and Verilog.

Develop a behavioural code using Verilog or VHDL.

After gained knowledge from previous research, behavioural codes been developed

for clock integrated circuit, module by module.

Simulate these codes using appropriate simulator or compiler available.

Using software shown above, the behavioural code built is able to simulated and here

is where it can be reconfigured to make it behave as it should be. When finished built

the code, it men be compiled to check for any error. If error(s) occurs, they will be

displayed after been compiled and simulation will not be able to be conducted as

long there is any error. Since the software display and tell us the specific error(s) that

occurred, it is easy to reconfigure them

11

CHAPTER 4

RESULTS AND FINDINGS

Base on literature review and some tutorials with supervisors throughout

these two semesters, this project had come out with module blocks for

Centisecond's, Second's, Minute's, Hour's, Day's, Alarm's, Stopwatch's and last,

the Time Conversion's module. These blocks are interconnected within each other

and will affect each other changes in counter. These module blocks are as shown

below:

__ £,—

— — - —-
— — —

-—

~]

Y

ciock y-
billisecond's

madute

i ,
Second's

madule
-*

I

Mnute'f
module

S
s* -

--#

1 Stopwatch's
| madule

C

i

flaunt

module

\

i
• i

Haul's

module

i

i
! .
1
i

Time

module

•

• •

Day's
[nodule

+ i

SUN 24 80 fig „-J

Display mcdule

Figure 4.1: Modules' blocks for clock counter.

On top of everything, the counter is initiated by clock signal. The signal must

have a time, t = 1 centisecond for each cycle, so from the / given, we will get the

value for the frequency,/by using equation (1), (2) and (3)

12

f=lit — (1)

f= 1/1x102 — (2)

/= 100 Hz — (3)

Every time the clock signal trigger from 0 to 1, the Centisecond's module

will count for 1 until it reaches 100. Once it reaches 100, it will reset to 0 again and

gives the Second's module a count '1'. This situation keep repeating until Second's

module reaches 60 count and will reset to 0 again and gives Minute's module a count

'1'. Same happen to Minute's module, it will reset when it count until 60 and give

Hour's module a count '11. This module will reset once it count to 24 and trigger an

input for Day's module. There are seven outputs for Day's module and they are

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday. They will

change and loop to Monday again at every input triggered. All of these modules'

outputs, except for Centisecond's module will be display at Display's module.

However, this centisecond will be displayed when the stopwatch's module is

activated. While this module is actives, the counter will count and display only from

centisecond up until hour. Day will not be included because it is inadequate for a

stopwatch to count until day. Differ from centisecond's module, alarm's module

usually displayed only when to set the timing for the alarm to be activated. When

hour and minute for the alarm has been set, basic clock's module will be activated

back. When hour and minute in this module reach the same values set in the alarm's

module, alarm will be triggered ON.

Time Zone Conversion's module is a module where local time can be

converted to a different time zone. It will add or subtract some amount of hour from

the previous value refer to what time zone is applied. This module is directly linked

with the basic clock's module where it can convert value of hour directly from the

hour's module.

From these module blocks and its behaviour created, codes are constructed.

Please refer to the appendices section for these codes. Below, are the results from

those behavioural codes:

13

i. Centisecond's module:

Srnulatiori mbde.Timing-'

MasleiTirneBan 20.0ns ' <••• Pointer:. : 114.14ms .: Interval:::';. 1.U.14ms: Start End:

Name

•ry

Valueat
20.0 ns

]ps:: 2&37ins .41,34ms 62.31:ms.. 3.83ms 104.86ms .125,83ms 146.8ms 167.77ms

clear . B0

clock B 0

centisig 6 0

0 cenfoec... U0

s\r^j\s\s\j\j\TLru\s\j\T{s\j\rir^

VU

Figure 4.1.1: Waveform of centisecond's module at the initial value.

ii. Second's module:

Simulation mode: Timing.

Master'TireBar:. 1U25ns O" :20.39s. Interval: 2039s Start: End

Name
Valueat
11.13ns 11.125ns

2.§8s 5.37s. 8:05s ; 1074s -"'.13;42s.": 16.11 s m79s 21,47s

u dear B0

1> centisig B1

'& El second UO

"!• secondsig BX

n__
nJirLrLTLJlJTJTJlJTJTJ^

Figure 4.2.1: Waveform of second's module at the initial value until clear = '1*.

14

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sifntialionnio(|e.Timing .

Masl^ Time Ban. ": 11.125 ns - A«j>lWrtftj-./ y84,77s. •• -/ Interval:; "". ..-.04.77*.- Start - End:; "V

:. ; Natiie.,
Value at

.ttferfs.-

69.38sV. 72.07.S : 74:75s V •77.44s". .. 80A2s•!• ..82.8V ".. 85,49s . .r. 88.17s

deai - BO

centisig B1

Q second UO :

secondsig-; BX '•

Lfljijijijijijij"^^
n :•

Figure 4.2.2:Waveform of second's module at counter reached 60.

iii. Minute's module

Simulation mokTiming;

MasterTimsGaT:'..;. t2.53'ns"- "<h;Pnirifef;: ; Ops; •12.53m:. Staii:;

-Name
Valora!
12,53 ns

Ops 42,95s ;S5.9s Ms 171.8s.;214.753.257,7s 3K).Ss 343.6s "38S.55s 42a5s 472.45s 515.4s.55i

12,525 ns

-£?• clea BO

secondsig 81

mratesig . BX .

0 minute UO

^
& M

if. ^TJ -1-*"2 ^-3 X 4 }E 5 X -G-X 7-*-B X

l.

Figure 4.3.1: Waveform of minute's moduleat the initial value.

15

SsSnr^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^S
I'Siriyatroni^ei.Twig''

MasterTirneBs:"".":" 12.525nt"."- ;*1 *jRonter:-;'•" 3415W*- .-, Interval: ;.-".;3415.04s.; Stat ";&*.•"•.'"••'.'

Name ..
Vdwtf'-
12.53ns:

3353.49s. ..3489.39$.. .35S5.29s. 3641.19 s ..'3727,09s .3812.99s . ..3S9^.83s -..

clear 8 0 -

secondsig B1

minutesig BX

0 minute U0 :

m =
56 i 57- Sf-;5B. "St 59 • J. • 0 X " 1. * 2. r 3 i 4^ X • 5

;<-:

Figure 4.3.2: Waveformof minute's module when counter reached 60.

iv. Hour's module

.Simulation mode: Timing.

Masfef.TimeSai:.""-: ; ,'1u,35ns ;.,4>?Pointer:; •'.. .61.12s : -..•.vWsvfc. ::: EK12s /; ;Slart^ End

.Wane
Vaiueat
m35ris

lps,..-'5497Bs- • ' 1039512s .16492..G7S-; . 21S9a'23s... . 27487.73? 32985.35s"-",- ;
.; ;•. I_. ; .;

;# clear

minutesig

houfsg

S hour

houi|26]

boui!271

ho4Ji[28]

hour[29]

BO -

B1

BX

UO .

BO

BO

BO

BO

BO

' -

U

•3? m. •'
r/ :. o-k 1 i 2 -X 3 1 .+ J; LJ «••);•'• l J_JLJ_JL
'&

v>"

>'-/

•sy

'i/

I" ^o:>-->^:vv

Figure 4.4.1: Waveform ofhour's moduleat the initial value.

16

.Simulation modetttg:.

Master Time Bar:- :10.35ns . '^(Pointer. .6.8033s . Interval:. : 6S0.33s: /. "Start EndI

: Name..
•Vaiie'at' -
10,35.ns.

39229,83s 64727;39s;. 70224,35s; •: -75722.5.S - .81220.063 -8^:62s-,: 92215.18?;:;:::

£* clear

minutesig

hoiEiig

1+1 hour

houf[25]

hourI26}

fra[27]

hois[2B]

M29]

BO

B1

BX ;

UO :'
BO

BO

BO

BO

80

U

0 ..• m:
iz is x • 17 . | is .X « t .20: X 21 "IK 22 X- a---r.il -x. * r--2
'£/

-^

#

'1/'

*&.

*4s- '.&'', '

Figure 4.4.2: Waveform ofhour's module when counter reached 24.

v. Day's module

SimufaSon modeTiming

Matertiteflar----- 10.35 ns -L.. *.|MBut*ar.;-... .25821.6s. .-Interval:; . .2582t.6s-:: . Start: ^End:

Name
Valueat

10.35ns

Jpt"".:.V
IMBni

:, :i7532j.86s- _v 35184372s • • 527765:58s""•-"" ^ 703S37.44S - "87960
-- - r •) . • • i

'£/. reset

hoissig

daysel

Bday

B0 -

80

B0

U0 .

"-"': V

'
u

^T^i_j-^^__rL^jT^i^rx^
^^~

S> JJU_ Sf • 2)f 3 .1 4)J 6" I .6 1 0 i 1 I 2 I 3

Figure 4.5.1: Waveform of day's module.

17

vi. Month's module

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^E
;Gimul^liori' mocfe T .:••-•

M&stefTmeBa^ . .12.525ns..,; -<j4ffc.'.. ,"l563!&79s ., fet-\-:. .156315,795; /Start/. ", -" V End:-

;'-: Name' ...
Value'at.

3ps '-•-MKs^- :17&^U»79fc. ? .-..-.-(•••-.. . .---. |. ,: . . . - . ., .-, . --!.-.-• .[

12.525 ns

'i,.;

clear BO

dajisig 60

monlhsig BO

0 month UO

^LiTJ^TL^^^^^^TlJlJ^

;0V M 2-X 3 J.4.X 5:f B X 7 I;8 X 3-X 1'0 IMHI 'J

Figure 4.6.1: Waveform ofmonth's module.

vii. Alarm's module

^^^P^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^H
Simulation liiode-'Timirg..

Masiej-Tane Bar:. . ; 10.35 ns ... "^Pointer:;. "•".. Ops . Intervat . -10.35 lis .Stat -\.End; .

'.-•Narne. :
Valueat "

, 10.35 ns-

]ps --'. 4295s. 85.9s . 128.85s.. 171:8s .21*75*- 257,7s . 300.65 s
.1

.343;Gs''V38G:S's"-429.5s'':;:47
1035ns

'' •"' fl2P feset 6 0

alarml BO

alarm2 B 0

aiatm BX

•n
n " n n n n

n
n 'n

n- • n

mmmmmmm i
1

Figure 4.7.1: Waveform ofalarm's module.

viii. Stopwatch's module

.Simatati'on:m.Ode; Timing

-MasterTimeSai:.. . •;•• W^ -.- f|>iPoMer;: f.; 1Ba7ms .Jntsvat:; . .183.7ms:."-."Staif:•••'••"-; .. .fat-./

. Name.
VafoeaU
11.7ns..

)U .. -,41,84nis:.. -"•'""",-"83jqS"ntt':. :. :083ms "".'...157.77ms ./y- 203.72ms :. .-• 251.66ms:..;
11.7ns " ' "~~

:& clear SO i -.. n . ' .:•-."
4/:

l>;

22/

dock

stait

stop

counter

E3 cenlisec...

centisig

counter...

B1

BO

80

B2

UD

BO :

BO .

TJinjTJijmjmji^^
' n n , n

n :• • "•• n •• •
•£? i- . . : . . M
*2> \-. o- .t\%wu;i . 5. • >nnt 8 1 • • • o- • • imn\
*£/•.

«MTO^^

Figure 4.8.1: Waveform ofstopwatch's module.

19

CHAPTER 5

CONCLUSION

The study of these computer languages is the critical part in this project, where it is

the key to develop a system that can perform behaviours of a clock as per project's

requirement. Then, a familiarization to the simulator or compiler is needed in order

to simulate this behaviour codes. After all the modules are ready and simulated, the

appropriate waveforms been produced. It can be concluded that these behavioural

codes are ready to be implemented into an FPGA to produce an integrated circuit for

a multifunctional digital clock.

20

REFERENCES

[1] Verilog Digital Computer Design, Algorithms to Hardware, Mark Gordon

Arnold, Prentice Hall.

[2] VHDL Programming by Example, Douglas L. Perry, Mc Graw Hill.

[3] Introductory VHDL from Simulation to Synthesis, Sudhakar Yalamanchili,

Prentice Hall.

[4] hUp:/Ven.^ikipedia.oru/wiki/FPGA

[7] Iiiiji://oo.jl::M^

[8] hup;//n^vu-.asic-won<3.com/Yenlog/hiSforv.htnil

21

APPENDICES

22

APPENDIX I

Behavioral code for centisecond's module

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity centisecond is

generic (width : integer :=100);
port (clock : in std_Iogic;

clear : in std_logic;
centisecond : out std_logic_vector(width downto 0);
centisig : out std_logic);

end centisecond;

architecture behv ofcentisecond is

signal pre_centisecond: std_logic_vector(width downto 0);

begin

— behavior describe the centisecond

process(clock, clear)
begin

if clear = '1'then

pre_centisecond <= pre_centisecond - pre_centisecond;
elsif(clock = T and clock'event) then

prejcentisecond <= pre_centisecond + 1;
end if;
ifprecentisecond > 99 then

pre_centisecond <~ pre_centisecond - pre_centisecond;
end if;
ifprecentisecond > 99 then

centisig <=T;
elsifclock = '0'then

centisig <= '0';
end if;

end process;

-- concurrent assignment statement
centisecond <= pre_centisecond;

end behv;

APPENDIX II

Behavioral code for second's module

library ieee;
use ieee.std_logic_1164.an;
use ieee.std__logic_unsigned.all;

entity second is

generic (width :integer :=60);
port (centisig :in stdjogic;

clear :in std_logic;
second rout std_logic_vector(width downto 0);
secondsig :out std_logic);

end second;

architecture behv of second is

signal Pre_second: std_logic_vector(width downto 0);

begin

— behavior describe the second

process(centisig, clear)
begin

if clear = T then

Presecond <= Presecond - Pre_second;
eisif(centisig —T and centisig'event) then

Pre_second <= Pre_second + 1;
end if;
ifPre_second > 59 then

Pre_second <= Pre^second - Pre_second;
end if;
ifPresecond > 59 then

secondsig <=T;
eisif centisig = '0' then

secondsig <= '0';
end if;

end process;

—concurrent assignment statement
second <= Pre_second;

end behv;

APPENDIX in

Behavioral code for minute's module

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity minute is

generic (width : integer :=60);
port (secondsig : in std_Iogic;

clear : in stdjogic;
minute : out std_logic_vector(width downto 0);
minutesig : out stdjogic);

end minute;

architecture behv ofminute is

signal Pre_minute: std_Iogic_vector(width downto 0);

begin

~ behavior describe the minute

process(secondsig, clear)
begin

ifclear -T then

Pre_minute <= Pre_minute - Pre_minute;
elsif (secondsig = M'and secondsig'event) then

Pre_minute <~ Pre_minute + 1;
end if;
ifPre_minute > 59 then

Pre_minute <= Prejninute - Pre_minute;
end if;
ifPre_minute> 59 then

minutesig <='!';
elsif secondsig = '0' then

minutesig <~ '0';
end if;

end process;

—concurrent assignment statement
minute <= Pre_minute;

end behv;

APPENDIX IV

Behavioral code for hour's module

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity hour is

generic (width : integer :=24);
port (minutesig : in std_Iogic;

clear : in stdjogic;
hour : out std_logic_vector(widthdownto 0);

"hoursig : out stdlogic);

end hour;

architecture behv ofhour is

signal Pre_hour: std_logic_vector(width downto 0);

begin

~ behavior describe the hour

process(minutesig9 clear)
begin

ifclear = Tthen

Prehour <~ Prehour - Prehour;
elsif(minutesig —T and minutesig'event) then

Pre_hour <= Pre_hour + 1;
end if;
ifPrejiour > 23 then

Prehour <= Prehour - Prejiour;
end if;
ifPre_hour> 23 then

hoursig <=T;
elsifminutesig ~ '0' then

hoursig <= '0';
end if;

end process;

—concurrent assignment statement
hour <= Prejiour;

end behv;

APPENDIX V

Behavioral code for day's module

library ieee;
use ieee.std_logic_J164.all;
use ieee.std_Iogic__unsigned.all;

entity day is

generic (width :integer :=40);
port (hoursig :in stdjogic;

clear :in stdjogic;
day :out std_logic_vector(width downto 0);
daysig rout stdjogic);

end day;

architecture behv of day is

signal Pre_day: std_logic_vector(width downto 0);

begin

—behavior describe the day

process(hoursig, clear)
begin

ifclear = Tthen

Preday <= Preday - Pre_day;
elsif (hoursig —T and hoursig'event) then

Preday <~ Preday + 1;
end if;
ifPre_day>29then

Pre_day <= Pre_day ~Pre_day;
end if;
ifPre_day>29then

daysig <= '1';
elsif hoursig —'0' then

daysig <= '0';
end if;

end process;

~ concurrent assignment statement
day <*= Pre_day;

end behv;

APPENDIX VI

Behavioral code for month's module

library ieee;
use ieee.std_Iogic_l 164.all;
use ieee.std_logic_unsigned.all;

entity month is

generic (width rinteger :=12);
port (daysig :in std_iogic;

clear :in stdjogic;
month :out std_logic_vector(width downto 0);
monthsig rout stdjogic);

end month;

architecture behv ofmonth is

signal Pre_month: std_logic_vector(width downto 0);

begin

~ behavior describe the month

process(daysig, clear)
begin

if clear = '1'then

Premonth <= Pre_month - Premonth;
elsif(daysig = T and daysig'event) then

Prernonth <= Fre_month + 1;
end if;
ifPre_month> 11 then

Pre_month <= Pre_month - Prejnonth;
end if;

end process;

—concurrent assignment statement
month <= Prejnonth;

end behv;

APPENDIX VII

Behavioral code for alarm's module

library ieee;
use ieee.std_logic_l 164.all;
use ieee.std_logic_unsigned.all;

entity alarm is
generic (width : integer := 60);
port (reset: in stdjogic;

minute : in sta_logic__vector(width downto 0);
hour: in std_logic_vector(width downto 0);
set_min : in stdjogic;
setjiour : in stdlogic;
minutealarm : inout std_logic_vector(width downto 0);
houralarm : inout std_logic_vector(width downto 0);
alarml ; inout stdjogic;
alarm2 : inout sto_iogic;
alarm : out stdjogic);

end alarm;

architecture behv of alarm is

signal pre_alarm: stdjogic;

begin
-behavior describe the counter

process (reset, set_min, setjiour)
begin

if reset = '1'then

pre_alarm <= '0';
elsifalarml = T and alarm2 —'1' then

pre_alarm <= T;
end if;

if set_min - T then
minutealarm <= minutealarm + 1;

end if;

ifminutealarm > 59 then

minutealarm <= minutealarm - minutealarm;
end if;

if setjiour =' I' then
houralarm <= houralarm + 1;

end if;

ifhouralarm > 23 then

houralarm <~ houralarm - houralarm;
end if;
if minute = minutealarm then

alarml <=T;
alarml <= '0' after 5ns;

end if;

ifhour —houralarm then

alarm2<=T;
alarm2 <= '0' after 5ns;

end if;

end process;

—concurrent assignment statement
alarm <= pre_alarm;

end behv;

APPENDIX VIII

Behavioral code for stopwatch's module

library ieee;
use ieee.std_logic_l 164.aH;
use ieee.std_logic_unsigned.all;

entity stopwatch is

generic (width : integer -100);
port (clock : in std_logic;

clear : in stdjogic;
start : in stdjogic;
stop : in std_logic;
counter : inout stdjogic;
centisecond : out std_Iogic_vector(width downto 0);
centisig : out stdlogic);

end stopwatch;

architecture behv of stopwatch is

signal pre_centisecond: std_logic_vector(width downto 0);

begin

—behavior describe the centisecond

procl: process(clock, clear)
begin
ifclear = T then

pre_centisecond <= pre_centisecond - pre_centisecond;
elsif (clock = T and clock'event) then
ifcounter ='V then

pre_centisecond <= pre_centisecond -+• 1;
end if;
if pre__centisecond > 99 then

pre_centisecond <= pre_centisecond - pre_centisecond;
end if;
if pre_centisecond > 99 then

centisig <-T;
elsif clock — '0' then

centisig <— '0';
end if;

if start ^T then

counter <~T;
elsif stop —T then

counter <= '0';
end if;

end if;
end process;

—concurrent assignment statement
centisecond <— precentisecond;

end behv;

