STATUS OF THESIS

Title of thesis

Development of Asymmetric Polycarbonate (PC) Membrane for Carbon Dioxide Removal from Methane

I _____MUHAMMAD IQBAL____

hereby allow my thesis to be placed at the Information Resource Center (IRC) of Universiti Teknologi PETRONAS (UTP) with the following conditions:

- 1. The thesis becomes the properties of UTP.
- 2. The IRC of UTP may make copies of the thesis for academic purposes only.
- 3. This thesis is classified as

Confidential

Non-confidential

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for _____ years.

Remarks on disclosure:

Endorsed by

Signature of Author

Jl Serayu 24, Labuh baru, Pekanbaru, Indonesia

Date: $\frac{22}{607}$

daria bin Man Senior Lecturer ical Engineering Programme 2000

Signature of Supervisor

Universiti Teknologi PETRONAS

Date : 22 6 07

i

UNIVERSITI TEKNOLOGI PETRONAS

Approval by Supervisor (s)

The undersigned certify that they have read, and recommend to The Postgraduate Studies Programme for acceptance, a thesis entitled "<u>Development of Asymmetric</u> <u>Polycarbonate (PC) Membrane for Carbon Dioxide Removal from Methane</u>" submitted by (<u>Muhammad Iqbal</u>) for the fulfillment of the requirements for the degree of Master of Science in Chemical Engineering.

Date

Signature	:	Dr. Zakaria bin Man Senior Lecturer Chemical Engineering Programme
Main supervisor	:	Dr Zakafia Man
Date	•	22607
Signature	:	Assoc. Prof. Dr. Hilmi bin Mukhtar Director, Undergraduate Studies
Co-Supervisor	•	AP. Pr. HILMI MULEUTAR
Date	. 5	20/6/07,

TITLE PAGE

UNIVERSITI TEKNOLOGI PETRONAS

Development of Asymmetric Polycarbonate (PC) Membrane

for Carbon Dioxide Removal from Methane

By

Muhammad Iqbal

A THESIS

SUBMITTED TO THE POSTGRADUATE STUDIES PROGRAMME AS A REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE CHEMICAL ENGINEERING BANDAR SERI ISKANDAR, PERAK

2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UTP or other institutions.

Signature	:	M. M
Name	:	MUHAMMAD IQBAL
Date :		22/06/07

ACKNOWLEDGEMENT

First and foremost, I would like to give my sincere thanks to ALLAH SWT, the almighty God, the source of my life and hope for giving me the strength and wisdom to complete the research.

I am most grateful to my supervisor Dr. Zakaria Man for giving me an opportunity to pursue a master degree. Many times, his patience and constant encouragement has steered me to the right direction. I would also like to thank my co-supervisor Assoc. Prof. Dr. Hilmi Mukhtar for his suggestions, criticism and helps.

I would like to thank Prof. Ahmad Fauzi Ismail, Head of Membrane Research Unit (MRU), Universiti Teknologi Malaysia (UTM) which gave me the opportunity to learn and conduct gas permeability experiment in his laboratory. Special thanks to Mr Ng Be Cheer, Research Officer at MRU, UTM, for assisting me in data collection and analysis.

I also want to thank Dr Mohamad Nasir Mohammad Ibrahim from School of Chemical Sciences, Universiti Sains Malaysia (USM), for allowing me to do some membrane characterizations in USM laboratory. My sincere appreciation also for Pn Jamilah, SEM technologist at Electron Microscopy Services Lab, USM, for helping me in obtaining great images of membrane structure using FESEM

I would like also express my gratitude to all technologists from UTP, En. Jailani, En Fauzi, En. Yusuf, En. Zaaba, En Anwar, Shahafizan, Zikrullah, Mahadhir, Ms Norhazneyza and Ms Azimah for their effort in helping and providing me with the all chemicals and other experimental tools that I need for this research. Special thanks also to my postgraduate friends for their encouragement and friendship. My sincere thanks also to postgraduate office staffs, Kak Norma, Kak Haslina, Pn Kamaliah and Bang Fadhil for their assistance during my study.

At last and most importantly, I would like to thank my family for their openmindedness and endless support. They are always close to my heart.

ABSTRACT

The morphology of asymmetric membrane strongly influences the performance of membrane in removing CO_2 from CH_4 . The understanding of mechanism of asymmetric membrane formation is very crucial in order to produce desirable morphology that leads to enhancement of the membrane performance. The objectives of this work are to study the effect of various preparation conditions on the morphologies of asymmetric polycarbonate (PC) membrane and its relation to CO_2/CH_4 separation characteristic.

Asymmetric PC membranes were fabricated using dry/wet phase inversion technique. The effects of solvent – non-solvent pair, non-solvent concentration, evaporation time and composition of water-MeOH mixtures in coagulation bath on membrane morphologies were investigated. The mechanism of membrane morphologies formation was explained using solvent and non-solvent evaporation, solubility parameter and coagulation value. Dichloromethane (DCM) and chloroform were selected as more volatile solvents while ethanol (EtOH), propanol (PrOH) and butanol (BuOH) were used as non-solvents. In addition, methanol (MeOH) and 1,1,2 trichlorethane (TEC) were used as the coagulant and less volatile solvent, respectively. Membrane characterization was carried out by using SEM and DMA. Gas permeation unit was used to evaluate the performance of membrane.

Experimental results showed that high boiling point of BuOH was responsible in forming highly porous substructure with macrovoid formation in the DCM and chloroform-based membranes prepared using BuOH as non-solvent. Increasing BuOH concentration from 0 to 10 wt.% in DCM casting solution produced macrovoids and a more porous substructure. This is due to smaller coagulation value and solubility parameter difference between solvent mixtures and MeOH. In addition, by increasing the evaporation time for casting film from 0 to 60 seconds, and water content from 0 vol.% to 30 vol.% in MeOH coagulation bath, less porous and macrovoid-free substructure were obtained. This is due to thicker skin layer formation and larger solubility parameter difference between solvent mixtures and MeOH, respectively.

vi

The performance of asymmetric PC membranes was evaluated by measuring CO₂ and CH₄ permeances as well as CO₂/CH₄ ideal selectivity. The results showed that CO₂ and CH4 were strongly dependent upon membrane morphologies formed during fabrication. Highly porous membranes prepared from DCM-BuOH and chloroform-BuOH pairs were found to give higher CO₂ and CH₄ permeance as compared to EtOH and PrOH membranes. Increasing the BuOH concentration from 0% to 10 wt.% of casting solution would increase the CO2 and CH4 permeances as a result from highly porous substructure and the existence of macrovoids. Lower CO2 and CH4 permeances obtained on asymmetric PC membranes prepared from the effect of longer evaporation time of casting film and from the effect of higher water concentration in MeOH coagulation bath were due to less porous substructure formation. In term of selectivity, the highest CO2/CH4 ideal selectivity of the fabricated asymmetric PC membrane is approximately 175. These results demonstrated significant improvement in CO2/CH4 separation as compared to other membranes reported by previous researchers. In conclusion, asymmetric PC membranes produced in this work show promising performance and have high potential to be used for CO_2/CH_4 separation.

Keywords: asymmetric PC membrane, macrovoid, porous substructure, CO_2 and CH_4 permeance, CO_2/CH_4 ideal selectivity

ABSTRAK

Morfologi membran asimetri sangat mempengaruhi keupayaan membran dalam menyingkirkan karbon dioksida daripada metana. Kefahaman mekanisma pembentukan membran asimetri adalah sangat penting untuk menghasilkan morfologi yang diingini yang menghasilkan peningkatan terhadap pencapaian membran tersebut. Objektif utama kajian ini adalah untuk menyelidiki kesan penyediaan pelbagai kondisi ke atas morfologi membran asimetri polikarbonat dan hubungannya dengan ciri-ciri pemisahan gas karbon dioksida daripada metana.

Membran asimetri polikarbonat (PC) telah dihasilkan melalui teknik songsang fasa kering/lembap. Kesan pasangan bahan pelarut-bukan pelarut, kepekatan bahan bukan pelarut, masa penyejatan dan komposisi campuran air-metanol di dalam basin pengentalan ke atas morfologi membran telah diselidiki. Mekanisma pembentukan morfologi membran dapat dijelaskan melalui penyejatan bahan pelarut dan bukan pelarut, parameter keterlarutan dan nilai kelikatan. Diklorometana (DCM) dan klorofom telah dipilih sebagai pelarut lebih ruap manakala etanol (EtOH), propanol (PrOH) dan butanol (BuOH) telah digunakan sebagai bahan bukan pengental dan bahan pelarut kurang ruap. Pencirian membran telah dijalankan dengan menggunakan SEM dan DMA. Unit penyerapan gas digunakan untuk menilai tahap pencapaian membran.

Keputusan eksperimen menunjukkan bahawa, takat didih butanol yang tinggi menyebabkan pembentukan sub-struktur berporos yang tinggi dengan pembentukan liang-makro dalam membran berasaskan DCM dan klorofom menggunakan butanol sebagai bahan bukan pelarut. Peningkatan kepekatan butanol dari 0 ke 10 wt.% di dalam larutan DCM menghasilkan liang-makro dan sub-struktur yang lebih poros. Ini adalah disebabkan oleh nilai pengenatalan yang rendah dan wujudnya perbezaan parameter keterlarutan yang kecil di antara campuran pelarut dan metanol. Selain itu, dengan meningkatkan masa penyejatan filem dari 0 ke 60 saat, dan peningkatan kandungan air dari 0% ke 30 vol.% didalam basin pengentalan metanol, substruktur kurang poros dan bebas dari liang-makro diperolehi. Ini adalah berpunca daripada

pembentukan lapisan kulit yang tebal dan wujud perbezaan parameter keterlarutan yang besar di antara campuran pelarut dan metanol keseluruhannya.

Pencapaian membran asimetri polikarbonat (PC) telah dinilai dengan mengira tahap penyerapan karbon dioksida (CO₂) dan metana (CH₄) dan nilai pemilihan ideal keduadua gas tersebut. Keputusan eksperimen menunjukkan bahawa CO2 dan CH4 sangat bergantung kepada morfologi membran yang terhasil semasa proses pembentukan. Membran yang mengandungi poros yang tinggi yang dihasilkan daripada pasangan DCM-butanol dan klorofom-butanol, didapati memberi nilai penyerapan CO2 dan CH₄ yang tinggi berbanding membran yang terbentuk daripada etanol dan propanol. Dengan peningkatkan kepekatan butanol dari 0% ke 10 wt.% di dalam larutan telah meningkatkan kadar penyerapan CO2 dan CH4, kesan daripada sub-struktur berporos tinggi dan kewujudan liang makro. Tahap penyerapan CO2 dan CH4 yang rendah yang diperolehi pada membran asimetri polikarbonat yang dihasilkan dari kesan masa penyejatan yang lama dan dari kesan kandungan air yang tinggi di dalam basin pengentalan adalah berpunca daripada pembentukan substruktur yang kurang poros. Dari segi pemilihan pula, pemilihan ideal CO2/CH4 yang tinggi pada membran asimetri PC adalah sekitar 180. Kesemua keputusan yang diperolehi menunjukkan peningkatan ketara dalam proses pemisahan CO₂/CH₄ berbanding membran-membran lain sepertimana yang telah dilapurkan oleh penyelidik-penyelidik terdahulu. Kesimpulannya, membran asimetri PC yang dihasilkan dalam kajian ini menjanjikan pencapaian yang baik dan berpotensi untuk digunakan bagi memisahkan campuran CO₂/CH₄.

Kata kunci: membrane asimetri PC, liang-makro, substruktur poros, tahap penyerapan CO_2 dan CH_4 , pemilihan ideal CO_2/CH_4

TABLE OF CONTENTS

STATUS OF THESISi
APPROVAL PAGEii
TITLE PAGE iii
DECLARATIONiv
ACKNOWLEDGEMENTv
ABSTRACTvi
ABSTRAK viii
TABLE OF CONTENTS
LIST OF TABLESxiv
LIST OF FIGURESxvi
ABBREVIATIONSxix
NOMENCLATURES
CHAPTER 1 : INTRODUCTION1
1.1. Carbon Dioxide Problem in Natural Gas Processing1
1.2. Recent Technologies in Carbon Dioxide Removal from Natural Gas2
1.2.1. Absorption
1.2.2. Adsorption
1.2.3. Membrane Technology5
1.3. Problem Statement
1.4. Objective of Research
1.5. Scope of Study10
1.5.1. Fabrication of Asymmetric Polycarbonate Membrane10
1.5.2. Characterization of Asymmetric PC Membrane
1.5.3. Evaluation of Asymmetric PC Membrane Performance
1.6. Organization of This Thesis11
CHAPTER 2 : LITERATURE REVIEW
2.1. Membrane Definition and Classification
2.2. Membrane Fabrication15
2.2.1. Dense Symmetric Membranes
2.2.2. Microporous Symmetric Membranes16

2.2.3. Asymmetric Membranes	
2.3. Development of Ultra-Thin and Defect-Free Skin Layer	of Asymmetric
Membrane	18
2.3.1. Effect of Polymer Concentration on Asymmetric Mem	orane Morphologies
and Transport Properties	19
2.3.2. Effect of Solvent Ratio on Membrane Morphologies an	ld Transport
Properties	21
2.3.3. Effect of Evaporation Time on Asymmetric Membrane	Morphologies and
Transport Properties	23
2.3.4. Development of High Performance Asymmetric Memb	rane Fabrication
Through Rheology Study	26
2.4. Membrane Characterization	29
2.4.1. Characterization of Surface and Cross-section of Memb	brane Structures29
2.4.2. Characterization of Glass Transition Temperature	
2.4.3. Porosity Determination	
2.5. Membrane Materials for CO ₂ /CH ₄ Separation	
2.5.1. In-organic Membrane for CO ₂ /CH ₄ Separation	
2.5.1.1. Carbon Membranes	
2.5.1.2. Zeolite Membranes	
2.5.2. Polymeric Material for CO ₂ /CH ₄ Separation	
2.5.2.1. Cellulose Acetate Membrane	
2.5.2.2. Polyimide Membrane	
2.5.2.3. Polycarbonate	
CHAPTER 3: THEORY	4.1
3.1. Formation of Phase Inversion-Based Asymmetric Membr	
3.1.1. Asymmetric Membrane Formation by Dry/Wet Phase In	
3.1.2. Thermodynamic of Phase Separation Phenomena	
3.1.3. Prediction of Solubility Parameter	
3.2. Membrane Morphology: Effect of Preparation Parameters	
3.3. Membrane Polymer for Gas Separation	
3.3.1. Polymer Properties	
3.3.2. Transport Phenomena	
3.3.3. Gas transport through non-porous membrane	

3.3	3.4. Gas transport through porous membrane	
CHAP	FER 4 : MATERIALS AND METHODS	
4.1.	Polymer60	
4.2.	Chemicals	
4.3.	Asymmetric Polycarbonate Membrane Fabrication	
4.3	8.1. Effect of Various Solvent – Non-solvent Pair	
4.3	2.2. Effect of Non-solvent Concentration in Casting Solution	
4.3	.1. Effect of Evaporation Time of Casting Film64	
4.3	2.2. Effect of Water Content in the Coagulation Bath	
4.4.	Coagulation Value Determination	
4.5.	Membrane Characterization	
4.5	.1. Scanning Electron Microscopy (SEM)66	
4.5	.2. Dynamic Mechanical Analysis	
4.5	.3. Porosity Calculation	
4.6.	Gas Permeation Studies	
СНАРТ	TER 5 : RESULTS AND DISCUSSION	
5.1.	Formation and Morphologies of Asymmetric PC Membrane	
5.1	.1. Effect of Solvents – Non-solvents Pair	
5.1	.2. Effect of Non-solvent Concentration	
	.3. Effect of Evaporation Time	
	.4. Effect of Water Content in Methanol Coagulation Bath	
5.2.	Glass Transition Temperature	
5.3.	CO ₂ /CH ₄ Separation Characteristic95	
5	5.3.1.1. Effect of DCM – Non-solvents Pair	
5	5.3.1.2. Chloroform – Non-solvent Pair	
5.3	2. Effect of Non-solvent Concentration101	
5.3	3. Effect of Evaporation Time104	
5.3	4. Effect of Water-Methanol Coagulation Bath Composition107	
5.3.	5. Comparison of Asymmetric PC Membrane Performance	
СНАРТ	ER 6: CONCLUSIONS AND RECOMMENDATIONS112	
6.1.	Conclusions112	
6.2.	Recommendations115	

REFERENCES	
APPENDIX A	
APPENDIX B	
APPENDIX C	
APPENDIX D	
APPENDIX E	
APPENDIX F	156

LIST OF TABLES

Table 1.1	Typical impurities composition allowed in natural gas for the delivery to
	the U.S. pipeline2
Table 1.2	Status of membrane for gas separation process7
Table 1.3	Industrial membranes for CO ₂ separation from natural gas
Table 2.1	Performance of asymmetric membrane for different polymers at various
	polymer concentrations
Table 2.2	Effect of solvent ratio on asymmetric membrane-based gas separation. 22
Table 2.3	Effect of various evaporation technique and time on asymmetric
	membrane performance
Table 2.4	The effect of shear rates on the performance of 6FDA durene hollow
	fiber27
Table 2.5	CO ₂ gas permeance and CO ₂ /CH ₄ selectivity of 6FDA-m-DDS and
	6FDA- <i>p</i> -DDS membrane at 35°C and 76 cmHg28
Table 2.6	Gas permeances and selectivities of asymmetric polyimide membranes at
	35°C and 76cmHg
Table 2.7	CO ₂ /CH ₄ separation characteristic of different carbon membranes32
Table 2.8	CO ₂ /CH ₄ separation properties of Y-type and SAPO-34 membranes33
Table 2.9	CO ₂ separation performance from various polyimide membranes37
Table 2.10	Summary of various PC membrane performance in CO2 separation
	application
Table 4.1	Variation of solvents and non-solvents on membrane fabrication63
Table 4.2	Variation of non-solvent concentration in the casting solution63
Table 4.3	Variation of evaporation time on membrane fabrication
Table 4.4	Variation of water-methanol composition and the selected casting
	solution composition for asymmetric PC membrane fabrication65
Table 5.1	Membranes porosity prepared using various DCM and chloroform with
	non-solvent pair
Table 5.2	Solubility parameter of solvent mixtures, methanol and polycarbonate. 77
Table 5.3	Overall membrane porosity at various BuOH concentrations
Table 5.4	Solubility parameter of solvent mixtures as a function of BuOH
	concentration85
Table 5.5	Overall porosity of membranes prepared at various evaporation times. 88

Table 5.6	Overall porosity and thickness of membrane prepared from various
	water-MeOH composition91
Table 5.7	Solubility parameter of water-MeOH mixtures in coagulation bath92
Table 5.8	Comparison of CO ₂ /CH ₄ separation performance

LIST OF FIGURES

Figure 1.1	Schematic representation of membrane process
Figure 2.1	Classification of the typical membrane morphologies13
Figure 2.3	Schematic representation of cross-section of asymmetric membranes14
Figure 2.4	Structure of cellulose acetate molecule
Figure 2.5	Structure of polyimide molecule with a selection of constituent
Figure 2.6	The formation of polycarbonate from bisphenol A (BPA)
Figure 3.1	Technique of inducing phase inversion in casting solution during
	fabrication41
Figure 3.2	Ternary phase diagram of membrane formation system
Figure 3.3	Schematic representation of diffusion path of initial casting solution
	composition close to the binodal demixing line during evaporation
	period
Figure 3.4	Schematic representation of two different demixing mechanisms47
Figure 3.5	Solution-diffusion mechanism
Figure 4.2	Titration configuration for CV determination
Figure 4.3	The turbid solution at the end of titration
Figure 4.4	SEM for membrane structures observation
Figure 4.5	Typical DMA curve67
Figure 4.6	DMA apparatus68
Figure 4.7	Schematic diagram for membrane permeation studies70
Figure 5.1	SEM images of cross section and top layer of membrane at various DCM
	– non-solvent pair
Figure 5.2	SEM Images of cross section and top layer of membrane
Figure 5.3	Solubility parameter difference between solvent mixtures to methanol,
	$\Delta \delta_{\text{(s-MeOH)}}$, and solvent mixtures to polycarbonate, $\Delta \delta_{\text{(s-PC)}}$
Figure 5.4	Coagulation value and solubility parameter difference of solvent
	mixtures and methanol as addition of various non-solvents for DCM-
	based membranes79
Figure 5.5	Coagulation value and solubility parameter difference of solvent
	mixtures and methanol as addition of various non-solvents on
	chloroform-based membranes80

Figure 5.6	SEM images of membrane cross section and surface at various BuOH
	concentrations82
Figure 5.7	Coagulation value and solubility parameter difference of casting solution
	and MeOH at various BuOH concentration85
Figure 5.8	SEM images of cross-section and surface membrane at different
Figure 5.9	SEM images of cross-section and surface membrane at various water-
	MeOH bath composition
Figure 5.10	Solubility parameter difference of solvent-coagulant and polymer-
	coagulant at various water/MeOH composition
Figure 5.11	Graph of loss modulus of various non-solvents for DCM-based
	membrane
Figure 5.12	Graph of loss modulus of various non-solvents for chloroform-based
	membrane94
Figure 5.13	CO2 permeance of membranes prepared from various DCM - non-
	solvent pair at various feed pressures96
Figure 5.14	CH ₄ permeance of membranes prepared from various DCM -
	nonsolvents pair at various feed pressure97
Figure 5.15	CO ₂ /CH ₄ ideal selectivity of membranes prepared from various DCM -
	non-solvent pair at various feed pressures
Figure 5.16	CO ₂ permeance of membranes prepared from various chloroform - non-
	solvent pairs at various feed pressures
Figure 5.17	CH ₄ permeance of membranes prepared from various chloroform - non-
	solvent pairs at various feed pressures100
Figure 5.18	CO2/CH4 ideal selectivity of membranes prepared from various
	Chloroform – non-solvent pair at various feed pressures
Figure 5.19	CO_2 permeance of membranes prepared from various BuOH
	concentration at various feed pressure102
Figure 5.20	CH ₄ permeance of membranes prepared from various BuOH
	concentrations at various feed pressure
Figure 5.21	CO2/CH4 ideal selectivity of membranes prepared from various BuOH
	concentrations at various feed pressures
Figure 5.22	CO_2 permeance of membranes prepared at different evaporation time at
	various feed pressures105

Figure 5.23	CH ₄ permeance of membranes prepared from different evaporation time
	at various feed pressures
Figure 5.24	CO ₂ /CH ₄ ideal selectivity of membranes prepared from different
	evaporation time at various feed pressures106
Figure 5.25	CO ₂ permeance of membranes prepared by varying coagulation bath
	composition107
Figure 5.26	CH4 permeance of membranes prepared by varying coagulation bath
	composition108
Figure 5.27	CO ₂ /CH ₄ ideal selectivity of membranes prepared by varying
	coagulation bath composition109

ABBREVIATIONS

BuOH	Butanol
CA	Cellulose Acetate
CED	Cohesive Energy Density
CMS	Carbon Molecular Sieve
CPPY	Chemically Synthesized Polypyrolle
CV	Coagulation Value
DEA	Diethanolamine
DCM	Dichloromethane
DMA	Dynamic Mechanical Analysis
DMF	Dimethylformamide
ECPPY	Electrochemically Synthesized Polypyrolle
EtOH	Ethanol
HFPC	Hexafluoropolycarbonate
MEA	Monoethanolamine
MDEA	Methyldietanolamine
PC	Polycarbonate
PEEKWC	Modified Polyetheretherketone
PEI	Polyetherimide
PI	Polyimide
PS	Polysulfone
PrOH	Propanol
PSA	Pressure Swing Adsorption
SEM	Scanning Electron Microscopy
TEC	Trichloroethane
THF	Tetrahydrofuran
TMPC	Tetramethylpolycarbonate
TSA	Temperature Swing Adsorption
VOC	Volatile Organic Compound

NOMENCLATURES

А	Membrane area	(cm^2)	
α_{iij}	Ideal selectivity of component <i>i</i> over component <i>j</i>	(-)	
D	Diffusivity Coefficient	(cm^2/s)	
δ	Overall solubility parameter	$(J^{1/2}/cm^{3/2})$	
δ_{mix}	Overall solubility parameter of solvent mixtures	$(J^{1/2}/cm^{3/2})$	
δ_d	Solubility parameter for dispersive component	$(J^{1/2}/cm^{3/2})$	
δ_p	Solubility parameter for polar component	$(J^{1/2}/cm^{3/2})$	
δ_h	Solubility parameter for hydrogen bonding component		
Δδ	Solubility parameter difference	$(J^{1/2}/cm^{3/2})$	
$(\Delta G)_m$	Change of Gibbs free energy of mixing	(J/mol)	
$(\Delta H)_m$	Change of enthalpy of mixing	(J/mol)	
$(\Delta S)_m$	Change of entropy of mixing	(J/mol.K)	
ΔE	Energy change upon isothermal vaporization	(J/mole)	
з	Porosity	(%)	
E_{h}	Molar attraction constant for hydrogen bonding	(J/mol)	
F	Molar attraction constant	(J ^{1/2} /cm ^{1/2} .mol)	
\mathbf{F}_{d}	Molar attraction constant for dispersive component	$(J^{1/2}. \text{ cm}^{3/2}/\text{mol})$	
F_p	Molar attraction constant for polar component	(J ^{1/2} .cm ^{3/2} /mol)	
J_{i}	Flux of component I	$(g/cm^2.s)$	
l	Membrane thickness	(cm)	
М'	Storage modulus	(MPa)	
M"	Loss modulus	(MPa)	
р	Pressure	(bar)	
Р	Permeability (cm ³ (STP).cm/cm ² .s.cmHg)		
P/1	Permeance (cm ³	(STP)/cm ² .s.cmHg)	
ρ	Density	(g/cm^3)	
Q	Volumetric flow rate	(cm^3/s)	
Q_{stp}	Volumetric flow rate at standard temperature and press	ure (cm ³ (STP)/s)	
S	Henry's law solubility coefficient (cm ³ (STP)/cm ³ .atm)	
t	Time	(s)	
Т	Temperature	(K)	

Tan δ	Tangent delta	(-)
T_{g}	Glass transition temperature	(K)
V	Molar volume	(cm ³ /mol)
ϕ	Volume fraction	(-)

ï

CHAPTER 1

INTRODUCTION

1.1. Carbon Dioxide Problem in Natural Gas Processing

Natural gas is very vital for the world's energy supply. It is one of the cleanest, safest, and most useful of all energy sources. There are wide ranges of natural gas application such as feed stock for petrochemical plant or as fuel in power generation plant. In addition, natural gas also can be used as fuel for vehicles. The various uses of natural gas have increased the consumption of natural gas. Consequently, natural gas production must be increased in order to meet the increasing demand of natural gas.

As one of the natural gas producers in the world, Malaysia produces about 53.9 billion cubic metres of natural gas from the total worldwide production of about 2691.6 cubic metres in 2004 (BP, 2005). In addition, during the last decades, Malaysia's proven reserves of natural gas have increased quite significantly from 1.39 trillion cubic metres in 1984 to 2.46 trillion cubic metres in 2004 (BP, 2005). This huge reserve of natural gas is an important asset for Malaysian government to meet the growing demand of natural gas in the future.

The composition of natural gas may vary from one source to another. Basically, methane is the major component in natural gas, comprising typically 75-90% of the total component (Baker, 2004). Natural gas also contains significant amount of ethane, propane, butane and other higher hydrocarbons. In addition, natural gas may also contain undesirable impurities such as carbon dioxide and hydrogen sulfide (Baker, 2004). All of these impurities need to be separated from natural gas in order to meet the pipeline specification for natural gas delivery. Typical impurities composition allowed in US for the delivery of natural gas to the pipeline are shown in the Table 1.1.

Component	Specification
CO ₂	< 2 - mole %
H ₂ O	< 120 ppm
H ₂ S	< 4 ppm
Total inerts (N ₂ , He, Ar etc.)	< 4- mole %

Table 1.1 Typical impurities composition allowed in natural gas for the delivery to the U.S pipeline (Baker, 2004).

One of these impurities that need to be separated from natural gas is carbon dioxide. Carbon dioxide composition in natural gas varies between gas fields. Some gas fields only has trace amount of CO_2 such as in Xinjiang, China while in other places such as in Natuna, Indonesia, extremely high CO_2 content (71-mole.%) is discovered (Suhartanto et al., 2001). It is well known that carbon dioxide in the presence of water is highly corrosive that can rapidly destroy the pipeline and equipment system. Specifically for LNG plant, the natural gas is cooled down to very low temperature that can make CO_2 become solid. However for pipeline transportation, the solidification of CO_2 must be prevented as it may block the pipeline system and cause transportation problem. In addition, the presence of CO_2 will also reduce the heating value content of natural gas and eventually the selling price of natural will be lowered. Therefore, CO_2 removal from natural gas is necessary in order to improve the quality of natural gas produced.

1.2. Recent Technologies in Carbon Dioxide Removal from Natural Gas

A wide range of technologies are currently available for natural gas purification. These include amine-based or hot potassium carbonate-based absorption process, adsorption technology, and membrane technology. However, each of these technologies has some limitation for removing CO_2 from natural gas. Most commercial processes to remove acid gas in bulk quantity involve the use of amine, usually alkanolamines, as chemical solvent in absorption technology due to its outstanding performance (Kohl and Reisenfeld, 1979).

1.2.1. Absorption

Monoethanolamine (MEA) and diethanolamine (DEA) are two types of alkanolamines that have been most widely used to remove CO₂ from natural gas (Jou, et al., 1994). Recently, methyldiethanolamine (MDEA) was found to be a potential chemical in separating acid gases from natural gas. The choice of type of amine solutions used are primarily dependent on the partial pressure of CO₂ in the feed gas stream and on the level of CO₂ desired in the treated gas (Sartorl and Savage, 1983). MEA is normally required for low feed pressure gas stream and for stringent outlet gas specifications. DEA is suitable for medium and high pressure feed stream treatment while MDEA has better interaction to H₂S than CO₂, which makes it preferable to be used for high H₂S content treatment (Kohl and Nielsen, 1997).

The removal of acid gases using amines is usually carried out at elevated pressure and lower temperature. The natural gas containing acid gases is contacted with amine solution on an absorber column. Some set of chemical reactions will take place between the amine solution and acid gases. If MEA (RNH₂) or DEA (R₂NH) is used as absorbent, the absorption of CO₂ can not exceed 0.5 mol of CO₂/mol of amine due to formation of carbamic acid (R₂NCOOH) (Sartorl and Savage, 1983). This is one of the disadvantageous of using MEA or DEA in CO₂ removal from natural gas. However, the formation of carbamic acid can be prevented by choosing MDEA to strip off CO₂ from natural gas. Due to the absence of carbamic acid in the reaction, one mol of CO₂ will react with one mol of MDEA following its stoichiometric reaction (Polasek and Bullin, 1994).

MDEA has smaller enthalpy reaction that makes it favorable in terms of regeneration cost as compared to MEA or DEA. However, MDEA reacts very slowly with CO_2 which makes it less economical and less practical to remove high CO_2 concentration as larger number of trays or an increased height of packing must be built.

In general, absorption technology has some disadvantages. Absorbents such as amines are corrosive (Polasek and Bullin, 1994). Consequently, anti corrosion agent must be frequently injected in order to avoid corrosion. In addition, disposal of used amine solution can cause environmental issue (Bord et al., 2004). Even though amine solutions are regenerated by steam stripping after being used to strip CO_2 or H_2S , not all of the amines can be recycled back to the absorber column. Consequently, some amount of reused amine solution must be treated properly before being disposed into the environment.

1.2.2. Adsorption

Adsorption process uses solid medium called adsorbent to remove CO_2 from the gas mixtures. Typical adsorbents for this process are zeolites, carbon molecular sieve, silica gel, and alumina (Scott, 1998). CO_2 is sorbed onto the adsorbent until it becomes fully loaded and then it is regenerated to release CO_2 from the adsorbent. The regeneration process is necessary in adsorption process as it will affect CO_2 sorption capacity of adsorbent.

There are two types of adsorption processes in term of regeneration methods i.e. Thermal Swing Adsorption (TSA) and Pressure Swing Adsorption (PSA). In TSA process, desorption takes place at temperatures much higher than adsorption. Increasing temperature is required to shift the adsorption equilibrium and cause the regeneration of the adsorbent. The gas is passed through the adsorbent bed at pressure, p₁, and relatively low temperature until the bed is fully loaded, n₁. Bed temperature is then raised causing the adsorption equilibrium to change so that the partial pressure of the gas increases, p2,. The differences in the gas partial pressure between the adsorbent and fluid across the adsorbent creates the driving force for desorption to occur. Once the desorption process stops, the bed temperature is cooled down in which new equilibrium loading is attained,n2. The difference between loading at low temperature, n_1 , and loading after desorption, n_2 represents the net removal capacity or maximum loading that can be achieved by TSA at one cycle (Perry, 1999). TSA process is primarily applicable for separation or purification of small concentration of impurities on feed gas such as gas drying operation and natural gas sweetening from H₂S, mercaptans, organic sulfide, and disuldife (Kohl and Nielsen, 1997; Perry, 1999).

PSA process is quite similar to TSA except the regeneration of adsorbent is done by applying reduced pressure of system. Feed gas is passed through at relatively high pressure until the bed is fully loaded at n_1 . By reducing the total pressure, the adsorbed gas will be released until it reaches a new equilibrium, n_2 . The net removal capacity of PSA bed is equal to the difference between loading at n_1 and n_2 (Perry, 1999). Major uses for PSA process are mainly for bulk separation where contaminants are present at higher concentration. This process is widely used for hydrogen separation, air separation and air drying (Kohl and Nielsen, 1997). New application such as carbon dioxide removal from natural gas is still under development.

The selection of regeneration methods of absorption process depend on economical and technical factor. TSA needs long cycle time as time required to heat, desorb, and cool a bed is usually in the range of a few hours to over a day. Therefore, TSA is exclusively used to remove small concentrations of impurities from feeds due to this cycle time limitation (Keller, 1987). Besides long cycle time, TSA also requires high energy supply and suffer from large heat loss. On the contrary, PSA has short cycle time as time required to load, depressurize, regenerate, and repressurize a bed is usually a few minutes and can in some cases be only a few seconds. This short cycle time makes PSA become attractive for bulk removal of impurities from feeds (Keller, 1987). However, PSA has some disadvantages due to high pressure and vacuum pressure requirement which contribute to the high operating cost.

1.2.3. Membrane Technology

Existing CO_2 removal technologies such as amine stripping, PSA and TSA are still suffering from several shortcomings. Those technologies consume large space, high capital and operating cost. Since the last two decades, membrane technology has been developed to face these challenges. This technology is based on the ability of CO_2 and other components of natural gas in passing through a thin membrane barrier. The mixture of gases will be separated into permeate and retentate stream. The highly permeating component will diffuse through the membrane and separated from the non-permeable component. Membrane process in removing CO_2 from natural gas can be illustrated in Figure 1.1.

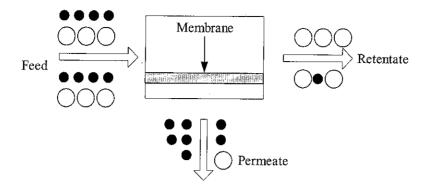


Figure 1.1 Schematic representation of membrane process (Mulder, 1996).

Membrane technology offers some advantages over other conventional CO₂ removal technologies which are environmental friendly, lower capital cost, low energy consumption, space efficiency and also suitable for remote location application. However, the application of membrane for gas separation, particularly for CO₂ removal, is relatively new as compared to other existing technologies. Unlike other gas separation using membrane technology such as hydrogen separation from methane and nitrogen or nitrogen enrichment from air, CO₂ removal using membrane technology still requires much improvement in term of stability and separation performance in order to be able to compete with current CO₂ removal technologies. Table 1.2 shows the current status for gas separation membrane including CO₂ removal.

From Table 1.2, it can be seen on that the application of membrane, particularly for CO_2 removal from natural gas is still under developing process. A few membrane companies such as UOP and ProSep Technologies, Inc. have installed cellulose acetate and polyimide membrane unit for CO_2 removal at gas processing plant in several countries such as Pakistan and Egypt (Dortmund et al., 1999). UOP company with their commercial membranes namely Separex have been successfully installed in Qadirpur and Kadanwari, Pakistan to remove CO_2 from natural gas. In Kadanwari, two stage-unit of UOP's Separex cellulose acetate membranes are designed to treat 210 MMSCFD of feed gas at 90 bar with the CO_2 content to be reduced are from 12% to less than 3%. In addition, the largest membrane-based natural gas plant in the world is Separex membrane system installed in Qadirpur, Pakistan. It is designed to process 265 MMSCFD of natural gas at 59 bar. The CO_2 content is reduced from 6.5% to less than 2% (Dortmund et al., 1999).

Process		Applications	Comments	References	
Established Process	O ₂ /N ₂	Nitrogen enrichment from air	Processes are all well		
	H ₂ /CH ₄	Hydrogen recovery	developed, only incremental improvement	Baker, 2004	
	H_2/N_2	Ammonia purge gas			
	H ₂ /CO ₂	Synthesis gas ratio adjustment	in performance		
Developing Processes	CO ₂ /CH ₄	Carbon dioxide removal from natural gas	Better membranes need to be developed for high CO ₂ content	Nunes and Peinemann, 2001	
	VOC/air	Air pollution control application	Several applications are being developed, significant growth expected as the process becomes accepted	Baker,2004	
To-be- developed processes	H ₂ S/CH ₄	Natural gas treatment	Niche applications, difficult for membranes to compete with existing technology	Baker,2004	
	O ₂ /N ₂	Oxygen-enriched air	Oxygen purity is limited to less than 30 % produced from high flux membrane	Nunes and Peinemann, 2001	
	Organic vapor mixtures	Separation of organic mixtures in refineries and petrochemical plants	Requires better membranes and modules. Potential size of application is large	Baker,2004	

Table 1.2 Status of membrane for gas separation process.

In addition, some gas fields with smaller feed flow rate have been using Grace cellulose acetate and Medal Polyimide membrane from ProSep Technologies, Inc. to remove CO_2 from natural gas (ProSep, 2006). Grace cellulose acetate membranes from ProSep, Inc have been reported successful to remove 3.1 % CO_2 content on natural to pipeline gas specification (less than 2 % of CO_2). The Grace CA membrane is designed to process 60 MMSCFD of natural gas without hydrocarbon losses. Another commercial membrane from ProSep namely Medal Polyimide membranes are also used to remove 50% CO_2 content to below 10% CO_2 (ProSep, 2006).

Recently, some companies are interested to develop membrane for gas separation especially for CO_2 removal from natural gas. Table 1.3 provides an overview of the industrial membranes for CO_2 separation from several major membrane companies.

Commercial Membrane	Material	Companies	References
Separex	Cellulose acetate	UOP	Dortmund et al., 1999
Cynara	Cellulose acetate	NATCO group	NATCO, 2002
Grace membrane	Cellulose acetate	ProSep Tech.Inc	ProSep,2000
Medal membrane	Polyimide	ProSep Tech.Inc	

Table 1.3 Industrial membranes for CO₂ separation from natural gas

Even though some membrane units have been used commercially, membrane technology is still a minor player in CO₂ removal from natural gas. Low stability for long-term usage and highly sensitive to the presence of impurities other than CO₂ and/or H₂S in natural gas become major problems when membrane is used for this application. In addition, single stage of membrane unit is not economically applicable to be applied for large flow rate of feed gas (greater than 30 MMscfd) as high loss of desired product such as methane may be taken place (Baker, 2004). Two stage or even three-stage of membranes unit are commonly required to reduce loss of methane. However, it will add more complexity of membrane plant and increase the operating cost as recompression cost must be considered. Generally, current membrane technology to remove high concentration of CO₂ (more than 10%) form natural gas to meet the pipeline specification (CO₂ content lower than 2%) is still too expensive to compete head-to-head with amine plants (Baker, 2004). Therefore, further improvement is required to enhance the performance of gas separation using membrane so that membrane becomes a viable technology in future.

1.3. Problem Statement

Basically, the performance of a membrane is assessed according to permeability and selectivity. High permeability leads to higher productivity and lower cost while high

selectivity contributes to more efficient separation and higher recovery. One of the limitation in gas separation membrane technology is that the difficulty to achieve both high permeability and selectivity at the same time. High permeability is usually followed by low selectivity and vice versa.

Asymmetric membrane has been extensively studied for gas separation process. It consists of a thin-skin layer supported by porous sub-layer in which both layers are composed of the same material. This type of membrane is developed usually to increase flux or permeability of gas and to obtain high selectivity at the same time. The thin-skin layer of the asymmetric membrane functions as a selective barrier while the porous sub-layer serves only for mechanical strength with negligible effects on separation. Consequently, transport phenomena that occurs on thin-skin layer is greater than those of sub-layer. Therefore, the permeability of gas through this membrane is greatly affected by the thickness of thin-skin layer and not on the entire thickness of membrane (Ismail, et al., 2004).

The asymmetric membrane morphologies and properties are influenced by the process condition applied upon fabrication stage. There are some parameters involved in controlling the membrane morphology during fabrication stage such as polymer concentration, non-solvent concentration, solvent/non-solvent pair, humidity, evaporation time, etc (Mulder, 1996). As the morphology of membrane formed could vary greatly due to different condition of the fabrication process, it is crucial to understand the effect of these preparation parameters on the mechanism of asymmetric membrane formation in order to produce desired morphologies and its relation to the performance in removing CO_2 . Hence, a comprehensive study of fabrication process is necessary in order to produce asymmetric membrane suitable for gas separation.

In this study, polycarbonate was selected as membrane forming material. This is because certain properties of polycarbonate are found suitable for the application of CO_2 removal from natural gas such as high glass transition temperature (T_g), relatively polar and low rigidity but with free space available due to the presence of aromatic ring. In addition, polycarbonate is relatively cheap as compared to other polymers-based membranes such as polyethersulfone (PES), polyimide and polysulfone.

Some works have been carried out in the past to study polycarbonate-based membrane for gas separation. It focused on sorption and transport properties of dense polycarbonates membrane (Koros, et al., 1977; Wonders, 1979; Jordan and Koros; 1990; Chen et al., 2000) and gas permeation properties of asymmetric polycarbonate (Pinnau, 1992). However, no works have been reported on the effect of various preparation parameters on the morphology and CO_2 separation performance of asymmetric polycarbonate membrane. Therefore, study on the effect of preparation parameter to produce desired morphologies of asymmetric membrane using alternative material such as polycarbonate (PC) for the application of CO_2 removal from CH_4 is important.

1.4. Objective of Research

The main objectives of this research are:

- 1. To fabricate asymmetric polycarbonate (PC) membrane at various preparation parameter using dry/wet phase inversion method
- 2. To investigate the effect of preparation parameter on the morphologies and glass transition temperature, T_g, of asymmetric PC membrane
- 3. To evaluate the performance of asymmetric PC membrane in term of CO₂ and CH₄ permeance as well as CO₂/CH₄ ideal selectivity.

1.5. Scope of Study

The scope of this research is divided into the following section:

1.5.1. Fabrication of Asymmetric Polycarbonate Membrane

Polycarbonate (PC) would be used as membrane forming material during asymmetric membrane fabrication. Dichloromethane (DCM) and chloroform were selected as main volatile solvent while ethanol (EtOH), propanol (PrOH) and butanol (BuOH)

were used as non-solvent. In addition, methanol (MeOH) and 1,1,2 trichloroetane (1,1,2 TEC) were used as coagulant and less volatile solvent, respectively. Fabrication of asymmetric PC membrane would be carried out via dry/wet phase inversion process by varying preparation parameters such as solvent – non-solvent pair, non-solvent concentration, evaporation time and coagulation bath composition. In addition, solubility parameter and coagulation value of phase separation process were also determined in order to understand the mechanism of membrane formation.

1.5.2. Characterization of Asymmetric PC Membrane

Characterizations of asymmetric PC membranes were carried out by using some characterization tools such as SEM and DMA. SEM was used to study the substructure beneath as well as surface layer of all asymmetric PC membranes prepared at various preparation parameters while the thermal properties of membrane would be studied using DMA.

1.5.3. Evaluation of Asymmetric PC Membrane Performance

The performance of asymmetric PC membrane would be evaluated by determining the CO_2 and CH_4 permeance as well as CO_2/CH_4 ideal selectivity at various feed pressure ranging from 1 to 5 bar. Downstream pressure and operating temperature were assumed constant at 1 bar and room temperature, respectively. The volume of permeate collected would be used to determine the gas permeance and CO_2/CH_4 ideal selectivity.

1.6. Organization of This Thesis

This thesis is divided into following chapters. Chapter 1 describes the research background related to common problems in natural gas treating process with regard to the presence of acid gases particularly for CO_2 . The advantages and disadvantages of existing CO_2 separation technology such amine-based absorption, adsorption and membrane technology were also presented in this chapter. This chapter also presents problem statement, objectives of research and scope of study of this work.

Chapter 2 reviews the past and current research work pertaining to membrane development. It covers information on membrane definition and classification, development of asymmetric membranes, membrane characterization technique and various membrane materials for CO_2/CH_4 separation.

Chapter 3 describes in detail on the phase inversion method for making asymmetric membranes. This chapter also presents some factors affecting membrane morphologies, solubility parameter, polymer properties and transport phenomena on asymmetric membrane.

Chapter 4 discusses the material, preparation and fabrication technique applied in this study in order to produce asymmetric polycarbonate membrane. It also describes in detail on procedure to determine coagulation value and in setting up some analytical tools such as SEM and DMA. This chapter covers the testing procedure to study gas separation performance in terms of CO_2 , CH_4 permeance and CO_2/CH_4 ideal selectivity at various feed pressures.

Chapter 5 discusses all the experimental results obtained in this work. It includes the relationship between solubility parameter of casting solution and coagulation value on the SEM images of membrane produced. DMA results related to glass transiton temperature of membranes are also discussed in this chapter. Finally, the different morphologies of asymmetric PC membranes formed were correlated with the membrane performance in term of CO_2 , CH_4 permeance and ideal selectivity of CO_2/CH_4 at various feed pressure.

Chapter 6 contains concluding remarks along with the recommendations for future work.

CHAPTER 2

LITERATURE REVIEW

2.1. Membrane Definition and Classification

Membrane is defined as selective barrier between two phases that has ability to transport one component than the other (Mulder, 1996). There is a broad range of membrane applications such as for sea water desalination, waste-water treatment, ultrapure water production for semiconductor industry and nitrogen enrichment from air. Each of these applications requires specific type of membrane morphology to ensure the effective separation. Figure 2.1 shows a classification of membrane morphologies.

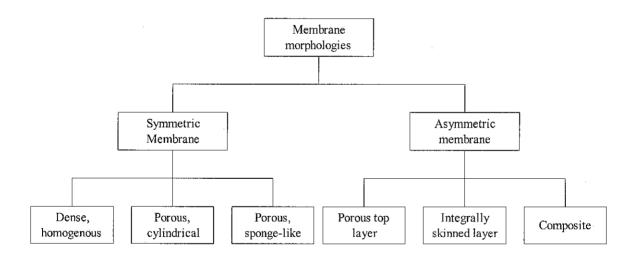


Figure 2.1 Classification of the typical membrane morphologies.

Generally, membrane morphologies can be classified into symmetric and asymmetric membrane (Mulder, 1996). Symmetric membrane refers to the membranes that have essentially same structure and transport properties throughout its thickness (Koros, et al., 1996). Symmetric membrane is divided into three categories as shown in the Figure 2.2.

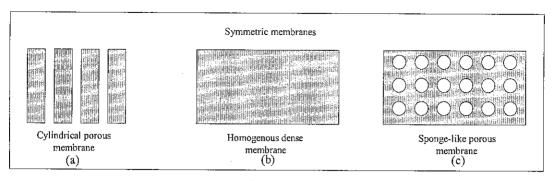


Figure 2.2 Schematic representation of cross-section of symmetric membranes.

- a) Cylindrical porous membrane. This membrane consists of finger-like structure that is usually used in small size laboratory experiments such as enzyme and DNA separations from dilute solutions.
- b) Homogeneous dense membrane. This membrane consists of a dense film structure through in which permeants are transported by diffusion under the driving force of a pressure, concentration or electrical potential gradient (Baker, 2004). This membrane is often used to study gas separation and pervaporation application (Chen, 2002)
- c) Sponge-like porous membranes. This type of membrane has sponge-like closed structure and is usually used for microfiltration. It has normally an average pore size of 0.2 5 μ m (Chen, 2002).

Asymmetric membrane is a membrane constituted of two or more structural planes of non-identical morphologies (Koros, et al., 1996). It can be classified into three groups as illustrated below:

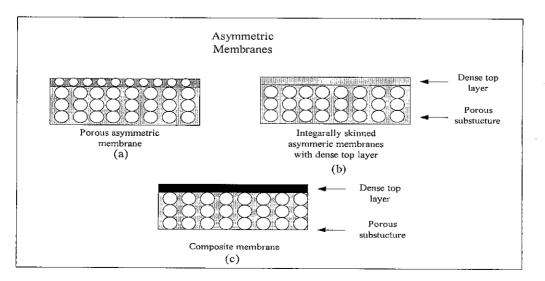


Figure 2.3 Schematic representation of cross-section of asymmetric membranes.

- a) Porous top layer membrane. This membrane consists of increasing pore size from top to bottom. Typical applications for these membranes are in microfiltration and ultrafiltration field (Chen, 2002).
- b) Integrally skinned and dense top layer membranes which are usually used for gas separation (Chen, 2002). These membranes consist of dense thin layer with a thickness of 0.1 to 0.5 µm supported with the porous substructure with a thickness of about 50 to 150 µm.
- c) Composite membrane is a development of asymmetric membrane in which dense layer is placed on top of a support membrane. Both dense layer and support membrane are made from different materials. This membrane is often used for gas separation and pervaporation (Chen, 2002).

Morphology of membranes plays a major role in determining the performance and application of membrane. High total flux and selectivity is highly desired. Symmetric membrane has advantages in term of selectivity but it is low in total flux of product. In order to enhance total flux with sufficient selectivity, asymmetric membrane is preferred. Therefore, asymmetric membrane has been used commercially at various applications in industry. However, symmetric membrane is commonly prepared and researched in laboratory scale.

2.2. Membrane Fabrication

There are some methods to fabricate membrane, either symmetric or asymmetric type of membrane. Fabrication of symmetric and asymmetric polymer membrane is described on the following section:

2.2.1. Dense Symmetric Membranes

Dense symmetrical membrane is usually used in laboratory to perform separation process. This membrane is rarely used in industrial application because low flux produced is too low for practical purposes (Baker, 2004). In laboratory, this type of membrane is prepared by solution casting method.

Based on solution casting method, polymer solution is cast on the glass plate. Casting knife or drawdown bar is used to spread film across the plate with the appropriate thickness. After casting is finished, film is left to stand and solvent evaporates to form uniform polymer membrane.

2.2.2. Microporous Symmetric Membranes

Microporous membranes contain pores within range $0.1-10 \,\mu$ m in diameter (Ruthven, 1997). It was developed in order to obtain higher flux than dense symmetrical membrane. Application such as microfiltration, inert spacers in battery and fuel cell are some areas in which these microporous symmetrical membranes were fabricated for. Several techniques such as track-etching, expanded film and template leaching can be used to prepare microporous membranes. Each of these methods is presented as follows:

a) Irradiation

This method consists of two-step preparation process, irradiation polymer film with charged particle and immersion polymer film in etching solution. Irradiation of polymer film with charged particle will break polymer chain or damaged tracks. The film is then immersed into etching solution to etch the damaged track. Length of time film exposed to radiation determines the number of pores and etching time determines the pore diameter.

b) Expanded Film

The first step of this process is by extruding the polymer at close to its melting point. After cooling, the film is stretched. This elongation will produce slit-like voids 20 to 250 nm wide between crystallites. This type of membrane was firstly developed by Hoechst-Celanese (Gollan, 1987) and sold under commercial name, Celgard

c) Template Leaching

This technique is an alternative preparation method for insoluble polymer. A homogenous film is prepared from a mixing between matrix materials with

leachable component. Leachable component is then removed with the suitable solvent and microporous membrane is formed. The leachable component could be a soluble low molecular weight solid or liquid or even a polymeric material such as poly(vinyl alcohol) or poly(ethylene glycol).

2.2.3. Asymmetric Membranes

Asymmetric membrane is developed to reach higher flux than that of symmetric membranes. This type of membrane is a breakthrough to industrial application as it combines high selectivity and high permeation rate in common (Mulder, 1996). These membranes have thin, perm-selective layer supported on a more open porous substrate. Some processes to prepare the asymmetric membrane are explained as follow:

a) Interfacial Composite Membrane

In this method, an aqueous solution, such as polyamine, is coated onto the surface of microporous support membrane typically polysulfone and then immersed into the water-immiscible solvent solution containing a reactant e.g. a hexane-acid chloride solution. This hexane-acid chloride will react with amine at the interface of the two solutions to form a densely cross-linked, extremely thin layer.

Membrane prepared by this method is extremely thin, in order of $0.1 \,\mu$ m or less so that higher flux is obtained. As the polymer is highly cross-linked, its selectivity is also high. Unfortunately, this method is less applicable for gas separation because of water swollen hydrogel that fills the pores of the support membrane. The gel will become rigid when dried in oven and glassy polymer fills the membrane pores and as result the composite membrane have low fluxes (Ruthven, 1997).

b) Solution-Cast Composite Membranes

A dilute polymer solution in a volatile water-insoluble solvent is spread over surface of a water-filled trough (Ruthven, 1997). Thin polymer produced on the water is then coated onto a microporous support. Membrane thickness produced by this technique can reach $0.5 - 2 \ \mu m$ thick of thin permselective layer (Ruthven, 1997).

c) Phase Inversion (Solution Precipitation)

In this process, casting solution is precipitated into two phase: a solid polymerrich phase that forms the matrix of the membrane and liquid polymer-poor phase that forms membrane pores. Adjustment of these two phases is necessary to get desired structure of membrane. Polymers precipitation from solution can be achieved through several ways such as cooling, solvent evaporation and precipitation by immersion in water (Gollan, 1987).

From all these fabrication techniques that can be used to prepare asymmetric membrane, phase inversion method is widely applied to fabricate asymmetric membrane as it allows all kind of morphologies to be obtained (Mulder, 1996). More detail about phase inversion techniques are presented in chapter 3.

In gas separation application, an outstanding asymmetric membrane must consist of very thin and defect-free surface layer supported by porous substructure. To obtain this kind of structure is not a simple task. Numerous efforts and studies on fabrication techniques had been carried out in order to obtain asymmetric membrane suitable for gas separation application.

2.3. Development of Ultra-Thin and Defect-Free Skin Layer of Asymmetric Membrane

It is still a challenge to fabricate a membrane with high selectivity and permeability particularly for gas separation application. One way to increase the gas separation performance is to fabricate defect-free and very thin skin layer asymmetric membrane. In mid 1960s, the collaboration between Sydney Loeb and Srinivasa Sourirajan had successful introduced the first fabrication technique to produce asymmetric membrane for reverse osmosis application. In their method, the casting solution was prepared by dissolving 20 to 25 wt% cellulose acetate into a water-miscible solvent and then was cast as thin film on a glass plate. The cast film was

evaporated for 10 to 100 s. After evaporation, a coagulation medium containing water was used to precipitate the film. The membranes were usually post-treated by annealing in a bath of hot water (Baker, 2004).

Loeb-Sourirajan's technique is the most versatile, economical and reproducible formation process for polymeric asymmetric membrane (Ismail and Lai, 2003). A great deal of work has been devoted to rationalizing the factors affecting the properties of asymmetric membranes prepared by Loeb-Sourirajan's technique. Various preparation parameters such as polymer concentration, solvent ratio, evaporation time and shear rate have been investigated in order to understand the formation of asymmetric membrane. The effect of those preparation parameters are discussed in the following sections.

2.3.1. Effect of Polymer Concentration on Asymmetric Membrane Morphologies and Transport Properties

The optimum membrane preparation parameters are very crucial in order to obtain a defect-free and ultra-thin skin layer asymmetric membrane. One way of optimizing the membrane preparation parameters is by varying the polymer concentration of casting solution during fabrication. Varying the polymer concentration may lead to different membrane morphology and performance (Brown et al., 2002). Pesek and Koros (1993) had reported that the addition of more polymer into casting solution tend to produce more selective but less productive membrane. In their work, polysulfone (PS) was used as membrane forming material to produce defect-free and ultra-thin asymmetric membrane. Higher concentration of PS on casting solution increased the O_2/N_2 ideal selectivity but lowered the permeance of O_2 . Similar results were also observed by Ismail and Lai (2003). They fabricated asymmetric membrane using PS by varying the concentration of polymer and they found that increasing the PS concentration on casting solution resulted in higher H_2/N_2 ideal selectivity with lower H_2 permeance.

However, contradictory results on the effect of polymer concentration were reported by other researchers (Kurdi and Tremblay, 1999; Buonomenna et al., 2004). Kurdi and Tremblay (1999) developed defect-free asymmetric membrane for gas separation using polyetherimide (PEI) as membrane forming material. They fabricated three different membranes prepared from three different concentration of PEI. Each of these membranes was subjected to the permeation test in order to determine the separation performance. From their work, it was found that highest O_2/N_2 ideal selectivity resulted from lower PEI concentration. Interestingly, high selectivity of O_2/N_2 followed by higher O_2 permeance was obtained from membrane prepared at lower PEI concentration. Buonomenna et al., (2004) also studied the influence of polyetheretherketone (PEEKWC) concentration on membrane performance and morphologies. They applied various test gas such as O_2 and N_2 on the PEEKWC asymmetric membrane. Their results showed that O_2/N_2 ideal selectivity was reduced if high concentration of PEEKWC was present in casting solution. Table 2.1 summarizes the influence of polymer concentration on the asymmetric membrane performance for gas separation applications.

Polymer	wt.%	Operating conditions	(P/L) ₀₁ (GPU)	(P / L) _{H2} (GPU)	α_{o_2/N_2}	$\alpha_{_{H_2/N_2}}$	Ref.	
	14		37.5	-	2.3	-		
PSF	18	$T = 24^{\circ}C$	24.6	_	5.3		Pesek and	
1.01	22	P = 3.4 bar	19.3	-	6	-	Koros, 1993	
	26		10.9	-	5.9	-		
	23	$T = 22^{\circ}C$ $P = 12.8 \text{ bar}$	0.7	-	3.5	_	Kurdi and Tremblay,	
PEI	25		0.52	-	3	-		
	26.5	1 12.0 bui	0.4	-	2.5	-	1998	
	15.2		-	130	-	19	Ismail and	
DCD	19	$T = 30^{\circ}C$	-	50	-	33		
PSF	22	P = 1 bar	_	30	-	42	Lai, 2003	
	_ 26		-	22	-	55	,	
	29.7		-	19	-	73		
PEEKWC	15	$T = 25^{\circ}C$	0.055	-	4.8	-	Buonomenna	
	19	P = 1 bar	0.31	-	4.4	-	et al.,2004	

Table 2.1 Performance of asymmetric membrane for different polymers at various polymer concentrations.

In general, increasing the polymer concentration would affect the viscosity of casting solution. Highly viscous solution is essential in obtaining less defective outer skin layer hence resulting in higher selectivity. Unfortunately, thicker skin layer tend to be formed from highly viscous solution in which significant reduction of gas permeance occur as observed by Pesek, et al., (1993) and Ismail et al.,(2003). However, Kurdy and Trembaly (1998) showed that both higher gas permeance and selectivity could be obtained at lower polymer concentration. It is due to thinner skin layer and higher porosity membrane substructure prepared at lower polymer concentration, which has less resistance for oxygen to permeate leading to higher O_2/N_2 selectivity (Kurdy and Tremblay, 1998).

2.3.2. Effect of Solvent Ratio on Membrane Morphologies and Transport Properties

Membrane formation process through dry/wet phase inversion process involves solution processing method that includes solvents and non-solvents additives in controlling the membrane structures and properties. In phase inversion method, casting solution is prepared by dissolving a polymer into solvents that consist of a primary more volatile solvent and a secondary less volatile solvent. The ratio of less volatile solvent and more volatile solvent is one of the important factors in determining the structure and properties of asymmetric membrane (Pesek and Koros, 1993). Controlling the ratio of more volatile solvent to less volatile solvents allows finer adjustment of solvent evaporation and polymer coagulation rates (Pesek and Koros, 1993; Ismail and Lai, 2003). Peinemann (1988) explored the effect of the solvent ratio for asymmetric polyethersulfone (PES) membrane. They showed that increasing the fraction of less volatile solvent enables substantial increases in the gas permeance without loss in selectivity. Better performance due to higher solvent ratio was also studied by Pesek (1993) and Ismail (2003). They prepared asymmetric membrane using polysulfone by varying the solvent ratio and showed that a reduction of solvent ratio caused a decrease in the gas permeance but higher selectivities were obtained. On the other hand, higher gas permeance and lower selectivities were obtained at higher solvent ratio. Table 2.2 shows the effect of solvent ratio on the gas separation performance.

Table 2.2 Effect of solvent ratio on asymmetric membrane-based gas separation.

Ref.		- rememann et al., 1988		Darol: 1 17	resets and Noros, 1995				Ismail and Lai, 2003		
$\left lpha_{O_2/N_2} \right \left \left lpha_{H_2/N_2} \right \left lpha_{CO_2/N_2} \right \right $	59	65		1		1	1	1	1	1	
$lpha_{H_2^{\prime}^{N_2}}$	1	1	1	1	1	1	80	65	30	24	5
	•	1	9	5.8	5.4	4	1	-	1	I	ī
$ \begin{array}{c c} (P/L)_{o_2} \\ (GPU) \\ (GPU) \\ \end{array} \begin{array}{c c} (P/L)_{H_2} \\ (GPU) \\ (GPU) \\ \end{array} \begin{array}{c c} (P/L)_{CO_1} \\ (GPU) \\ \end{array} \end{array} $	9.62	72.52	I		1	1	•	1	I	1	1
$(P/L)_{H_2}$ (GPU)	F	. 1	1	F		I	20	25	27	47	270
$(P/L)_{o_2}$ (GPU)	1	I	3	8	16	29	T	1	I	4	1
Operating condition	$T = 20^{\circ}C$	P = 5 bar		$T = 24^{\circ}C$ P =3.4 bar				$U_{0} = \frac{1}{2}$	P=1 har		
Solvent Ratio*	0	2	0.5	1	1.5	2	0.25	0.5		1.75	4
Polymer	PES	2	PSF						PSF		

*Solvent ratio = amount of less volatile solvent per amount of more volatile solvent

The differences in gas permeance and selectivities of the membrane fabricated at various solvent ratio are due to the different morphologies between the membranes prepared from low solvent ratio and high solvent ratio. Increasing the solvent ratio will cause a decrease in the effective skin. Consequently, this morphology contributes to the higher gas permeance but lower selectivities. Ismail and Lai (2003) showed that the morphology of asymmetric PS membrane prepared from low solvent ratio is composed of relatively thick skin layer and a finely porous substructure with porosity gradually progressing from top to bottom of the membrane. These membranes showed higher selectivities but lower gas permeances.

2.3.3. Effect of Evaporation Time on Asymmetric Membrane Morphologies and Transport Properties

High gas separation performance is predominantly controlled by structures and properties of skin layer of asymmetric membrane. Basically, skin layer of asymmetric membrane is generated due to a selective loss of highly volatile solvent from outermost surface of nascent membrane during evaporation step (Ismail and Lai, 2003). Introducing the evaporation step before immersing casting solution into coagulation bath had successfully increased the performance of asymmetric membrane (Pesek and Koros, 1993). Pesek and Koros (1993) studied the effect of evaporation step on PSF membrane performance. They compared the performance of PSF-based membranes prepared by wet phase inversion (without evaporation step) to the PSF membranes fabricated by dry/wet phase inversion (with evaporation step). They reported that membranes prepared by the wet process contained substantial number of defects within the skin layer can be eliminated by introducing evaporation step before immersing the casting solution into coagulation bath to produce asymmetric PSF membrane with higher O_2/N_2 selectivity. (Pesek and Koros, 1993).

In addition, it has been reported that membrane fabrication by using dry/wet phase inversion method without convective removal of solvent/non-solvent components (free evaporation period) may yield thin selective layer that may contain considerable amount of defects (Pinnau et al., 1990). Therefore, Pinnau et al., (1990) introduced

force convective evaporation technique in order to produce asymmetric membrane without necessity to coat the defective layer. In this work, casting solution was evaporated by passing over gas onto the surface of nascent membrane to induce dry phase separation. By using force convective evaporation method, they claimed that the resulting membrane prepared from force convective method have more attractive properties and performance rather than one prepared from free evaporation method. Force convective evaporation technique was then used by Ismail et al., (2003) to produce a defect-free asymmetric PSF membrane. They studied the effect of force convective evaporation time on membrane properties and performance. Their results showed that longer evaporation time would increase the H_2/N_2 ideal selectivity but decreased the H_2 permeance. On the other hand, short evaporation time produced membrane with lower H_2/N_2 ideal selectivity and higher H_2 permeance (Ismail and Lai, 2003). Gas separation performance obtained from membranes prepared at different evaporation technique and time are shown on Table 2.3.

Evaporation of casting solution predominantly controls skin thickness of asymmetric membrane. Longer evaporation time would result in thicker skin layer with less porous substructure while short evaporation time produces thinner skin layer of asymmetric membrane with more porous substructure. Therefore, dry phase inversion as resulted from evaporation step considerably affects the membrane morphologies and performance.

	Ref		Pinnau et al., 1990		Pesek and	Koros, 1993		Kawakami	et al, 1997		:	Ismail and	CUU2, 181		
	$lpha_{CO_2/N_2}$	33	1	•	1	1	1	1	1	ŀ	•		F	4	
	α_{co_1/CH_4}	1	ı	1	I	J	I	39	34	37		1	i	a	1
	$lpha_{H_2iN_2}$	67	1	50.2	1	1	1		1		9	40	42	50	52
	$lpha_{O_2/N_2}$	9	1.02	5.2	1.05	0.98	6	6.1	5.4	5.7	F	1	1	T	1
	$\frac{(P/L)_{CO_2}}{(\text{GPU})}$	155.8	I	I	1	E	1	270	3	5	I	г	1	I	1
	$\left(P/L ight) _{H_{2}}$ (GPU)	314	3	236.8	I	1	ł	1	1	•	130	30	23	20	18
	$(P/L)_{o_1}$ (GPU)	28	700	24.5	470	19.3	19.3	56	0.63	1.1	1	. 1	I	1	L
	Operating condition		$T = 25^{\circ}C$	$\Delta P=3.4 bar$		$T = 24^{\circ}C$	$\Delta P = 3.4$ bar	υ ₀ τ- Τ	P = 1 har			U₀U2 - T	P = 1-5 har		
-	Free evaporation period (s)	10	5	5	15	0	10	15	120	600	i	1	1	J	T
	Force convective evaporation period (s)	5	1	10	1	0	S	1	5	1	6	12	15	18	21
	Polymer		PSF	4 2 1		Ę	HCY	6FD A	APPS				PSF	(

Table 2.3 Effect of various evaporation technique and time on asymmetric membrane performance.

2.3.4. Development of High Performance Asymmetric Membrane Fabrication Through Rheology Study

Skin layer thickness and porosity of substructure determine the capability of membrane for gas separation. However, another aspect that is equally important is rheological condition during membrane fabrication (Ismail et al., 2002). Rheology defined as science of deformation of materials as a result of an applied stress (Carreau et al., 1997). Rheological approach involves the shear during casting of flat sheet membrane or hollow fiber spinning. The degree of shear can be studied by altering the casting speed or dope extrusion rate (Ismail et al., 2002).

It has been acknowledged that the degree of shear of casting solution will affect the molecular orientation of active skin layer of asymmetric membrane. The oriented skin layer of asymmetric membrane will enhance the selectivity. As shown in previous work, by increasing the high dope extrusion rates during manufacturing of hollow fiber polysulfone membranes, the CO_2/CH_4 ideal selectivity increased significantly and even surpassed the polysulfone intrinsic selectivity of 28. This is possible since at higher dope extrusion rates, the molecular orientation of active skin layer of membrane would be more enhanced than that of lower dope extrusion rates. The ideal selectivity of CO_2/CH_4 ranges from 14 to 40 for high dope extrusion rates while for low dope extrusion rates, the range is from 4 to 8. However, all membranes, either prepared by high or low dope extrusion rates, must be coated with silicon layer to repair the defect that had occurred on membrane's surfaces (Ismail et al., 1997; Ismail et al., 1998).

The shear-induced oriented structure of surface layer was also studied on gas separation performance of asymmetric 6FDA-durene polyimide hollow fiber membranes (Chung et al., 2000). In their work, it was found that increasing the shear rate during fabrication would make the CO_2 permeance to increase significantly. On the other hand, the CH₄ permeance of 6FDA-durene polyimide hollow fiber membranes decreased with increasing casting shear rate. However, the CH₄ permeance would increase with increasing casting shear rate once the critical shear rate had been exceeded. The performance of 6FDA-durene polyimide hollow fiber

membrane for CO_2/CH_4 separation before and after coating at various shear rates have been reported by Chung et al., (2000) as tabulated in Table 2.4.

Chase	В	efore coating	5	After coating			
Shear Rate (s ⁻¹)	(P / L) _{co2} (GPU)	(P / L) _{CH4} (GPU)	$lpha_{_{CO_2/CH_4}}$	(P / L) _{CO2} (GPU)	(P / L) _{CH4} (GPU)	$lpha_{_{CO_2/CH_4}}$	
249	910	443	2.08	282	34	8.27	
457	1080	256	4.47	367	19	19.25	
581	1210	198	6.36	373	19	19.69	
1391	2671	1764	1.53	519	66	8.70	

Table 2.4 The effect of shear rates on the performance of 6FDA durene hollow fiber membrane measured at $T = 25^{\circ}C$, $\Delta P = 2.72$ bar (Chung et al., 2000).

According to this work, at low shear region, increasing the shear rate of casting solution tends to make the polymer molecular chains to align better than those subjected to lower shear rates. The enhancement in molecular orientation results in a tighter chain packing of the dense selective and reduces the permeability. However, at high shear rate region, increasing the shear rate would cause a rapid decrease in dope viscosity and consequently relatively less porous skin structures would be formed leading to lower selectivity but higher permeance. This interesting relationship suggest that there may exist an optimum shear rate to yield membrane morphology with optimum separation performance (Chung et al., 2000).

The shear-induced molecular orientation of skin layer depends on the chemical structure of the polymer (Kawakami et al., 2003). As reported that two different types of 6FDA-DDS; 6FDA-*m*-DDS and 6FDA-*p*-DDS, which were prepared at different shear rates and tested for CO₂ permeation and selectivity showed different phenomena once the casting shear rates were increased. The CO_2/CH_4 ideal selectivity of 6FDA-*m*-DDS membrane increased with increasing shear rate. In contrast, the CO_2/CH_4 ideal selectivity of 6FDA-*p*-DDS remained constant and did not depend on the shear rates. The gas permeation result for each membranes are shown in Table 2.5.

	6FDA	- <i>m</i> -DDS	6FDA-p-DDS			
Shear rate (s ⁻¹)	(P / L) _{CO2} (GPU)	$lpha_{_{CO_2/CH_4}}$	$(P/L)_{CO_2}$ (GPU)	$lpha_{_{CO_2}/_{CH_4}}$		
100	0.06	101	0.96	42		
500	0.66	110	0.9	42		
1000	0.68	143	0.85	42		

Table 2.5 CO_2 gas permeance and CO_2/CH_4 selectivity of 6FDA-*m*-DDS and 6FDA-*p*-DDS membrane at 35°C and 76 cmHg (Kawakami et al., 2003).

These results indicate that molecular orientation of skin layer due to shear rate strongly depends on the chemical structure of polyimide membrane (Kawakami et al., 2003). In addition to the chemical structure, the shear-induced molecular orientation of skin layer also depends on the molecular weight of polymer. It has been reported that different molecular weight of polyimide membrane could result in different molecular orientation leading to different gas separation performance. Low molecular weight of polyimide enhances the degree of orientation of the polyimide molecules in the membrane, thus leading to high gas selectivity (Nakajima et al., 2003). The gas permeation results of their work are presented on the Table 2.6.

Table 2.6 Gas permeances and selectivities of asymmetric polyimide membranes at 35°C and 76 cmHg (Nakajima et al., 2003).

M _w	Shear rate (s^{-1})	$(P/L)_{CO_2}$ (GPU)	$lpha_{{\it CO_2}/{\it CH_4}}$
	100	3.5	95
1.2×10^{-5}	250	3.2	100
1.2×10	500	3.7	105
	1000	3.4	110
7.2×10^{-5}	1000	0.68	143

A lot of effort had been put to improve the performance of asymmetric membrane for gas separation application through optimization of preparation parameter conditions. However, the morphology, properties and separation performance of asymmetric membranes are also affected by the material chosen as precursor for fabrication.

2.4. Membrane Characterization

Membrane may differ significantly in their morphologies and properties and consequently in their application (Mulder, 1996). Therefore, membrane needs to be characterized in order to study the mechanism of membrane formation and to relate their morphologies and properties to the membrane separation properties. There are variety of techniques that can be utilized to characterize the morphologies and properties of membrane. Several techniques on the membrane characterization such as surface and cross-sectional images of membrane, porosity and glass transition temperature determination will be discussed briefly on the following section.

2.4.1. Characterization of Surface and Cross-section of Membrane Structures

Scanning Electron Microscopy (SEM) has been used extensively by many researchers to obtain a sophisticating image of membrane structures (Kesting, 1990; Shieh et al., 1998; Niwa et al., 2000; Wang et al., 2006). Characterizing non-conductive membrane using SEM requires coating treatment in order to make sample become highly conductive. The coated membrane samples are observed by varying the magnification of images. The SEM technique can be used to obtain both surface and cross-sectional images of membrane structure.

The relatively novel method to characterize the morphology of membrane is by using Atomic Force Microscopy (AFM) technique (Zeng et al., 1997; Khulbe et al., 1998, Wu et al., 2006). The AFM technique, developed by Binnig et al., (1986), allows the surface study of non-conducting materials down to nanometer scale. The advantage of AFM over electron microscopy technique is that no pretreatment is required and the measurement can be carried out under atmospheric conditions (Mulder, 1996). However, AFM can be used only to characterize the structure of a surface. Moreover, high surface roughness of sample may result in images which are difficult to interpret and high force between sharp tips of AFM and surface of sample may damage the polymeric structure (Mulder, 1996).

2.4.2. Characterization of Glass Transition Temperature

Glass transition temperature (Tg) of membrane can be conveniently determined using Differential Scanning Calorimetry (DSC) (Wang et al., 2005; Hu et al., 2003). DSC basically determines the heat difference between heated sample and an inert reference material in which the two specimens are subjected to the same heating rate and maintained at nearly same temperature throughout the experiment (Mulder, 1996). The value of Tg of membrane may be defined as the midpoint of the inflection in the DSC curve.

The method of T_g determination can also be carried out using Dynamic Mechanical Analysis (DMA). DMA which measures the response of membrane while an oscillating response applied is reported to have 10 to 100 times more sensitive to the changes occurring at the T_g as compared to DSC (Menard, 1999). Previous works showed that the method of determining T_g of membrane in DMA is conventionally based on peak of loss modulus of DMA graph (Sepe, 1998; Laot, 2001).

2.4.3. Porosity Determination

Membrane porosity can be characterized using gas adsorption-desorption and porosity calculation method. The gas adsorption-desorption method has become a standard procedure for the characterization of porous media of relevant industrial interest, as in ceramics, coal and catalytic beds (Calvo et al., 1997). This technique often use nitrogen as adsorption gas and the experiments are carried out at boiling point of liquid nitrogen (Mulder, 1996). The smallest pore of the membrane will be filled with nitrogen at minimum pressure. As the pressure is increased further, the larger pores will be filled and subsequently, at its saturation pressure all the pores are filled with nitrogen. The total pore volume is determined by the quantity of gas adsorbed at its saturation pressure (Mulder, 1996). The gas adsorption-desorption method is limited to the measurement of radius size of pores of about 2 nm (Mulder, 1996). Therefore, application of this method to gas separation membranes is more restrictive, mainly due to their lower porosities. Previous works showed that gas adsorption-desorption

technique is commonly used to characterize ultrafiltration (UF) membranes (Pradanos et al., 1996; Calvo et al., 1997)

1

Porosity determination of gas separation membrane can be carried out using overall porosity formula as reported by other researchers (Chun et al., 2000; Jansen et al., 2005a; Jansen et al., 2005b; Macchione et al., 2006). Porosity of membrane is estimated by measuring the thickness (l) and area (A) of membrane, mass (m) of sample and density (ρ) of the respective polymer. The overall porosity formula is described as follows:

$$\varepsilon = \frac{V_{void}}{V_{tot}} = \frac{lA - (m/\rho)_{pol}}{lA}$$
(2.1)

Calculating the porosity of membrane using this formula require accurate reading of membrane thickness. Measurement of membrane thickness can be determined using SEM or micrometer gauge (Jansen et al., 2005a; Macchione et al., 2006). Careful treatment must be taken into account as thickness of membrane could be reduced due to too much force while preparing sample for SEM and micrometer measurement.

2.5. Membrane Materials for CO₂/CH₄ Separation

Membrane morphology and performance for gas separation are also depended on the selection of membrane forming material. There are two type of materials that can be used for gas separation i.e., polymeric and in-organic material. Each type of material has its own characteristics and advantages for gas separation application. A brief discussion of in-organic and polymeric membrane will be given in Sections 2.5.1 and 2.5.2.

2.5.1. In-organic Membrane for CO₂/CH₄ Separation

Inorganic membrane was first introduced for military purpose in 1945. However, rapid progress for inorganic membrane was started since Kores and Soffer successfully prepared crack-free molecular sieving hollow fiber carbon membranes (Ismail and David, 2001). Inorganic membranes offer good performance in high thermal resistance, high stability, permeability as well as selectivity. Like organic membranes, inorganic membranes are also categorized as dense membrane and porous membranes. Porous inorganic membranes consist of symmetric and asymmetric. Since low flux or permeability resulted from dense membrane, therefore most of the research works were conducted on porous inorganic membranes such as carbon and zeolite membrane.

2.5.1.1. Carbon Membranes

Carbon membrane is one of the potential porous inorganic material for gas separation. Recent research has shown that carbon molecular sieve (CMS) membranes are able to produce excellent performance in terms of selectivity and permeability. Carbon membranes such as polyimide and polyamic acid are produced from the pyrolisis of thermosetting polymer at high temperature. Pyrolisis temperature during CMS fabrication strongly affected the performance of the membrane. Table 2.7 shows the summary of permeation and selectivity results from different carbon membrane

Precursor	Pyrolisis temp (°C)	T _{permeation} (°C)	$(P/L)_{CO_2}$ (GPU)	$\alpha_{_{CO_2/CH_4}}$	Ref	
	600	30	176.47	80		
BPDA-	700	30	88.23	60	Hayashi et al.,	
pp'ODA	700	100	264.7	16	1995	
	800	30	5.88	130		
	500-600	35	88.235	50		
BPDA-	0-500	35	5.88	40	Yamamoto et al.,	
ODA/DAT	500-0	35	35.3	60	1997	
	400-700	35	88.23	60		
	550	35	36.16	22		
P84	650	35	14.76	37	Tin et al., 2004	
	800	35	9.98	89		

Table 2.7 CO₂/CH₄ separation characteristic of different carbon membranes.

2.5.1.2. Zeolite Membranes

Zeolite membrane is also capable of separating CO₂ from CH₄. Membranes of various zeolite such as SAPO-34, ZSM-5, Y-type, silicalite A-type and p-type have been synthesized on porous support for gas separation (Shekhawat, 2003). Zeolite membranes can be prepared by in situ hydrothermal synthesis in porous stainless steel, α -alumina, or γ -alumina disks for gas permeation studies. These supported zeolite membranes have a thin and continuing zeolite separation layer with the porous support providing mechanical strength to the membrane (Shekhawat, 2003).

Most of the current researches on the separation of CO_2 from CH_4 are carried out using Y-type and SAPO-34 membrane. Table 2.8 shows some of the reported result of permeation test based on Y-type and SAPO-34 materials.

Zeolite	T _{permeation} (°C)	(P / L) _{co2} (GPU)	$lpha_{CO_2/CH_4}$	Reference
	30	352.94	2	
Y-type	80	882.35	4	Kusakabe et al., 1997
	130	882.35	6	
· · · · · ·	27	70.6	19	
SAPO-34	100	47.059	8	Poshusta et al., 1998
	200	29.4	2	
	27	441.17	16	
SAPO-34	100	235.3	9	Poshusta et al., 2000
	200	58.82	4	
	24	294.12	25	
SAPO-34	97	235.3	17	
SAFU-34	147	147.06	10	Li et al., 2004
	197	88.235	- 5	

Table 2.8 CO₂/CH₄ separation properties of Y-type and SAPO-34 membranes.

2.5.2. Polymeric Material for CO₂/CH₄ Separation

Even though in-organic membranes show some promises separation for CO_2 separation from natural gas but low reproducibility for large scale production and high

cost of fabrication are two problems encountered when using this material. Thus, most commercial and research works on gas separation membranes are reported to be concentrated on polymeric material (Nunes and Peinemann,2001). Some polymers that have been widely studied as polymeric material for gas separation membrane will be discussed further in the following section.

2.5.2.1. Cellulose Acetate Membrane

Cellulose acetate is one of the membrane materials that has been used in industry for the separation of CO₂ from natural gas (Dortmundt, et al., 1999). It has CO₂/CH₄ selectivity of 12-15 under typical field operating conditions, 68 bar of feed pressure and 10% CO₂ in feed gas stream (Baker, 2002). However, CO₂/CH₄ selectivity of 26 is obtained under laboratory condition, 35°C and 25 atm of feed pressure (Wind et al., 2004). Cellulose acetate is used because it is inexpensive and has the properties suitable for CO₂ separation (Li, et al., 1998).

Cellulose acetate is synthesized from cellulose reacted with acetic anhydrate, acetic acid and catalyst such as sulfuric acid. The cellulose group has high density due to its high content of alfa cellulose, which gives high flexibility and strength of the material. While the acetate group acts to reduce hydrogen bonding present on the molecule so chain flexibility will be diminished thus lowering gas permeability. Cellulose acetate has T_g of 187°C –198°C (Ruthven, 1997). The structure of cellulose acetate is shown in Figure 2.4 below:

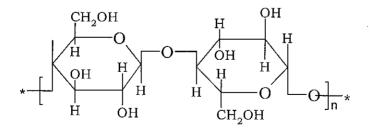
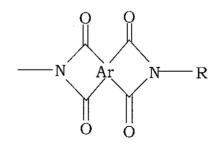


Figure 2.4 Structure of cellulose acetate molecule (Mulder, 1996).

34


Although the cellulose acetate has been used commercially for CO_2/CH_4 separation, their use for gas separation is characterized by the following drawbacks (Peinemann, et al., 1988):

- a) sensitivity to condensed water
- b) sensitivity to microbiological attack
- c) highly plasticized particularly during CO₂ separation
- d) low heat resistance (up to 70° C)
- e) relatively high manufacturing cost, because cellulose acetate cannot be directly air-dried (if direct air drying is employed, the porous base layer will collapse)

The enumerated drawbacks of cellulose acetate tend to detract the application of this material as gas separation membrane. There has been great a deal of interest for many researchers to seek for other suitable polymer as membrane material.

2.5.2.2. Polyimide Membrane

Polyimide has been widely researched as promising material for gas separation membrane. Rigid glassy polymers, availability of bulky groups and high glass transition temperature (T_g) are some typical properties of this material. The general structure of polyimide is given in Figure 2.5:

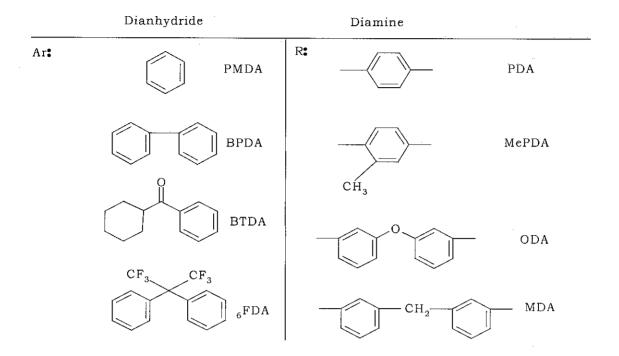


Figure 2.5 Structure of polyimide molecule with a selection of constituent.

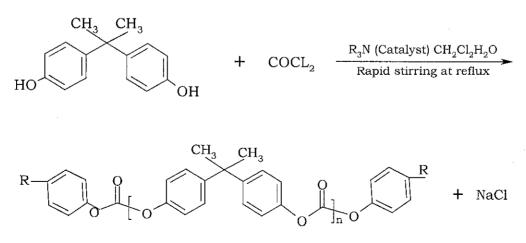
Dianhydride (Ar) and diamine (R) portion play important role in enhancing the performance of polymide-based membrane. Several generalities can be taken to describe the diamine portion in polyimide-based membrane (Gosh and Mital, 1996).

- a) Increasing the monomer rigidity decreases permeability but increase the selectivity.
- b) The presence of CF₃ group in monomer increases the permeability
- c) The presence of a dimethylsiloxyl component in polyimide increases permeability but decreases selectivity.

Many researches and studies had been carried out by synthesizing various polyimides from different diamine and 6FDA-based dianhydride to achieve higher gas permeabilities and selectivities as shown in Table 2.9

Polyimide membrane are very attractive for gas separation because of their good gas separation properties and physical properties such as high thermal stability (up to 300° C) (Rezac, et al., 1997), chemical resistance and mechanical strength. However, polyimide is very susceptible to plasticization when CO₂ is present in the feed (Shekhawat, 2003). In addition, polyimide material is expensive as compared to other

36


polymeric materials. Therefore, the application of CO_2 removal using polyimidebased membrane is still limited.

Membrane	P _{feed} (bar)	T _{permeation} (°C)	(P / L) _{co2} (GPU)	$\alpha_{_{CO_2/CH_4}}$	Ref	
6FDA- <i>m</i> -DDS	1	35	0.68	143	Kawakami et al.,	
6FDA-p-DDS	1	35	8.5	42	2003	
6FDA-1.5-NDA	10	.35	0.92	49	Wang et al.,2002	
6FDA-6FpDA	10	35	2.24	40	Wang et al.,2002	
6FDA-APPS	1	35	0.182	39	Kawakami et al.,1997	
6FDA-IPDA	10	35	1	37		
6FDA-IPDA (cross-linked)	10	35	0.8	40	Rezac et al., 1997	
6FDA-IPA	10	35	0.36	21	Morisato et al.,	
· 6FDA-TBI	10	35	1.72	17	1995	
6FDA-IPDA	3.4	25	383	45	Pinnau, et al., 1990	

Table 2.9 CO₂ separation performance from various polyimide membranes

2.5.2.3. Polycarbonate

Polycarbonate is synthesized from the reaction between bisphenol A (BPA) and fosgen ($COCl_2$). The reaction is performed as follows:

Figure 2.6 The formation of polycarbonate from bisphenol A (BPA) and fosgen (COCl₂).

where n = 35 - 60. It can be seen that polycarbonate consist of aromatic ring and carboxyl group. This composition makes polycarbonate suitable as membrane material for CO₂ separation. The presence of aromatic ring would provide sufficient space for dissolved gas to diffuse while at the same time it would also maintain chain stiffness and strength. In addition, the carboxyl group makes polycarbonate becomes polar, in which polar gas such as CO₂ could be dissolved easily while it will retain non-polar gas such as CH₄. Consequently, high permeability and selectivity may be expected from this material. However, as shown in other materials that have been discussed previously, preparation parameter may affect the morphology of membrane. Consequently, it will affect the performance of CO₂ separation as well. Similar phenomena may be observed in polycarbonate. It is expected that the performance of polycarbonate membrane will also be influenced by the morphology of the membrane.

Polycarbonate-based membranes have been studied for many applications of gas separation. Oxygen enrichment from air is one of the gas separation applications that widely use polycarbonate as membrane material (Admassu, 1989; Lai, et al., 1994; Chen et al., 1997; Ruaan et al., 1997; Sen, 2003). However, some studies have also bee carried out to investigate the application of polycarbonate membrane for CO_2/CH_4 separation (Koros et al., 1977; Jordan et al., 1990).

Some studies on the transport properties of polycarbonate membranes show that by increasing the feed pressure, the CO₂ permeance decreased more significantly than that of CH₄. Consequently, CO₂/CH₄ ideal selectivity would be decreased as the feed pressure increase (Koros et al., 1977). The separation properties of various types of polycarbonates have also been investigated. The study shows that HFPC has better CO₂ permeance and CO₂/CH₄ selectivity as compared to TMPC and PC at various feed pressures (Jordan et al., 1990). Polycarbonate performance for CO₂ removal is also affected by the preparation parameters of membrane such as casting technique, solvent selection and annealing period (Hacarlioglu et al., 2003a). The study shows that membrane prepared by dissolving polycarbonate into chloroform produces lower selectivity but higher CO₂ permeance than that of DCM-dissolved PC membrane. In addition, longer annealing period did not affect much the performance of PC membrane but higher CO₂ permeance was observed for PC membrane without annealing. The use of different casting methods; drop cast and knife cast, did not

38

much affect the transport properties of PC membranes (Hacarlioglu et al., 2003a). Alternative approach to enhance the CO_2 separation performance was carried out by introducing the conductive fillers such as polypyrrole into the PC membrane structure. Two different synthesis routes of polypyrrole namely electrochemical and chemical methods were used and the effect of these two different syntheses on the PC-polypyrrole mixed matrix membrane was then studied. Gas permeation studies have shown that, particularly for chemically synthesized polypyrrole (CPPY)-PC membrane, higher polypyrrole content on the PC membrane would increase CO_2 permeance and CO_2/CH_4 selectivity, respectively (Hacarlioglu et al., 2003b). A summary of PC membrane performance in CO_2 separation application is shown in Table 2.10

Table 2.10 Summary of various PC membrane performance in CO_2 separation application.

Membrane	P _{feed} (bar)	T _{permeation} (°C)	(P / L) _{CO2} (GPU)	$\alpha_{_{CO_2/CH_4}}$	Ref	
ECPPY-PC-7-10	2.72	35	0.128	2.4		
ECPPY-PC-7-15	2.72	35	0.126	2.78		
ECPPY-PC-7-20	2.72	35	0.123	4.6	Hacarlioglu	
CPPY-PC-7-10	2.72	35	0.068	16.4	et al., 2003	
CPPY-PC-7-15	2.72	35	0.075	16.67		
CPPY-PC-7-20	2.72	35	0.087	17.33	-	
PC without annealing	2.72	35	0.27	19.66		
PC with annealing for 24 hr	2.72	35	0.095	20.36		
PC with annealing for 72 hr	2.72	35	0.085	19.69	Hacarlioglu	
PC with drop cast	2.72	35	0.19	16.65	et al., 2003	
PC with casting knife	2.72	35	0.19	16.68		
PC dissolved into MC	2.72	35	0.1	27.00		
PC dissolved into Chloroform	2.72	35	0.11	25.62		
PC	13.6	35	0.048	24.00	T. 1	
TMPC	13.6	35	0.152	20.30	Jordan et al., 1990	
HFPC	13.6	35	0.192	29.00		
РС	1	35	0.027	26.56	Koros et al., 1977	

Generally, it is noticeable that the performance of PC membranes as reported by other researchers is still inferior as compared to other membrane material such as polyimide. Introducing other material such as polypyrrole to form mixed matrix membrane or applying post-treatment method such as annealing after membrane fabrication do not give any significant impact in order to enhance the performance of membrane. Therefore, study on preparation parameters to improve the performance of PC membrane in separating CO_2 from CH_4 is still highly necessary.

CHAPTER 3

THEORY

3.1. Formation of Phase Inversion-Based Asymmetric Membrane

Phase separation is a process in which an initially homogenous casting solution becomes thermodynamically unstable due to external effects (Yip and McHugh, 2006). Phase separation of casting solution can be induced by four different techniques as illustrated in Figure 3.1. (Baker, 2004).

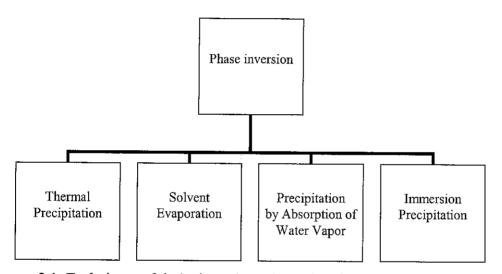


Figure 3.1 Technique of inducing phase inversion in casting solution during fabrication.

a) Thermal precipitation

This is the simplest method to fabricate asymmetric membrane. A prepared film is cast from a hot, one – phase polymer solution, followed by cooling to precipitate the polymer. The cooled film is separated into two phase region; polymer-matrix phase and membrane pore-phase. The initial composition of the polymer solution will determine the pore volume of final membrane but the cooling rate of the solution greatly influences the pore size of the final membrane. Rapid cooling will produce small pores (Ruthven, 1997).

b) Polymer precipitation by Absorption of Water Vapor

In this technique, water vapor is required to induce phase separation during membrane fabrication process. The casting solution that consists of polymer, volatile solvent and non-volatile solvent is cast onto a continuous stainless steel belt. The cast film is passed along the belt through a series of chambers. During circulation, the film loses the volatile solvent by evaporation and simultaneously absorbs water vapor from the atmosphere. After precipitation, the membranes are passed into an oven to dry the remaining solvent. The membrane formed is usually used for microfiltration purpose (Baker, 2004).

c) Polymer precipitation by solvent evaporation

This is one of the earliest methods of making microporous asymmetric membrane (Baker, 2004). A polymer is dissolved into a two-component solution mixture consisting of a volatile solvent such as acetone and less volatile non-solvent typically water or alcohol. The solution is then cast onto a glass plate. The volatile solvent is allowed to evaporate at certain period of times so the casting solution is enriched with the less volatile non-solvent. The non-solvent enriched casting solution will precipitate to form the membrane structure.

There are many factors that affect the porosity and pore size of membrane formed through this method. Fine pores membrane will be formed for a short evaporation time. Larger pores membrane is produced if the evaporation step is prolonged. Porosity is mainly affected by non-solvent composition of the casting solution. Increasing non-solvent composition will increase the porosity of membrane and vice versa (Ruthven, 1997).

d) Polymer precipitation by immersion in a non-solvent bath

In this method, casting solution is cast onto glass plate and then immersed into precipitation bath typically water bath. Dense, permselective skin layer is formed by the presence of water. Water will precipitate the top surface of cast solution rapidly. This dense surface will slow down the entry of water into underlying polymer solution so precipitation process is slower. The membrane produced from this method consists of two layers, which are first layer for dense skin surface and second layer for porous support. The dense skin varies from 0.1-10 μ m thick (Ruthven, 1997).

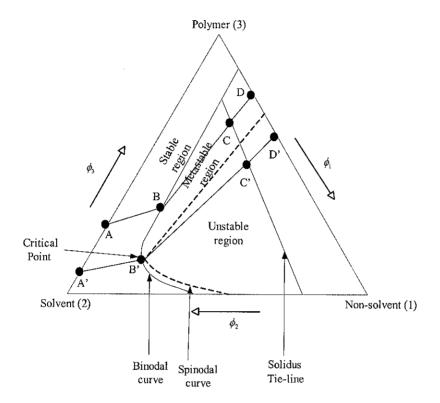
3.1.1. Asymmetric Membrane Formation by Dry/Wet Phase Inversion Process

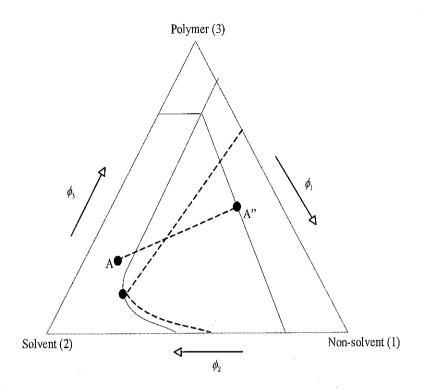
As explained in section 3.1, phase instability of homogenous casting solution can be achieved by four different techniques. Among these techniques, immersion precipitation in combination with evaporation step, known as dry/wet phase inversion method is widely used to produce asymmetric membrane for gas separation (Jansen et al., 2005; Koros and Pinnau, 1994).

A ternary phase diagram is commonly used to describe membrane-forming system involving a polymer, solvent(s) and non-solvent(s) by using dry/wet phase inversion process. This ternary phase diagram can be divided into three regions which are stable, metastable and unstable region. In the stable region, all components of the casting solution exist in one state and are homogenously miscible with each other. In the unstable region, the casting solution will spontaneously separate into two phases, polymer-rich and polymer-poor phase before the membrane structure is fixed. While in the metastable region, the homogenous casting solution will be thermodynamically unstable but it will not normally precipitate unless well nucleated (Baker, 2004).

Each region in the phase diagram is confined by a particular curve. The stable region and metastable region are separated through a binodal curve while a spinodal curve separatea between metastable and unstable regions. The ternary phase diagram is illustrated in Figure 3.2.

Phase separation of an initially stable solution can be the result of two mechanisms: nucleation and growth or spinodal decomposition (Koros and Pinnau, 1994). Nucleation and growth decomposition mechanisms occur in the metastable region. Hence, a homogenous casting solution will become unstable through nucleation and growth mechanism if the final composition of membrane finally stops at metastable region as illustrated by line ABCD in Figure 3.2.




Figure 3.2 Ternary phase diagram of membrane formation system.

At point A, the casting solution exist in stable and homoegenos solution. It will enter the metastable region and starts to become unstable at point B. This solution will undergo phase separation through nucleation and growth mechanism as the membrane structure is fixed, point C, through solidification of casting solution in metastable region. The final composition of nucleation and growth-decomposed membrane is located at point D which determines the overall porosity of membrane.

In case of nucleation and growth mechanism, membrane structure is formed based on the formation of the nuclei. The nuclei will evolve to form droplet and finally becomes porous structures of membrane. This mechanism will produce membrane with closed cell morphology if the average composition or concentration of final membrane is larger than the critical point (CP). On the other hand, if the average composition or concentration of final membrane is less than the critical point (CP), the membrane structure produced from nucleation and growth mechanism will be powdery and low integrity. This is because the nucleation of polymer-rich phase is dispersed in the polymer-poor phase.

In addition to nucleation and growth mechanism, the final membrane structure may be formed through spinodal decomposition mechanism. In this mechanism, the casting solution will be separated instantaneously into two phases, polymer-rich phase and polymer-poor phase. The instantaneous separation of casting solution leads to interconnectivity of these two phases to form an open cell thus forming an interconnected. This structure is attractive for gas separation membrane (Koros and Pinnau, 1994). Membrane formation through spinodal decomposition mechanism occurs once the homogenous casting solution enter the unstable region directly without passing through the metastable region as shown by line A'B'C'D' in Figure 3.2.

Phase inversion mechanism of casting solution is very important in determining the morphology of asymmetric membrane. It has been suggested that the formation of defect-free skin layer of asymmetric membrane made by dry/wet phase inversion process is resulted from the coalescence process of the spinodally decomposed structure of the outermost region of nascent membrane during the evaporation step (Koros and Pinnau, 1994; Kawakami, et al., 1997). In order to promote the formation of defect free skin layer, the casting solution formulation must be properly prepared to include volatile solvent and non-volatile solvent in order to make the initial casting solution composition, A, close to the binodal demixing line, as shown in Figure 3.3. This condition will create such situation in which sufficient volatile solvent on the outermost region of the casting solution to become unstable instantaneously to produce spinodally decomposed structure with an average composition, A, ", as shown in Figure 3.3.

Figure 3.3 Schematic representation of diffusion path of initial casting solution composition close to the binodal demixing line during evaporation period.

Following the dry phase inversion step described previously, the subsequent wet phase separation step will determine the formation of the underlying support structure. Casting solution is immersed into the coagulation bath to drive the counter diffusion between solvent - non-solvent in the underlying structure with coagulant from coagulation bath. Counter diffusion of solvent – non-solvent and coagulant will lead to the liquid-liquid demixing of the underlying layer of casting solution. Liquid-liquid demixing process of casting solution can be further divided into delayed demixing and instantaneous demixing process (Mulder, 1996). In delayed demixing process, stable homogenous casting solution needs longer time (more than 1 second) to become unstable to form membrane structure. For instantaneous demixing, stable casting solution will be unstable instantly once it is immersed into coagulation bath. These two different demixing processes can be explained using a ternary diagram as illustrated in Figure 3.4:

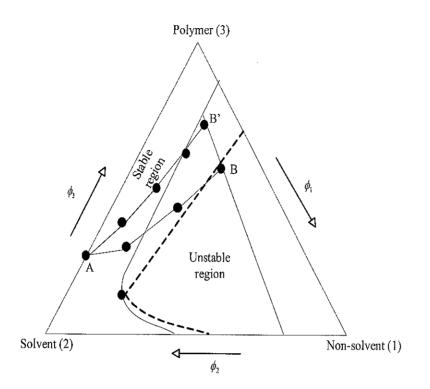


Figure 3.4 Schematic representation of two different demixing mechanisms: Line A-B' shows delayed demixing mechanism whereas A-B shows mechanism of instantaneous demixing.

The morphology of asymmetric membrane formed from delayed demixing rate tends to produce relatively dense or less porous substructure. In contrast, instantaneous demixing rate of casting solution will result in a more porous membrane with an open cell substructure. L-L delayed demixing occurs due to a large amount of solvent that diffuses into the coagulation bath but the inflow of coagulant into the membrane is relatively small (Koros and Pinnau, 1994). On the other hand, instantaneous process requires rapid exchange between solvent and coagulant.

Ternary phase diagram has been often used to study the phase separation in membrane-making process. Nevertheless, an extensive experimental work is required to obtain a representative phase diagram for specific polymer/solvent/non-solvent system. Therefore, coagulation value (CV) term is introduced in order to obtain information easily on the phase separation of polymer solution.

Coagulation value (CV) is the amount of coagulant in grams required to make 100 g polymer solution containing 2 g polymer become turbid (Kesting, et al., 1990; Kai, et

al.,1985). Coagulant value, basically, indicates the coagulant tolerance of the membrane casting solution. Lower coagulation value means lower coagulant tolerance of casting solution and hence faster L-L demixing rate to take place in the membrane making process. In contrary, higher coagulation refers to the larger coagulant tolerance of casting solution to cause delayed demixing (Wang, et al., 1995).

3.1.2. Thermodynamic of Phase Separation Phenomena

Membrane formation through phase inversion method involves an alteration of a thermodynamically stable polymer solution into an unstable state (Yip and McHugh, 2006). This instability can be driven by changes in pressure, temperature and composition of a system (Koros and Pinnau, 1994). All of these factors will lead to a change in Gibbs free energy of mixing, ΔG_M . Gibbs free energy of mixing represents the stability of a mixture. Thermodynamically, homogenous stable casting solution must meet the following condition at constant pressure and temperature:

$$\left(\Delta G_m\right) < 0 \tag{3.1}$$

while instability in the casting solution occurs if

$$\left(\Delta G_{m}\right) > 0 \tag{3.2}$$

Free energy change, ΔG_m , is related to the enthalpy and entropy change by :

$$\Delta G_m = \Delta H_m - T \Delta S_m \tag{3.3}$$

where ΔS_m and ΔH_m are the changes in entropy and enthalpy upon mixing, respectively. Note that ΔS_m is always positive because the volume fraction are less than unity (Rodriguez, et al., 2003). As ΔS_m is always positive, free energy change of solution, ΔG_m , greatly depends on its heat of mixing of polymer solution, ΔH_m .

Heat of mixing, ΔH_m , can be explained using a simple thermodynamic model of Flory (Rodriguez, et al., 2003). According to Flory's model, ΔH_m can be calculated using Hildebrand's regular solution theory (Rodriguez, et al., 2003).

$$\frac{\Delta H_m}{V} = \phi_1 \phi_2 (\delta_1 - \delta_2)^2 \tag{3.4}$$

Where ϕ_i and δ_i refer to the volume fraction and solubility parameters of component *i*, respectively. The widely used unit for solubility parameter, $(cal/cm^3)^{1/2}$ is called Hildebrand. Other units are $(J/cm^3)^{1/2}$ or $(MPa)^{1/2}$. One Hildebrand is equivalent to 2.046 $(MPa)^{1/2}$ (Rodriguez, et al., 2003). It is obvious that to satisfy the condition of $(\Delta G_M)_m < 0$, the solubility parameter of each component present in the polymer solution must be as close as possible or it can be written mathematically as follows:

$$\delta_1 - \delta_2 = 0 \tag{3.5}$$

Solubility parameter measures the affinity between two components or more (Mulder, 1996). A smaller solubility parameter difference means that the polymer and solvent are miscible or in other words they have a stronger affinity each other. The affinity between two components will increase if the difference between δ_1 and δ_2 are smaller or vice versa (Mulder, 1996). The solubility parameter approach may be a useful tool to describe the polymer solution behavior pertaining to membrane formation mechanism.

3.1.3. Prediction of Solubility Parameter

Solubility parameter is associated to the cohesive energy-density (CED), which is a measure of the strength of secondary bond (Rodriguez, et al., 2003). Secondary bond of a molecule determines most of the physical properties such as boiling point or melting point. While dissolving, melting, vaporizing, diffusion and deformation involve the making and breaking of the secondary bond (Rodriguez, et al., 2003). The solubility parameter is formulated as follows:

$$\delta_i = \sqrt{CED} = \sqrt{\frac{\Delta E_i^{\nu}}{V_i}}$$
(3.6)

where ΔE_i^{ν} is defined as the energy change upon isothermal vaporization of the saturated liquid to the ideal gas state at infinite dilution and V_i is the molar volume of the liquid (Rodriguez, et al., 2003). Eq (3.6) can be used to predict the solubility parameter of a pure solvent but it is not possible to calculate the solubility parameter of solid polymer since vaporization does not occur in solid polymers. Therefore, the solubility parameter of a polymer can be determined indirectly using a method called group - contribution method. The calculation of solubility parameter, δ_1 , using group in the polymer repeating unit. The calculation of solubility parameter using group-contribution method is given as follow (Ebewele, 2000):

$$\delta_i = \frac{\rho \sum_{i=1}^{i=1} F_i}{M_{r_i}}$$
(3.7)

in which M_r and ρ refer to the molecular weight and density of polymer, respectively. There are numerous group-contribution methods proposed by several scientists such as those given by Small, Hoy and Van Krevelen (Dijk and Wakker, 1997). Some molar attraction constant, F_i , of chemical groups that are not available in one method can be encountered in another method. For example, the value of molar attraction constant for nitrate is mentioned in Small's method but not in Hoy and Van Krevelen's method (Dijk and Wakker, 1997).

Even though numerous methods have been proposed to predict the interaction between a polymer and a solvent, the prediction is less accurate if hydrogen bondings exist in the molecule structure of polymer or solvent. Therefore, to improve prediction of solubility parameter either for polymer or solvent, a three-dimensional solubility parameter, as proposed by Hansen can be used. The overall solubility parameter is expressed as follows (Hansen, 2000; Krevelen, 1990):

$$\delta = \sqrt{\delta_d^2 + \delta_p^2 + \delta_h^2} \tag{3.8}$$

where δ_d , δ_p , δ_h are the dispersive, polar and hydrogen-bonding solubility parameters, respectively. The magnitude of δ_d , δ_p , δ_h are known to exist for limited numbers of solvent only. Therefore, a prediction to predict these quantities is noteworthy. Hoftyzer and Van Krevelen have developed an approach to calculate those solubility parameters (Krevelen, 1990). They derived a few equations in order to get the magnitude of each solubility parameters. Those equations are presented as follow:

$$\delta_{d} = \frac{\sum F_{di}}{V}, \quad \delta_{p} = \frac{\sqrt{\sum F_{pi}^{2}}}{V} \quad and \quad \delta_{h} = \sqrt{\frac{\sum E_{hi}}{V}} \quad (3.9)$$

The group contributions of \mathbf{F}_{di} , \mathbf{F}_{pi} and \mathbf{E}_{hi} are well-documented by Van Kravelen and Hoftyzer (Krevelen, 1990).

The interaction among all components involved in casting solution is represented by the solubility parameter difference. In Hansen solubility parameter, there are three components that determine the overall solubility parameter. Therefore, solubility parameter difference among all constituents in casting solution cannot simply be calculated as shown in Eq (3.5). Each component of Hansen solubility parameter must be taken into consideration. Hence, solubility parameter difference may be calculated according to the following equation (Chun, et al., 2000) :

$$\Delta \delta = \sqrt{(\delta_{i,d} - \delta_{j,d})^2 + (\delta_{i,p} - \delta_{j,p})^2 + (\delta_{i,h} - \delta_{j,h})^2}$$
(3.10)

Casting solution may be constituted from many components of solvents or nonsolvents. The effective of Hansen solubility parameter of this mixture may be predicted according to the following equation (Barton, 1995):

$$\delta_i^2 = \left(\sum \delta_d^i \phi^i\right)^2 + \left(\sum \delta_p^i \phi^i\right)^2 + \left(\sum \delta_h^i \phi^i\right)^2 \tag{3.11}$$

where δ^{i} is the solubility parameter and ϕ^{i} is volume fraction of *i* species.

3.2. Membrane Morphology: Effect of Preparation Parameters

Some factors or parameters involved in the fabrication process could have a significant effect on the morphology of membrane. Those factors such as choice of polymer, choice of solvent/coagulant system, composition of coagulation bath and composition of casting solution need to be highlighted in order to understand the mechanism of membrane formation.

a) Choice of polymer

An amorphous polymer is more suitable for gas separation membrane than a crystalline polymer because crystalline polymer is too rigid and brittle. The crystalline polymer membrane could be broken if high pressure is applied. The molecular weight of a polymer is also important and generally a high molecular weight polymer is preferred. Normally, a polymer having molecular weight from 30.000 to 40.000 is selected for membrane material (Baker, 2004). The concentration of polymer in the solution is also important. High concentration of polymer will produce a denser membrane and consequently reduces the porosity and flux of the membrane (Baker, 2004). Some polymers such as polyimide (PI), polysulfone (PS), polyethersulfone (PES) and cellulose acetate have been widely researched as membrane forming materials for gas separation.

b) Choice of solvent/coagulant system

The casting solution of membrane system must be consisted of, at least, a polymer and a solvent. In order to prepare membrane by dry/wet phase inversion process, the casting solution must be immersed inside the coagulant. This means that the selection of solvent and coagulant to produce the desired structure of membranes becomes highly important.

Thermodynamically, the solvent of casting solution will be miscible with the coagulant if it has Gibbs free energy of mixing lower than zero as stated in Eq (3.1). This miscibility depends on the mutual affinity between the solvent and

coagulant (Mulder, 1996). As mentioned earlier, solubility parameter approach can be used to measure the affinity between two or more components involved.

Different structure of membrane may be formed as a result from distinguished mutual affinity or miscibility between solvent and coagulant. It was reported that cellulose acetate (CA) membrane prepared from various solvent/coagulant system showed different morphology. When tetrahydrofuran (THF) was used as solvent and water as coagulant, CA membrane produced would be less porous or even becomes totally dense membrane. In contrast, when dimethylformamide (DMF) / water were selected as solvent/coagulant pair, a more porous CA membrane was obtained (Mulder, 1996). Low mutual affinity or miscibility between THF and water leads to the formation of more porous CA membrane as a result from delayed demixing of homogenous casting solution. On the other hand, high mutual affinity or miscibility of DMF and water cause the casting solution to demix instantaneously to form a more porous structure.

c) Composition of coagulation bath

Generally, the coagulation medium used in membrane fabrication must be able to precipitate the casting solution rapidly. Water is the most common medium used. Some organic chemical substances such as methanol and isopropanol have been introduced to obtain a better performance of membrane. Unfortunately, organic-based mediums always precipitate the casting solution more slowly than water and usually result in denser, less anisotropic membrane with lower-flux performance (Baker, 2004).

Coagulation medium may be consisted of solvents and non-solvents instead of purely non-solvents. Basically, addition of solvents into the coagulation medium will cause a change in the precipitation rate from instantaneous demixing to delayed onset demixing. Membrane is formed according to instantaneous demixing if immersed into coagulant consisting of non-solvent. Upon the addition of solvent, the mechanism will shift to delayed demixing mechanism particularly if the non-solvent has a strong affinity with non-solvent. Indeed, it is possible to change the structure of membrane by varying the composition of coagulation bath. The maximum amount of solvent that can be added to the coagulation medium depends on the location of binodal line. More solvent may be added to the coagulation medium if the binodal line of the phase diagram is close to the polymer axis. While only a small amount of solvent may be added to the coagulation medium for binodal line more toward the polymer/non-solvent axis.

d) Composition of casting solution

Membrane structures may be tailored by adding a certain amount of non-solvent into the casting solution. The addition of non-solvent into the casting solution will change the initial position of casting solution. The addition of more non-solvent will shift the position of initial casting solution close to the binodal line. Consequently, instantaneous demixing will probably be responsible for the membrane structure formation. On the other hand, casting solution that only consists of polymer and solvent will form membrane via delayed demixing mechanism in which less porous structure is produced.

The maximum amount of non-solvent that may be added into casting solution depend on the binodal line. The only thing that must be noted is no demixing may occur when non-solvent is added into the casting solution. It must be in one-phase region initially before moving toward to the binodal line. However, the solution usually may contain 5 to 20 wt.% of non-solvent (Baker, 2004).

3.3. Membrane Polymer for Gas Separation

3.3.1. Polymer Properties

Polymers are high molecular weight components built up from a number of basic unit (Mulder, 1996). Polymer can be either in amorphous, crystalline or between amorphous and crystalline state. The state of polymer is necessary because it will affect the performance of membrane. Dense and regular formation of molecule are typical properties of crystalline polymer. On the contrary, amorphous polymer is composed of less dense and less regular formation. High dense formation of crystalline polymer will obstruct gas diffusion through the membrane and hence reduces the permeability (Pixton and Paul, 1994). On the contrary, polymers with less dense molecule formation will enhance the permeability of gas through membrane. As a result, most polymers used as gas separation membranes are not crystalline (Pixton and Paul, 1994).

In addition to crystallinity, membrane performance for gas separation is strongly affected by glass transition temperature (T_g) and chain flexibility of polymer. Chain flexibility represents the ability of polymer chain to rotate or move along its backbone. This chain flexibility depends on the main chain and side group. Polymers having main chain of saturated bond (- C - C -) will give higher flexibility than polymers with unsaturated bond main chain (- C = C -). This unsaturated bond makes the main chain stiffer and harder to rotate. The presence of side group also influences the chain flexibility. Large side group such as aromatic and heterocyclic will hinder the rotation of main chain but small side group will not (Mulder, 1996).

Glass transition temperature (T_g) is an important parameter that could affect the performance of gas separation (Mulder, 1996). This temperature defines the transition temperature from glassy to rubbery state (Mulder, 1996). Rubbery state of a polymer occurs polymers temperature above T_g and glassy state of polymers is when the temperature is below T_g . Rubbery polymers behave like viscous fluid whereas glassy polymers exhibit rigid and tough polymer. Rubbery polymer allows the segment of the polymer backbone to rotate freely, which makes the polymer soft and elastic. High frequency of rotation of the polymer backbone leads to high diffusivity of gas molecule. In contrast, glassy polymer prohibits the rotation of polymer is impeded, so the diffusivity of gas is low. However, as the temperature increases, thermal motion is applied until it becomes sufficient to overcome the steric hindrance and consequently enhancing the diffusivity of gas. Generally, rubbery membrane polymers show a high permeability but low selectivity whereas glassy polymers exhibit a low permeability but high selectivity (Shekhawat et al., 2003).

3.3.2. Transport Phenomena

Gas transport through membrane has been investigated for 40 years (Ismail, et al., 2002) and several methods have been introduced to explain the transport phenomena through membrane. Solution-diffusion has been widely accepted to describe the mechanism of separation through non-porous dense membranes. While transport phenomena on porous membranes can be described by several different mechanisms such as molecular diffusion, Knudsen diffusion and surface diffusion mechanism (Ismail and David, 2001).

3.3.3. Gas transport through non-porous membrane

The solution-diffusion mechanism is widely used to describe transport phenomena through dense membrane. This mechanism consists of three steps:

- a) Sorption is the ability of a gas molecule to be dissolved into the membrane interface
- b) Diffusion is the ability of gas to penetrate throughout the membrane
- c) De-sorption is the ability of the penetrant gas to be released at the opposite interface of the membrane.

Solution - diffusion mechanism can be represented in the following figure:

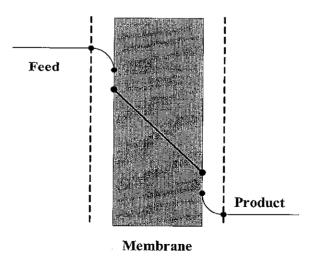


Figure 3.5 Solution-diffusion mechanism.

Based on solution-diffusion mechanism, the quantitative measure of mass transported through membrane, which is known as permeability (P), is a result from sorption and diffusion of gas molecule. Sorption (S) is a thermodynamic factor and measures the amount of gas absorbed into the membrane while diffusion (D) is a kinetic factor, which indicates how fast a gas could diffuse from one side of the membrane to the other. The relationship between permeability, solubility and diffusivity can be described as follows

$$\mathbf{P} = \mathbf{D}.\mathbf{S} \tag{3.12}$$

This relationship can only be applied if D and S are constant throughout the experiment. The permeability of membrane is commonly expressed in unit of Barrer.

1 Barrer =
$$10^{-10}$$
 $\frac{cm^3(STP)cm}{cm^2 \sec cmHg}$

Particularly for asymmetric membranes, it is more convenient to use the terminology "permeance" rather than permeability. Permeance, (P/I), or also known as pressure normalized flux, is defined permeability, P_i , per effective thickness of asymmetric membranes, *l*. Permeance of membrane is expressed in unit of GPU.

$$1 \text{ GPU} = 10^{-6} \frac{cm^3(STP)}{cm^2 \sec cmHg}$$

In addition, flux of gas component i, J_i , can also be determined according to the gas permeability of component i, P_i . The flux relationship can be defined to include the permeability as follows:

$$J_i = -P_i \frac{(p_2 - p_1)}{l}$$
(3.13)

This relationship shows that the flux of component i, J_i , is proportional to the difference in applied pressure and inversely proportional to the membrane thickness.

Membrane performance is also examined based on its ability to discriminate one component from other components, which is called ideal selectivity. Ideal selectivity of membrane is the ratio between permeability of component A over component B and is formulated as follows:

$$\alpha_{a/b} = \frac{P_a}{P_B} = \frac{(P/l)_a}{(P/l)_b}$$
(3.14)

Ideal selectivity is a convenient measure for assessing the ability of a membrane to separate one component from others. High selectivity and high permeability are the two main parameters in evaluating the performance of a membrane

3.3.4. Gas transport through porous membrane

Various transport mechanism such as molecular diffusion, Knudsen diffusion and surface diffusion can occur through porous membranes depending on their morphology. In porous membrane, each of these three mechanisms may contribute to the total transport mechanism of the permeating gas. Brief insight pertaining to the gas transport through porous membrane is provide below

a) Molecular diffusion

Molecular diffusion mechanism often occurs in larger pore size, $r > 10\mu m$ (Mulder, 1996). In this mechanism, the gas molecules collides each other due to smaller mean free path of the gas molecules as compared to pore size of membrane. If a pressure gradient is applied in such pore regimes bulk (laminar) flow occurs. Such transport is often referred to as *Poiseuille flow* or viscous flow (Javaid, 2005).

b) Knudsen diffusion

Knudsen diffusion mechanism is predominant on gas transport phenomena when the mean free path of the gas molecules is greater than the pore size of the membrane. In this situation, the collision between gas molecules are less frequent than the collisions between gas molecules and pore wall. Separation between the molecules is inversely proportional to the ratio of the square root of the molecular weights (Mulder, 1996).

This mechanism is often predominant in macroporous and mesoporous membranes (Javaid, 2005)

c) Surface diffusion

This mechanism occurs when the pore size of membrane is so small that the gas molecules can not pass freely through the pore of membrane. In this mechanism, the permeating gas molecules exhibit a strong affinity for the membrane surface and adsorb along the pore walls. Surface diffusion mechanism often occurs in parallel with other transport mechanisms such as Knudsen diffusion and separation occurs due to differences in the amount of adsorption of the permeating species and (Javaid, 2005)

CHAPTER 4

MATERIALS AND METHODS

4.1. Polymer

Polycarbonate was used as the material for membrane fabrication in this study. Outstanding properties, ease of manufacturing, commercially availability as well as low cost material are some of the reasons for choosing polycarbonate. For scientific considerations, the presence of aromatic ring and high glass transition temperature of polycarbonate offer necessary rigidity for good thermal resistance and mechanical behavior.

Polycarbonate was purchased from LG-DOW Polycarbonate Ltd. Prior to each membrane fabrication, the polycarbonate was dried for 24 hours to remove moistures. Properties of polycarbonate are summarized in Appendix A, Table A.1.

4.2. Chemicals

A few chemicals have been used as solvents and non-solvents in membrane fabrication. Dichloromethane (DCM) and chloroform were used as solvents for polycarbonate while ethanol (EtOH), propanol (PrOH) and butanol (BuOH) were used as non-solvents. 1,1,2-trichloroethane (TEC) was added to the polymer solution as less volatile solvent to control the evaporation rate of the casting solution. Methanol (MeOH) was used as coagulation medium to precipitate the homogenous casting film. Tap water was also added into the methanol-based coagulation medium to study the effect of coagulation mixture between methanol and water on the morphologies of membrane. Properties of all chemicals involved in this work are tabulated in Appendix A, Table A.2.

4.3. Asymmetric Polycarbonate Membrane Fabrication

The steps involved in the fabrication of asymmetric polycarbonate membrane fabrication are summarized in the following flow diagram:

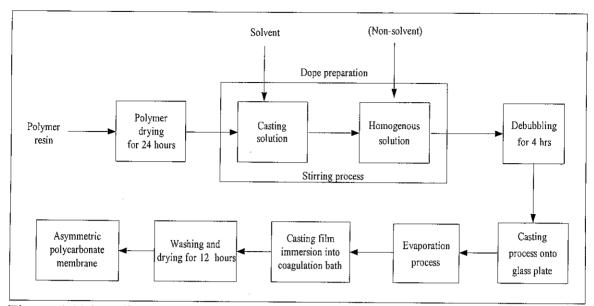


Figure 4.1 Flow diagram of asymmetric polycarbonate membrane fabrication.

Polycarbonate resin was first dried in an oven at 80°C for 24 hours to remove moisture. The dried polycarbonate resin was dissolved into solvents and was stirred until all portion of the polymer dissolved completely. This polycarbonate mixture is referred to as casting solution. A certain amount of non-solvent was then added to the casting solution and the casting solution was continuously stirred for 4 hours to obtain a homogenous solution in an air-tight bottle.

Following that, the casting solution was then degassed to remove any dissolved gas due to the stirring process. This step was also carried out for 4 hours. Observation on the presence of bubble inside the casting solution was done visually. After degassing, membrane film was formed by casting the solution onto a glass plate. Casting knife was set up to $250 \ \mu m$ membrane thickness. Then, forced convection evaporation using nitrogen was applied on the surface of the membrane film for a certain period of time before immersing the membrane film into a coagulation bath. Nitrogen was released using a ¹/₄ inch diameter tube by simply moving it back and forth above the membrane surface layer. The immersion of membrane film into coagulation bath was carried out at room temperature until it was detached completely from the glass plate. In this work, methanol (MeOH) was used as the coagulation medium to induce the precipitation of membrane film. Finally, the membranes were dried in an oven at 35° C for 12 hours. Silica gel was also placed inside the oven to make sure that the drying process was conducted in a moisture-free condition.

In this study, the asymmetric PC membrane was fabricated under four varying experimental conditions such as:

- a) varying the solvent non-solvent pair
- b) varying the concentration of non-solvent in the casting solution
- c) varying the evaporation time of the casting film
- d) adding water at various amount into methanol coagulation bath

The membrane fabricated at each experimental conditions above was then characterized by performing SEM studies. Dynamic mechanical analysis to determine change in T_g of membrane was carried out for the membranes fabricated at various solvent – non-solvent pair.

Gas permeation studies were carried out to determine the ability of the membrane for CO_2/CH_4 separation. The effect of non-solvent concentration, variation of evaporation time and effect of water content in the coagulation bath were only investigated for the solvent – BuOH casting solution.

4.3.1. Effect of Various Solvent – Non-solvent Pair

In the first set of experimental conditions, the asymmetric PC membranes were prepared by dissolving polycarbonate into solvent mixtures containing a more volatile solvent, a less volatile solvent and a non-solvent. Dichloromethane (DCM) and chloroform were chosen as more volatile solvents for polycarbonate as these chemicals are relatively volatile and have a good miscibility with polycarbonate. Ethanol (EtOH), propanol (PrOH) and butanol (BuOH) were selected as non-solvents considering that these chemicals are soluble with the solvents used in this research as well as their higher boiling point. 1,1,2 trichloroethane (TEC) was also chosen as the less volatile solvent and was added to the casting solution in order to delay the evaporation of solvents. Table 4.1 shows the compositions of the casting solutions used in this work.

Material	Composition (wt.%)	
Polycarbonate	12.5	
More volatile solvents :		
- Dichloromethane (DCM)	59.8	
- Chloroform		
Less volatile solvent :	22.7	
- 1,1,2 Tricholorethane (TEC)		
Non-solvents :		
- Ethanol (EtOH)	5	
- Propanol (PrOH)	. 5	
- Butanol (BuOH)		

Table 4.1 Variation of solvents and non-solvents on membrane fabrication.

The basis of casting solution composition as mentioned above was based on previous work from Pinnau et al., (1990). However, PC casting solution composition from Pinnnau's work can not be applied due to inhomogeneous casting solution obtained during experiment. Therefore, in this work, casting solution composition adjustment was carried out by reducing the concentration of non-solvents in order to obtain a homogenous casting solution.

4.3.2. Effect of Non-solvent Concentration in Casting Solution

The concentration of each constituent in the casting solution plays important role in determining the final structure of the membrane formed (Mulder, 1996). Therefore, in this research, the concentration of non-solvent of the casting solution was varied. Table 4.2 shows the various compositions of non-solvents used in this research. The concentration of non-solvents cannot exceed more than 10 wt.% as the casting solution would become cloudy, which indicates that it phase separated.

	Polycarbonate	Dichloromethane	1,1,2 TEC	Butanol
Composition (wt.%)	12.5	63.5	24	0
	12.5	61.63	23.37	2.5
	12.5	59.8	22.7	5
(₩1.70)	12.5	58	22	7.5
	12.5	56.18	21.32	10

Table 4.2 Variation of non-solvent concentration in the casting solution.

4.3.3. Effect of Evaporation Time of Casting Film

The effect of evaporation time was studied by the varying evaporation duration of casting film before immersing it into a coagulation bath. Table 4.3 shows various evaporation times applied in this work. Duration of evaporation of casting film to produce asymmetric membrane is commonly in the order of seconds (Pesek and Koros, 1993; Ismail and Lai, 2003). Therefore, in this work, evaporation time of casting film was carried out from 0 to 60 seconds.

Cast	Evaporation Time			
Polycarbonate	bonate Dichloromethane 1,1,2 TEC But			(s)
12.5	56.18	21.31	10	0
				20
				40
				60

Table 4.3 Variation of evaporation time on membrane fabrication.

4.3.4. Effect of Water Content in the Coagulation Bath

Fabrication of polycarbonate membrane requires methanol as coagulation medium. However, due to its toxicity, methanol is not suitable for commercial purpose as huge amount of methanol are consumed for polycarbonate membrane fabrication. Therefore, in this research, water was added to the methanol-based coagulation to study the possibility of water-methanol mixture in fabrication of polycarbonate membrane. The effect on the membrane structure was also investigated. Table 4.4 shows the composition variation the water-methanol mixtures used in this research. The maximum amount of water that could be added into the methanol bath was 30 vol.% of the total volume of coagulation bath.

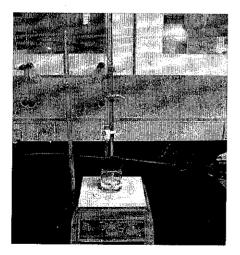

Casti	ng solutio	on composition	Coagulation bath		
PC	DCM	1,1,2 TEC	BuOH	Water-methanol mixtures (vol. /vol.)	
			0/100		
12.5	56.18	01.01	21.21	21.31	10/90
12.5	50.18	21.51		20/80	
				30/70	

Table 4.4 Variation of water-methanol composition and the selected casting solution

 composition for asymmetric PC membrane fabrication.

4.4. Coagulation Value Determination

Determination of coagulation value was carried out by rapid titration of casting solution with MeOH. Coagulation value was determined by preparing a polymer solution with the ratio of 1 g PC and 49 g mixtures between solvents and non-solvents. The polymer solution was placed in an air-tight bottle and then was stirred using magnetic stirrer until polycarbonate (PC) resin totally dissolved. This homogenous solution was then titrated using pure methanol (MeOH) by adding it slowly through a burette under agitation until the initially clear solution became cloudy visually. Figure 4.2 and Figure 4.3 show the titration configuration used for coagulation value determination and cloudy solution at the end of the titration, respectively. The quantity in grams of methanol required to make the polymer solution became cloudy was then stated as the coagulation value.

Figure 4.2 Titration configuration for CV determination.

Figure 4.3 The turbid solution at the of the titration.

4.5. Membrane Characterization

4.5.1. Scanning Electron Microscopy (SEM)

Scanning electron microscopy was used to characterize the structure of surface and sub-layer of membrane. Images obtained from SEM shows detailed 3-dimensional at much higher magnifications than is possible with a light microscope. Magnification of images is created by electrons instead of light waves as in conventional light microscope, which uses a series of glass lenses to bend the light waves.

Membrane structure was determined by LEO SUPRA 50 VP FESEM. In this work, PC cannot be fractured under liquid nitrogen as compared to other polymers such as PES and PI. Surface and cross-section of the PC membranes were chosen randomly and then was cut carefully using a sharpened razor blade. Samples were then coated with gold using a sputter coater. After coating, membrane samples were observed using SEM with magnification range from 300 to 1500 X. Figure 4.4 shows the SEM used in this research.

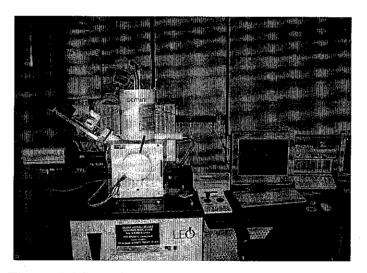


Figure 4.4 SEM for membrane structures observation.

4.5.2. Dynamic Mechanical Analysis

Dynamic mechanical analysis is a measuring technique to observe the response of a material when an oscillating force is applied. The properties of membrane obtained by

DMA were represented by storage modulus, E', loss modulus, E'', and tan delta, tan δ ,. The storage modulus, E', measures the ability of membrane to store the energy and to recover to its initial position or system elastically, whereas loss modulus, E'', represents the viscous behavior of a material to dissipate or to loose the energy. Tan delta, tan δ , can also be used to represent properties of membrane and it is calculated from ratio between E'' over E'. So

$$\tan \delta = \frac{E''}{E'} \tag{4.1}$$

Dynamic mechanical analysis (DMA) can be used determine glass transition temperature (T_g) of membrane polymer. The peak of loss modulus, E", corresponds to the initial drop of storage modulus, E', and conventionally used to identify the glass transition temperature (T_g) of sample. A typical DMA curve is shown in the following figure.

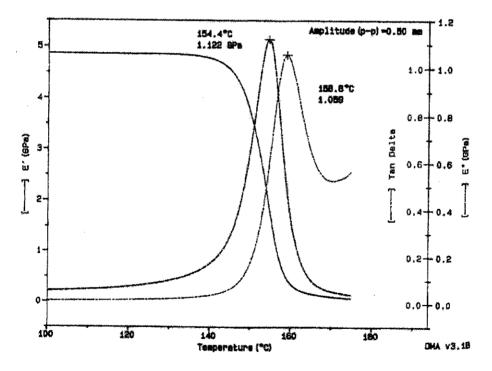


Figure 4.5 Typical DMA curve (Sepe, 1998).

The dynamic mechanical experiments were carried out in the tensile mode. The machine was a Mettler Toledo DMTA 861 supplied by Mettler Toledo Inc. It was

connected to a Pentium computer running a DMA software. Polycarbonate samples were cut into a rectangular shapes with the dimension of 10×5 mm. The specimens were tested at 1 Hz with a heating rate of 2°C/minute from 25°C to 200°C.

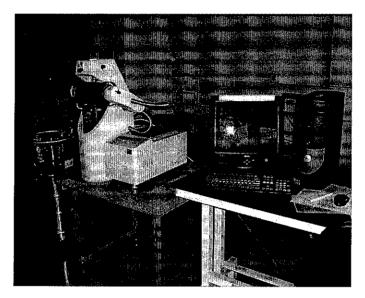


Figure 4.6 DMA apparatus used in this work.

4.5.3. Porosity Calculation

Membrane porosity or void fraction, ε , was calculated from the thickness, *l*, area of the membrane, *A*, and the weight of samples, *m*. Thickness was determined directly from scanning electron microscopy (SEM) and multiple-point measurements from digital micrometer (Jansen et al., 2005) As a result, the overall porosity can be calculated as follows (Jansen et al., 2005; Chun et al., 2000)

$$\varepsilon = \frac{V_{vold}}{V_{tot}} = \frac{lA - (m/\rho)_{pol}}{lA}$$
(4.2)

in which V_{void} and V_{tot} are the void volume and the total volume of membrane. Polymer density is denoted with ρ . Polycarbonate has density of 1.2 g/cm³ as presented in Appendix A, Table A.1.

4.6. Gas Permeation Studies

Gas permeation measurements were performed using pure CO_2 and pure CH_4 in Membrane Research Unit (MRU) laboratory, Universiti Teknologi Malaysia (UTM), Skudai, Johor. The permeation experiment always begin with nitrogen and ended with carbon dioxide. Feed side pressure was varied from 1 bar to 5 bar. The equipment set-up as illustrated in Figure 4.7 was used to carry out the gas permeation measurement. The set-up consists of a feed gas tank, a pressure gauge of inlet gas, a dead-end membrane cell and a bubble soap flow meter. Membranes were located in the dead end membrane cell or module. This type of module allows the feed gas to flow into the membrane perpendicularly to the membrane position.

Before performing the experiment, the gas permeation test unit was evacuated to less than 0.1 bar by vacuum pump for 1 hour to remove all residual gases remaining in the equipment. The feed gas was supplied directly from the gas tank, which is equipped with a pressure regulator. The feed gas pressure was set up within range of test pressure and the permeate stream was assumed to be at atmospheric pressure. In this permeation experiment, time (t) required to reach certain volume of gas in the permeate stream was observed and recorded. In addition, the volume of gas (V) in permeate stream was also measured using a bubble soap flow meter. The permeation of each gas through a membrane was measured twice at steady state condition.

Based on the volumetric measurements of the permeated gas, the volumetric flow rate, Q, was calculated as follows :

$$Q = \frac{V}{t} \tag{4.3}$$

This volumetric flow rate was then corrected to STP conditions (0°C and 1 atm) using the following equation

$$Q_{STP} = \frac{T_{STP}}{T} \times Q \tag{4.4}$$

in which T_{STP} and Q_{STP} referred to temperature (K) and volumetric of permeate gas (cm³/s) at STP condition. After conversion into STP condition, gas permeance, $\frac{P}{l}$, was then calculated using the following formula

$$\frac{P}{l} = \frac{Q_{stp}}{A \times \Delta p} \tag{4.5}$$

where Δp and A were trans-membrane pressure and effective membrane area, respectively. The CO₂/CH₄ ideal selectivity (unitless), α_{CO_2/CH_4} , of asymmetric membrane can be determined by dividing CO₂ permeance, $(P/l)_{CO2}$, over CH₄ permeance, $(P/l)_{CH4}$.

$$\alpha_{CO_2/CH_4} = \frac{(P/l)_{CO_2}}{(P/l)_{CH_4}}$$
(4.6)

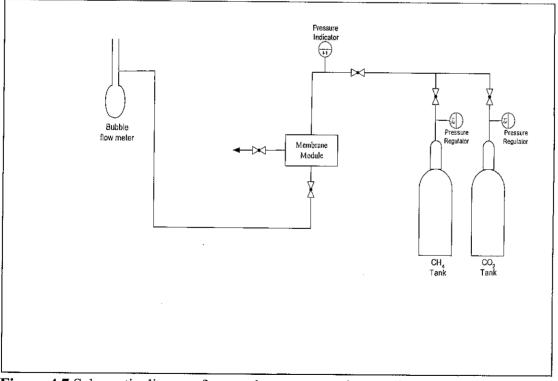
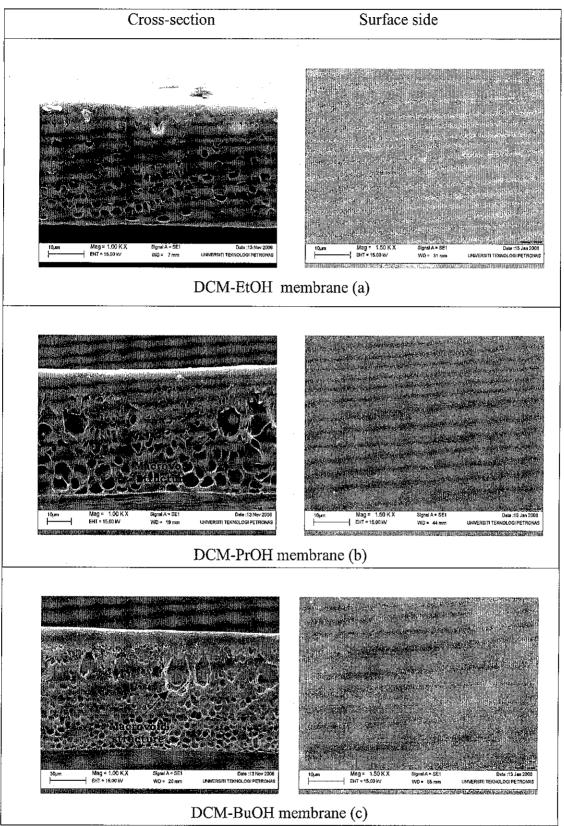


Figure 4.7 Schematic diagram for membrane permeation studies.

CHAPTER 5

RESULTS AND DISCUSSION


5.1. Formation and Morphologies of Asymmetric PC Membrane

Asymmetric polycarbonate (PC) membrane formation and morphologies at various preparation parameters are presented in this section. Skin layer region, formation of macrovoid in the substructure and overall porosity of the membrane as result of the different preparation parameters are also discussed.

5.1.1. Effect of Solvents – Non-solvents Pair

Solvent and non-solvent selection play an important role in controlling the membrane morphologies and properties. Figure 5.1 shows the SEM images of cross-section and surface layer of asymmetric PC membrane prepared from various DCM - non-solvents pair. Result from SEM images shows that asymmetric PC membranes were successfully produced using DCM at different non-solvents used. All of these fabricated membranes are composed of skin layer supported with closed-cell substructure. However, various non-solvents used produced different membrane morphologies in terms of porosity, macrovoid substructure and skin layer region.

A distinct skin layer region on the top side of the membranes can be observed distinctly on DCM-PrOH and DCM-BuOH membranes. On the contrary, less distinct skin layer region was obtained for DCM-EtOH membrane. The morphology of DCM-EtOH membrane was also characterized by lower porosity and macrovoid-free substructure while both DCM-PrOH and DCM-BuOH membranes have higher porosity and more macrovoid substructure.

Figure 5.1 SEM images of cross section and top layer of membrane at various DCM – non-solvent pair a) PC/DCM/EtOH. b) PC/DCM/PrOH. c) PC/DCM/BuOH.

Similar results were also observed for asymmetric PC membrane prepared from various chloroform - non-solvents pair. Figure 5.2 shows that asymmetric PC

membranes that consist of skin layer region supported by closed-cell substructure were successfully produced by using chloroform paired with various non-solvents. Distinct skin layer region is primarily observed on chloroform-BuOH membrane. In addition, asymmetric PC membrane prepared from chloroform-BuOH pair has higher porosity and macrovoid substructure as compared to chloroform-EtOH and chloroform-PrOH membranes. A comparison of the porosity of asymmetric PC membranes prepared using DCM and chloroform paired with various non-solvents respectively, can be observed in Table 5.1.

n	on-solvent pai	r.					
	NT		Membrane 7	Thickness	Porosity, e, (%)		
	Solvents	Non- solvents	Micrometer	SEM	Micrometer	SEM	

 (μm)

30.23

47.73

91.05

51.83

54.81

51.65

54.50

63.49

63.99

56.12

64.24

67.91

45.07

59.08

61.24

49.35

58.19 58.57

(µm)

36.5

53.5

98

59.8

64.1

66.7

EtOH

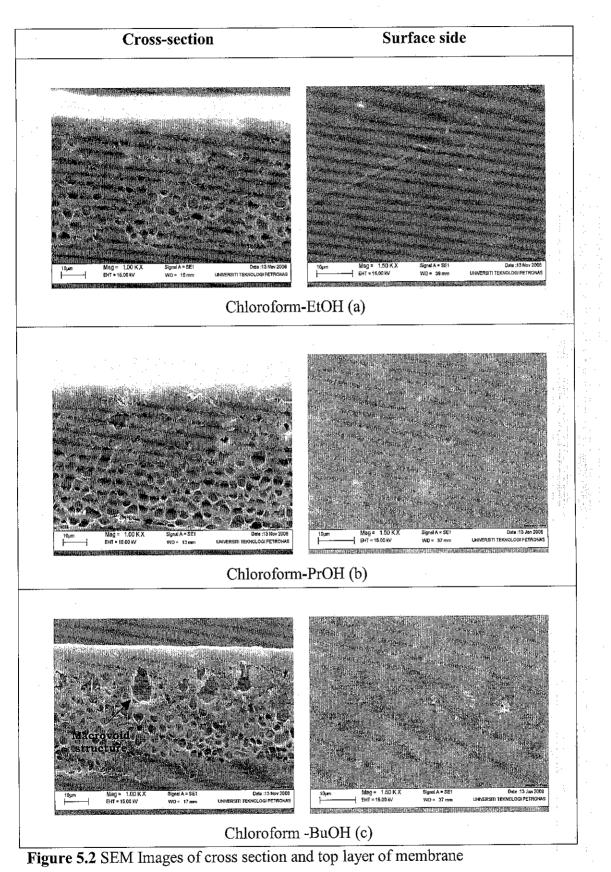
PrOH

BuOH EtOH

PrOH

BuOH

DCM


Chloroform

non bort one point				
non-solvent pair.				

Table 5.1 Membranes porosity prepared using various DCM and chloroform with

Table 5.1 shows that DCM-based membranes have less porous substructure
$(\varepsilon = 54.5 - 64\%)$ at any non-solvents than that of the chloroform-based membranes
($\epsilon = 56.12 - 67.9$ %) according to micrometer measurement. Other work reported that
porosity of PEEKWC membranes prepared from DCM and Chloroform are not much
different each other and within range of 30 - 50% according to micrometer
measurement (Jansen, 2005). However, the overall porosity from SEM measurement
shows the opposite trend between DCM and chloroform except for EtOH-based
membrane. It has been reported that SEM and micrometer measurement would not
deviate much each other (Jansen, 2005; Macchione et al., 2006). The discrepancy
between the results obtained by micrometer and SEM in this work could be due to the
problem in determining the exact thickness of membrane. The membrane thickness
measured using SEM was smaller than that of using micrometer because the overall
thickness of the membrane might be compressed when it was cut using razor blade
during SEM sample preparation.

73

a) PC/Chloroform/EtOH. b) PC/Chloroform/PrOH. c) PC/Chloroform/BuOH.

Additionally, various non-solvents also produced different porosities. The non-solvent in the order of increasing overall porosity of membranes are EtOH < PrOH < BuOH for both DCM and chloroform-based membranes as seen in Table 5.1. All of these results suggest that membrane porosity is affected both by solvents and non-solvents used in this work.

In order to study the mechanism of asymmetric membrane fabrication prepared by dry/wet phase inversion method, the effect of evaporation and immersion precipitation step on the change of membrane structure must be considered. Homogenous casting solution was evaporated before it was immersed into coagulation bath. During evaporation of the casting solution, different evaporation rate of solvent and non-solvent may have taken place due to different boiling points of solvents and non-solvent used in casting solution. As shown in Appendix A, Table A.2, EtOH (bp. 78°C) has lower boiling point compared to PrOH (bp. 82°C) and BuOH (bp. 108°C) while chloroform (bp. 61°C) has higher boiling point than DCM (bp. 40°C).

Low boiling point of DCM and EtOH would cause rapid evaporation of the casting solution (Jansen, 2005). Concurrent evaporation between DCM and EtOH during force convection evaporation could result in more concentrated polymer on the top surface layer of casting film (Jansen, 2005). Concentrated polymer region on the top side of casting film would subsequently affect the exchange rate between solvent and coagulant during immersion step. The polymer-concentrated outermost membrane will hinder the exchange rate between solvent from underneath the casting film with coagulant and consequently precipitation process of casting solution will be slowed down (Strathmann and Kock, 1977; Strathmann 1975). Slow precipitation rate or slow exchange rate between solvent and coagulant, known as delayed demixing mechanism, would produce less porous structure as shown in SEM images, Figure 5.1 (a). This is because, in delayed demixing mechanism, polymer-rich phase of casting film tend to agglomerate before it was solidified to form a membrane matrix (Strathmann, 1975; Baker, 2004)

In contrast, chloroform-BuOH membranes show more porous and more macrovoid substructure. This could be due to the fact that both chloroform and BuOH cannot be easily evaporated during evaporation step due to their higher boiling point. As a result, the concentrated polymer region on the top side of casting solution film becomes thinner than that of EtOH or PrOH-based membrane. Thus, the exchange or diffusional rate of solvent and coagulant was not much hindered as in EtOH-based membrane, which allows the membrane structure to be formed through instantaneous demixing mechanism instead of delayed demixing. The formation of macrovoid and distinct skin layer region indicated that instantaneous demixing mechanism is responsible in forming the more porous substructure of BuOH-based membrane (Mulder, 1996; Strathmann and Kock, 1977).

In addition to the different rate of evaporation of casting solution, miscibility or affinity among all the constituents involved during fabrication is also necessary to be taken into account in determining the morphology of membrane. Affinity between solvent and polycarbonate as well as solvent and coagulant can be expressed quantitatively through solubility parameter difference. Various solvent - non-solvent pair used in membrane making process would affect the solubility parameter of casting solution. The solubility parameter for each component involved in the membrane making process in this work is presented in Appendix B, Table B.1. In membrane making process through dry/wet phase inversion method, the polymer must be dissolved into solvents that could consist of several chemicals. In this work, a few chemicals were used as solvent mixtures for polycarbonate. Accordingly, the solubility parameter of the solvent mixtures must be also taken into account in expressing the interaction between solvent and polymer as well as solvent and coagulant. Solubility parameter of solvent mixtures can be calculated using Eq (3.11). The calculated solubility parameter of respective solvent mixtures, δ_{mix} , of DCM and chloroform-based membrane is tabulated in Table 5.2.

Component	$\delta_d (Mpa)^{1/2}$	$\delta_p (Mpa)^{1/2}$	$\delta_h (Mpa)^{1/2}$	$\delta_{mix} (Mpa)^{1/2}$
MC/1,1,2 TEC/EtOH	17.97	6.25	7.55	20.47
MC/1,1,2 TEC/PrOH	17.97	6.00	7.28	20.30
MC/1,1,2 TEC/BuOH	17.98	5.96	7.08	20.22
Chloroform/1,1,2 TEC/EtOH	17.70	4.23	7.36	19.63
Chloroform/1,1,2 TEC/PrOH	17.70	3.96	7.07	19.46
Chloroform/1,1,2 TEC/BuOH	17.70	3.92	6.86	19.38
Methanol	15.1	12.3	22.3	29.6
BPA-PC	17.95	3.16	6.87	19.50

Table 5.2 Solubility parameter of solvent mixtures, methanol and polycarbonate

From Table 5.2, it can be observed that solubility parameter of EtOH-based solvent mixtures, δ_{mix} , is larger than that of PrOH and BuOH. Consequently, each solvent mixture has different interaction with polycarbonate and coagulant. The solubility parameter difference between solvent mixtures and methanol, $\Delta\delta_{(s-MeOH)}$, as well as solvent mixtures and polycarbonate, $\Delta\delta_{(s-PC)}$, are presented in Figure 5.3.

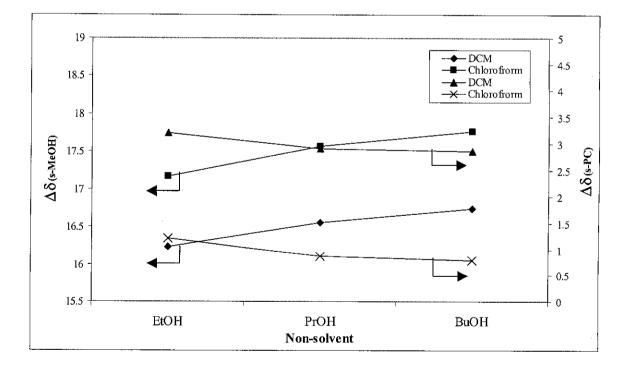
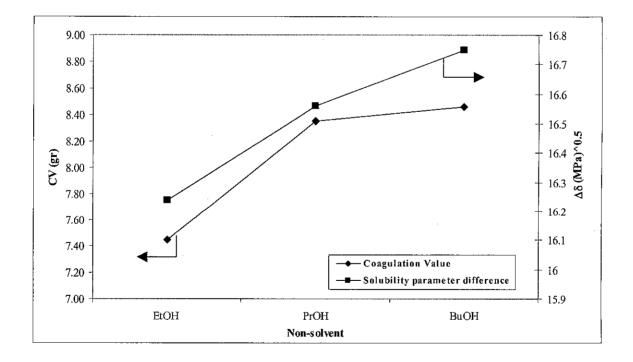
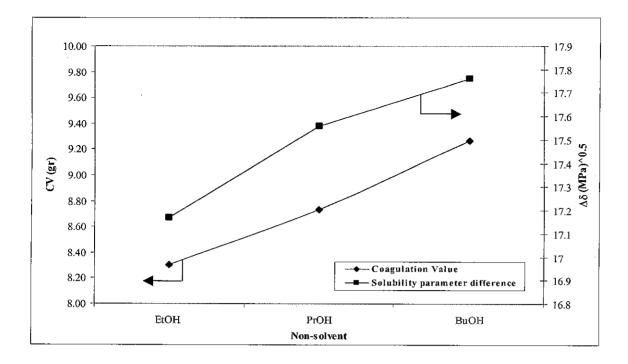


Figure 5.3 Solubility parameter difference between solvent mixtures to methanol, $\Delta \delta_{(s-MeOH)}$, and solvent mixtures to polycarbonate, $\Delta \delta_{(s-PC)}$.


As presented in Figure 5.3 each solvent and non-solvent mixture system has different solubility parameter difference with methanol, $\Delta\delta_{(s-MeOH)}$, and polycarbonate, $\Delta\delta_{(s-PC)}$.

With regard to the non-solvent used, EtOH has higher total solubility parameter than that of PrOH and BuOH. Thus, solubility parameter difference between EtOH-based solvent mixtures with MeOH, $\Delta\delta_{(s-MeOH)}$, is smaller than the other systems. This indicates that the solvent mixtures containing EtOH is more miscible to MeOH than that of PrOH and BuOH-based solvent mixtures. The non-solvents in the order of decreasing solubility parameter difference between casting solution to methanol are BuOH > PrOH > EtOH. Furthermore, use of DCM as solvent also made the casting solution more miscible due to smaller solubility parameter difference between DCMbased casting solution mixtures and methanol, $\Delta\delta_{(s-MeOH)}$, as compared to chloroformbased solvent mixtures.


Addition of various solvent and non-solvents could also affect the solubility parameter difference between solvent mixtures and polycarbonate, $\Delta\delta_{(s-PC)}$, as presented in Figure 5.3. The solvent mixture and polycarbonate become less miscible when EtOH and DCM were added into the solvent system. This is because the solubility parameter difference between DCM-EtOH solvent mixture and polycarbonate, $\Delta\delta_{(s-PC)}$, is higher than other solvent mixtures. The miscibility of polycarbonate with solvent mixtures increased in the order of EtOH < PrOH < BuOH. Figure 5.3 also shows that use of chloroform as main volatile solvent would make the polycarbonate to dissolve much easier as their solubility parameter difference is very small (0.79 - 1.2) than that of DCM-based membranes (2.85 - 3.20).

The mechanism of asymmetric membrane formation could also be affected by solubility parameter difference of solvent mixtures with coagulant and polycarbonate, respectively. Theoretically, the smaller solubility parameter difference of solvents containing BuOH with polycarbonate , $\Delta\delta_{(s-PC)}$, the more time is needed to remove solvent from the polymer structure. Accordingly, delayed demixing will occur when the casting solution is immersed into coagulation bath to produce less porous structure for the membrane prepared from BuOH as non-solvent (Strathmann and Kock, 1977). However, as shown in the SEM images, Figure 5.1 (c) and Figure 5.2 (c) and porosity calculation, Table 5.1, BuOH-based membrane shows higher porosity even though it has smaller $\Delta\delta_{(s-PC)}$. This shows that mechanism of membrane formation can not just be explained using solubility parameter difference of solvent mixtures and PC.

The tendency to form less porous structure could also be driven by the change of solubility parameter difference between solvent mixtures and MeOH, $\Delta \delta_{(s,MeOH)}$. Larger solubility parameter difference of solvent mixture containing BuOH with MeOH should induce the formation of less porous structure due to delayed demixing mechanism. On contrary, smaller solubility parameter difference of EtOH-based solvent mixtures and MeOH should induce the formation of more porous structure of membrane via instantaneous demixing mechanism. The effect of solvents on membrane porosity was also investigated by comparing the porosity of the membranes fabricated with DCM and chloroform as solvents. The casting solution with DCM as solvent is expected to produce more porous substructure of membrane due to smaller solubility parameter difference with methanol as compared to chloroform-based membrane. In order to further verify the effect of various solvent and non-solvents on the demixing rate of casting solution, the coagulation value and solubility parameter difference of the solvent mixture-MeOH after the addition of non-solvent are plotted as in Figure 5.4 and Figure 5.5 for both DCM and chloroformbased membrane, respectively.

Figure 5.4 Coagulation value and solubility parameter difference of solvent mixtures and methanol as addition of various non-solvents for DCM-based membranes.

Figure 5.5 Coagulation value and solubility parameter difference of solvent mixtures and methanol as addition of various non-solvents on chloroform-based membranes.

According to Figure 5.4 and Figure 5.5, smaller solubility parameter difference of solvent mixture and MeOH correlates to lower coagulation value. The addition of BuOH into the solvent mixture for both DCM and chloroform increased the coagulation value as well as solubility parameter difference of the solvent mixtures with MeOH, In contrast, EtOH addition into casting solution would show the opposite effect.

Coagulation value indicates the tolerance of a homogenous casting solution on the addition of coagulant (Wang et al., 1995). It refers to the exchange rate between solvent and coagulant during immersion step (Wang et al., 1995). Casting solution that can be separated easily is referred as having lower coagulation value and this kind of casting solution will undergo instantaneous demixing to become unstable instantly. Conversely, a more stable homogenous casting solution has higher coagulation value in which delayed demixing mechanism will occur to induce the formation of asymmetric membrane structure.

The casting solution containing EtOH and DCM has smaller coagulation value. Therefore, once it was immersed into coagulation bath, it should demixed

80

instantaneously and subsequently, a more porous substructure should be obtained for membranes prepared from EtOH and DCM. However, contradictive results were observed in which less porous structure was resulted from EtOH-based membrane and a more porous structure was observed on BuOH-based membrane as shown in SEM images in Figure 5.1 and Figure 5.2, and porosity calculation in Table 5.1. This phenomenon suggest that the effect of different rate of vaporization of solvent and non-solvent during forced convective evaporation period is more dominant than solvent-polymer and solvent-coagulant interaction in controlling the mechanism of asymmetric PC membrane formation. Thus, instead of producing less porous structure due to higher miscibility between polymer and solvent mixtures as well as stronger interaction between solvent and coagulant, BuOH-based membrane shows more porous structure with the presence of macrovoid due to less volatile properties of BuOH that could minimize the formation of polymer-concentrated region on the top side of casting film.

5.1.2. Effect of Non-solvent Concentration

The morphology of membrane is also affected by non-solvent concentration. Membrane with desired morphology can be obtained by optimizing the non-solvent concentration. In this work, BuOH was selected as the non-solvent since it has the most effect on the membrane porosity in comparison to ethanol and propanol. BuOH concentration was varied and the membrane morphology for each BuOH concentration was observed using SEM. Figure 5.6 shows SEM images of various morphologies of membranes as a result from different concentration of BuOH in the casting solution. SEM results indicate that morphology of asymmetric PC membranes changed significantly as BuOH concentration increased.

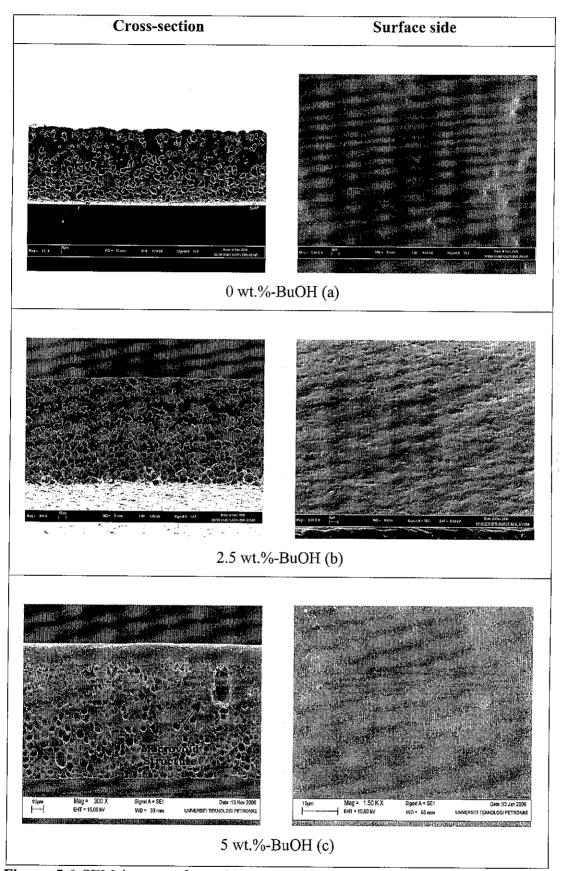


Figure 5.6 SEM images of membrane cross section and surface at various BuOH concentrations. a) 0 wt.%-BuOH. b) 2.5 wt.%-BuOH. c) 5 wt.%-BuOH.

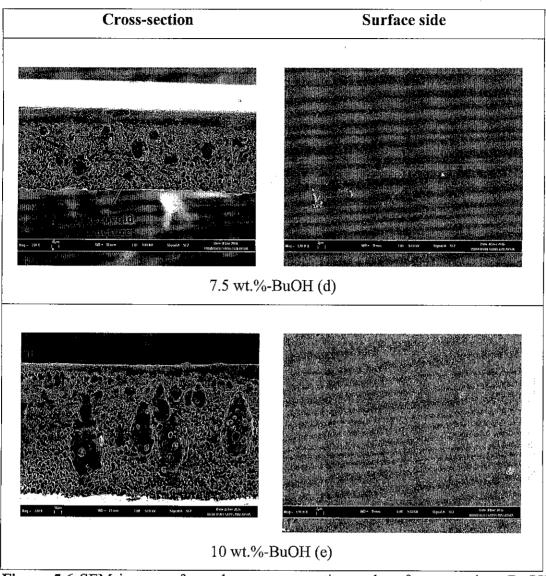
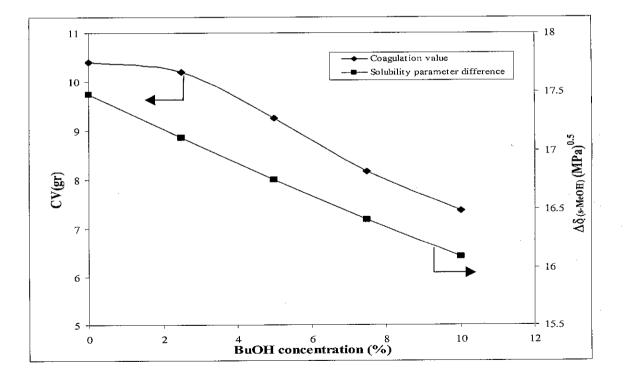


Figure 5.6 SEM images of membrane cross section and surface at various BuOH concentrations. d) 7.5 wt.%-BuOH. e) 10 wt.%-BuOH.

The morphology of asymmetric PC membrane prepared without addition of BuOH as non-solvent shows surface layer supported with closed-cell substructure as shown in Figure 5.6 (a). Distinctive skin layer region and macrovoid formation are not obvious. The addition of BuOH has induced the formation of macrovoids and a distinct skin layer was formed as shown in Figure 5.6 (c), (d), and (e). It is also observed that membrane porosity increases with increasing BuOH concentration. The overall porosity for each membrane is presented in Table 5.3.

BuOH	Membrane T	hickness	Porosity, e (%)		
concentration (wt%)	Micrometer (µm)	SEM (µm)	Micrometer	SEM	
0	109	93.14	44.25	34.76	
2.5	143	130.6	52.76	49.81	
5	98	91.05	63.99	61.24	
7.5	104.7	104.2	68.17	68.03	
10	163.2	164.5	77.53	77.71	

Table 5.3 Overall membrane porosity at various BuOH concentrations.


Table 5.3 showed that increasing BuOH concentration will increase the porosity of PC membrane from 44.25 to 77.5 % (micrometer) and from 34.7 to 77.7 % (SEM). Previous work also showed that increasing non-solvent (BuOH) concentration would increase porosity of PEEKWC membranes porosity from 31 to 60 % (Jansen, 2005). The calculated porosity results were supported by membrane morphology images obtained from SEM in Figure 5.6. Both SEM and micrometer gauge show similar trend in term of overall membrane porosity as shown in Table 5.3. The slight differences in the porosity result between SEM and micrometer are due to inaccuracy of SEM-based thickness reading as explained in section 5.1.1.

The mechanism of membrane formation from a homogenous casting solution is largely governed by kinetic aspect (Strathmann and Kock, 1977; Mulder, 1996) and the kinetic behavior of casting solution could be changed by adding non-solvent (Lai et al., 1993). Kinetic behavior of casting solution is correlated to the thermodynamic of casting solution which can be represented by solubility parameter difference. As shown in Table 5.4, casting solution without any addition of non-solvent has smaller solubility parameter of solvent mixtures, δ_{mix} , as compared to other systems. The solubility parameter of solvent mixtures, δ_{mix} , increased with higher concentration of BuOH casting solution. The increase in solubility parameter difference is attributed to the increase in hydrogen-bonding of casting solution system upon the addition of BuOH. Although dispersive and polar component of solubility parameter of solvent mixtures, δ_{mix} , increases due to significant increment of hydrogen-bonding.

Components	δ_{d} $(MPa)^{1/2}$	${\delta_p \over (MPa)^{1/2}}$	$\frac{\delta_h}{(MPa)^{1/2}}$	δ_{mix} (MPa) ^{1/2}
0 %-wt BuOH	18.20	6.04	6.28	20.18
2.5 %-wt BuOH	18.09	6.02	6.67	20.19
5 %-wt BuOH	17.97	6.01	7.04	20.22
7.5 %-wt BuOH	17.87	5.99	7.40	20.25
10 %-wt BuOH	17.77	5.98	7.75	20.29

Table 5.4 Solubility parameter of solvent mixtures as a function of BuOH concentration.

The interaction between casting solution and coagulant during immersion precipitation is suggested to be the determining step in the formation of membrane structure (Strathmann et al.,1975). Thus, the solubility parameter difference between the solvent mixtures and MeOH, $\Delta\delta_{(s-MeOH)}$, and demixing rate of casting solution would strongly influence the morphology of membrane. Figure 5.7 shows the solubility parameter difference and coagulation value of casting solution at various BuOH concentrations.

Figure 5.7 Coagulation value and solubility parameter difference of casting solution and MeOH at various BuOH concentration.

Increasing BuOH concentration is correlated to the lower coagulation value and smaller solubility parameter difference as shown in Figure 5.7. Consequently, casting solution prepared from higher BuOH concentration would undergo instantaneous demixing once it was immersed into coagulation bath. Phase separation of casting solution through instantaneous demixing mechanism would produce more porous with macrovoid substructure as observed on higher BuOH concentration-based membrane in Figure 5.6 (e). On the other hand, lower BuOH concentration of casting solution has higher solubility parameter difference and coagulation value. Phase separation of lower BuOH concentration-based casting solution was induced based on delayed demixing instead of instantaneous demixing mechanism (Mulder, 1996; Baker, 2004). Therefore, morphology of low BuOH concentration-based membrane is less porous than that of lower BuOH concentration-based membrane.

5.1.3. Effect of Evaporation Time

In this section, effect of evaporation time on membrane morphology was studied. SEM images of membranes fabricated at various evaporation times are presented in Figure 5.8. There are 4 sets of SEM images in which every set consist of a crosssection and a top surface membrane images.

The SEM results indicate that some alteration in morphology of asymmetric PC membranes as a result of changes in the evaporation time of casting solution. Asymmetric PC membrane prepared by immersing the casting solution immediately into coagulation bath (0-second evaporation) produced thinner skin layer supported by highly porous and macrovoid substructure. By increasing the evaporation time before immersing into the coagulation bath, the morphology of membrane evolved from more porous to less porous structure with less macrovoid formation. The same trends were also reported by Ismail and Lai (2003). The macrovoid formation was eliminated when casting solution was allowed to vaporize for 60 seconds as shown in Figure 5.8 (d). The porosity of membrane prepared at various evaporation times is shown in detail in Table 5.5.

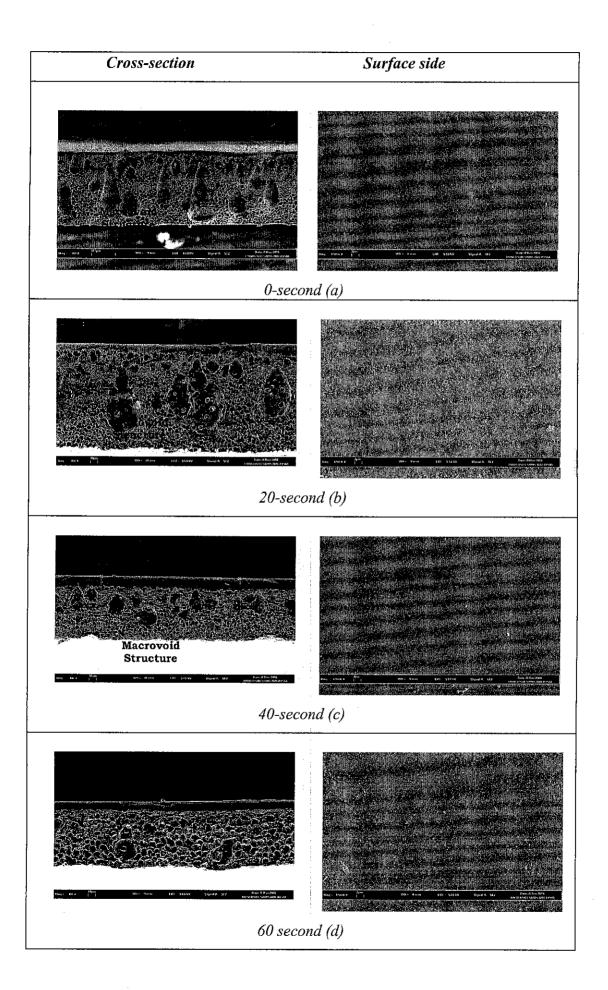


Figure 5.8 SEM images of cross-section and surface membrane at different evaporation times. a) 0-s b) 20-s c) 40-s d) 60-s.

Г

Evaporation time	Membrane Thickness		Porosity,ε (%)		
(s)	Micrometer	SEM	Micrometer	SEM	
	(µm)	(µm)			
0	311.60	341.2	78.15	80.05	
20	163.2	164.5	77.53	77.71	
40	101	99	75.72	75.23	
60	108.6	102.3	68.50	66.55	

Table 5.5 Overall porosity of membranes prepared at various evaporation times.

The formation of macrovoid on highly porous substructure and thinner skin layer of the asymmetric membrane prepared without the evaporation step occurs as a result from fast precipitation rate of casting solution when it was immersed into the coagulation bath. At very fast precipitation, phase separation occurs initially at the surface of the casting film which led to high concentration gradient of the polymer. Consequently, there is a net movement of the polymer in the direction perpendicular to the surface leading to an increase in the polymer concentration in the surface layer (Strathmann and Kock, 1977). Thus, skin was formed at the surface layer of membrane as shown in Figure 5.8 (a). Skin layer region of asymmetric PC membrane became more obvious while longer evaporation time was applied on casting solution as shown in Figure 5.8 (b), (c) and (d). This could happen as longer evaporation time would form more concentrated polymer region at the outermost layer of casting film due to loss of highly volatile solvent.

The formation of skin layer could affect the formation mechanism of asymmetric PC membrane substructure. Skin layer of membrane will act as barrier for solvent-coagulant exchange during immersion precipitation period. At thicker skin layer, solvent-coagulant exchange rate will be slowed down leading to slowed precipitation rate. Slow precipitation rate resulted in less porous substructure of asymmetric PC membrane with reduced number and size of macrovoid. The formation of macrovoid can even disappear at membrane prepared with 60 seconds evaporation as shown in Figure 5.8 (d). This indicates that high barrier of skin layer would slow down the precipitation rate of casting solution leading to the elimination of macrovoid formation on the substructure of asymmetric PC membrane.

The formation of macrovoid is suppressed if delayed demixing mechanism takes place in forming the membrane because growth of nuclei is not possible as the concentrated polymer region has increased and solidified in the top layer when a certain period of time has elapsed. The concentrated polymer will further hinder the growth of nuclei and consequently macrovoid formation is prevented (Mulder, 1994).

5.1.4. Effect of Water Content in Methanol Coagulation Bath

The bulk structure of membrane is basically formed where the exchange of solvent takes place during immersion of casting film into coagulant. In this work, MeOH was used as the coagulant to precipitate the homogenous PC casting solution. However, MeOH is costly and a toxic material. A fresh MeOH bath is always desirable to produce every new PC membrane which makes the production of PC membrane for commercial purpose become unrealistic. Hence, it is necessary to determine a substitute for MeOH, which has less impact to the environment and at the same time reduces the cost of chemical use.

Water is widely known as cheap and easily obtained material. Therefore, the addition of water into MeOH as coagulant will reduce the consumption of MeOH as well as reduce the cost of fabrication. Experimental results show that the addition of water into MeOH is limited to 30 vol.% only as phase separation of casting film would not be accomplished and as a result very low integrity membrane would be formed. SEM images of membranes produced at various water content in the MeOH bath are presented in Figure 5.9.

The SEM images show that the morphologies of asymmetric polycarbonate membranes are affected by the water content in MeOH coagulation bath. Morphology of PC membrane prepared using 100 vol.% MeOH shows a distinct skin layer supported by high porosity and macrovoid substructure. At 10 vol.% water content, some small pores were observed on the membrane surface layer. The membrane became less porous and the macrovoid formation was not observed as shown by the SEM images in Figure 5.9 (b).

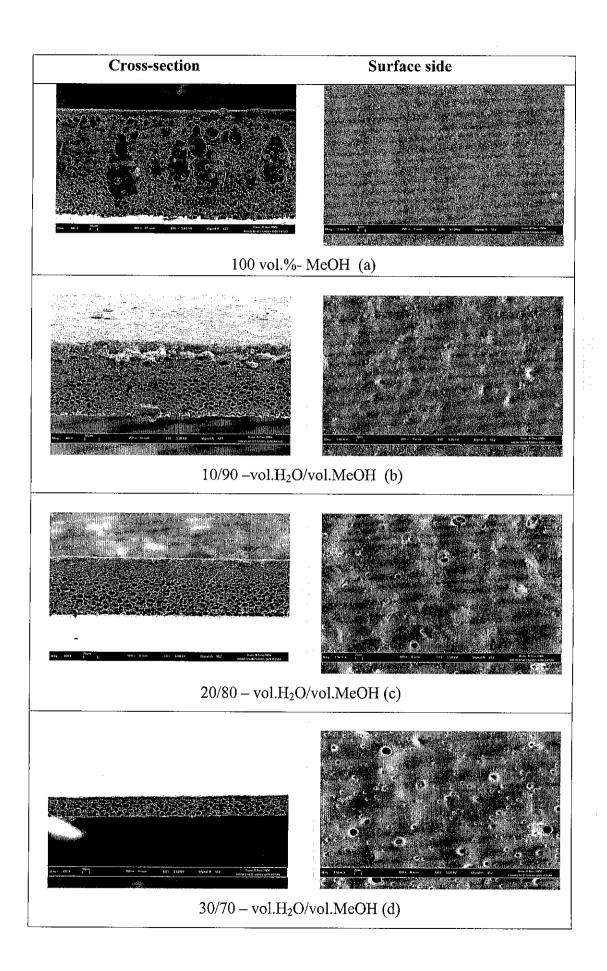


Figure 5.9 SEM images of cross-section and surface membrane at various water-MeOH bath composition. a) 100 v%-MeOH. b) $10/90 - vol. H_2O/vol. MeOH.$ c) $20/80 - vol.H_2O/vol.MeOH.$ d). $30/70 - vol.H_2O/vol.MeOH.$

It is observed that the surface layer of the membrane was greatly affected by the presence of water in which the pores were enlarged and become more visible when the water content in the bath was increased. In addition to pores enlargement, more porous were also formed on the surface. On contrary, increasing water content in the coagulation bath also caused the membrane substructure to become less porous and the macrovoid formation to disappear. In overall, membrane porosity and thickness are presented in Table 5.6.

Table 5.6 Overall porosity and thickness of membrane prepared from various water

 MeOH composition.

Coagulation bath	Membrane Thickness		Porosity,ε (%)	
vol-H ₂ O/vol-MeOH	Micrometer (µm)	SEM (µm)	Micrometer	SEM
0/100	163.2	164.5	77.53	77.71
10/90	169.9	114.3	71.08	57.01
20/80	103.7	90.24	61.44	55.70
30/80	48.2	31.92	56.2	33.91

From Table 5.6, it can be observed that increasing the water content in the MeOH bath would lead to less porous membrane. This tendency is shown by both SEM and micrometer measurement. Overall porosity is mainly contributed from the pores on membrane substructure. Even though membrane produced at higher water content showed more pores on its surface, less porosity on its substructure lead to lower overall porosity of membrane as presented in Table 5.6. This trend shows good agreement with the experimental results reported by Lai et al.,(1994).

The changes in the porosity of membrane due to water addition into MeOH could be explained through solubility parameter approach. The overall solubility parameter of the coagulation bath was definitely altered once water was added. Water is a very polar substance and has high hydrogen bonding. Increasing the water content would result in increasing the hydrogen bonding component in the water – MeOH mixtures which consequently, increased the solubility parameter of the mixtures. The solubility parameter of water – MeOH mixtures are presented in Table 5.7.

Water/MeOH (vol./vol.)	$\delta_{\rm d}$ $({\rm MPa})^{1/2}$	$\delta_p \ (MPa)^{1/2}$	$\frac{\delta_h}{(MPa)^{1/2}}$	δ_{mix} (MPa) ^{1/2}
0/100	15.1	12.3	22.3	29.61
10/90	15.14	12.67	24.3	31.31
20/80	15.18	13.04	26.3	33.05
30/70	15.22	13.41	28.3	34.82
MeOH	15.1	12.3	22.3	29.61
water	15.5	16	42.3	47.81

 Table 5.7 Solubility parameter of water-MeOH mixtures in coagulation bath.

In order to examine the effect of water content on the mechanism of membrane formation, both interaction of coagulant with PC and coagulant with solvent mixtures have to be taken into account. Theoretically, smaller solubility parameter difference between solvent mixtures and coagulant, $\Delta\delta_{c-solvent}$, would make the casting solution to separate instantaneously to form more porous membrane. While larger solubility parameter difference between solvent and coagulant, $\Delta\delta_{c-solvent}$, would cause a delayed demixing of the casting solution which lead to lower porosity of the membrane.

On contrary, smaller solubility parameter difference between PC and coagulant, $\Delta \delta_{c-PC}$, would induce membrane formation through delayed demixing mechanism while instantaneous demixing of casting film would take place for larger solubility parameter difference (Strathmann and Kock, 1977). The solubility parameter difference of solvent-coagulant and polymer-coagulant were plotted at the various waer-MeOH composition as shown in Figure 5.10. As can be observed in the graph, both the solubility parameter difference of solvent-coagulant, $\Delta \delta_{c-solvent}$, and polymer – coagulant, $\Delta \delta_{c-PC}$, increases linearly with the water content.

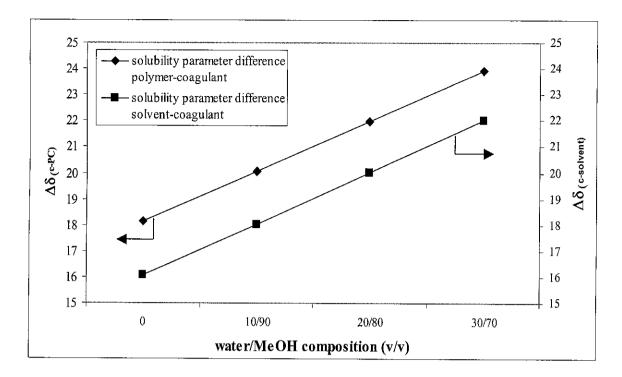


Figure 5.10 Solubility parameter difference of solvent-coagulant and polymercoagulant at various water/MeOH composition.

These observations suggest that there is a competition between the PC-coagulant interaction and solvent mixtures-coagulant interaction in determining the final structure of the membrane. The membrane morphology could be more porous through instantaneous demixing or less porous through delayed demixing as the water concentration in MeOH was increased. The morphology of the resultant membrane will depends on the more dominant interaction between PC-coagulant interaction and solvent mixtures-coagulant. However, by looking at the SEM and overall porosity calculation, which show a decreasing porosity with increasing water content, it can be described that the interaction between solvent mixtures-coagulant dominated the mechanism of asymmetric PC membrane formation. This is because the mechanism of membrane formation during immersion precipitation step is suggested to be dependent on the nature of the solvent and precipitant medium and is associated with the interaction of solvent and coagulant (Strathmann, 1975).

5.2. Glass Transition Temperature

The glass transition temperature, T_g , of each membrane fabricated from various solvent – non-solvent pair was measured using dynamic mechanical analysis (DMA).

In order to determine T_g , the loss modulus of membrane as a function of temperature was determined. The temperature at which the peak of loss modulus observed is then recognized as glass transition temperature (T_g). The graphs of loss modulus of the fabricated membranes prepared from DCM and various non-solvents and chloroform and various non-solvents are given in Figure 5.11 and Figure 5.12, respectively.

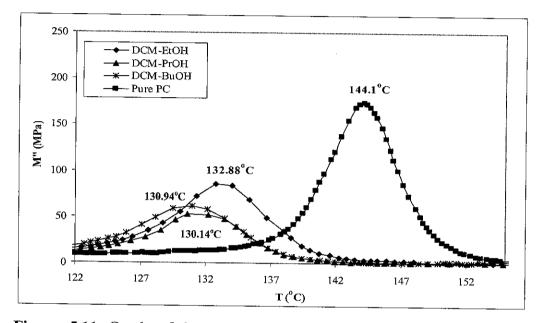


Figure 5.11 Graph of loss modulus of various non-solvents for DCM-based membrane.

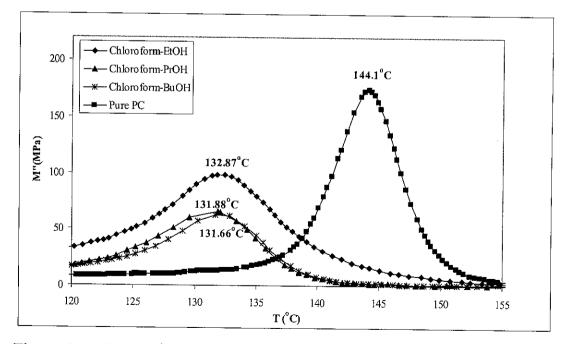


Figure 5.12 Graph of loss modulus of various non-solvents for chloroform-based membrane.

94

DMA graphs in Figure 5.11 and Figure 5.12 show that both DCM-EtOH and Chloroform-EtOH membranes have the highest T_g as compared to other solvent – non-solvent systems used in this study. A slight depression in the glass transition temperature is observed for both DCM – non-solvent and chloroform – non-solvent systems. Irregardless of the type of solvent used, the same non-solvent reduces the T_g by about the same magnitude. For DCM-EtOH and chloroform-EtOH, the T_g values are approximately 133°C, DCM-PrOH and chloroform-PrOH, T_g values are approximately 131°C and 132°C, respectively and finally DCM-BuOH and chloroform-BuOH membrane, T_g values are 130°C and 132°C, respectively. These T_g values are not considered as significantly different. Thus it can be concluded that non-solvent does not have much effect on T_g . According to Li et al., (1996), T_g is not much affected by the presence of non-solvent probably due to limited amount of non-solvent content in the casting solution.

The reduction in the glass transition temperature is then mainly affected by the solvents. As presented in Figure 5.11 or Figure 5.12, T_g of pure polycarbonate observed by DMA is 144.1°C which is about 14°C higher than T_g of all fabricated membranes. The presence of solvent in the membrane films could be accountable for the reduced T_g . This phenomenon is attributed to polymer plasticization in which the solvent molecules reduced the interchain interactions and made the chain movements and diffusion of small molecule easier (Joly et al., 1999). Both DCM and chloroform reduced Tg of membranes to about the same temperature. This suggests that interaction between DCM and chloroform on polymer matrix occur at the same extent.

5.3. CO₂/CH₄ Separation Characteristic

All membranes prepared at the various experimental conditions were subjected to the same operating conditions to determine their gas separation characteristic. The feed pressure was varied within 1 bar -5 bar while temperature is assumed constant at 27° C during experiment.

In this work, to obtain reliable result, two membranes which were prepared under same preparation condition were tested twice in a single gas permeation set-up. Experimental results showed that asymmetric PC membranes prepared from various preparation parameters were reproducible in which relative standard deviation of CO_2 and CH_4 permeance as well as CO_2/CH_4 ideal selectivity is relatively small (less than 6 %) as tabulated in Appendix E.

5.3.1.1. Effect of DCM – Non-solvents Pair

The gas separation characteristic is determined by plotting the permeance of CO_2 , CH_4 and CO_2/CH_4 ideal selectivity of each membrane with respect to feed pressure. The permeance of CO_2 and CH_4 of various DCM – non-solvent membrane are presented in Figure 5.13 and 5.14, respectively.

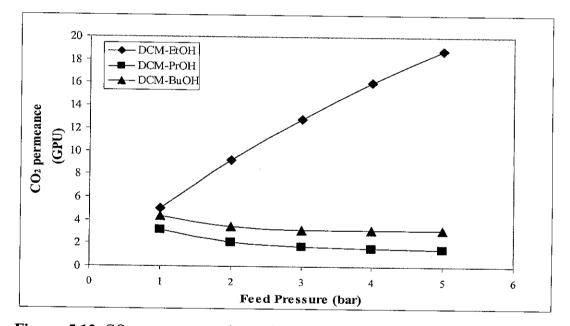


Figure 5.13 CO_2 permeance of membranes prepared from various DCM – nonsolvent pair at various feed pressures.

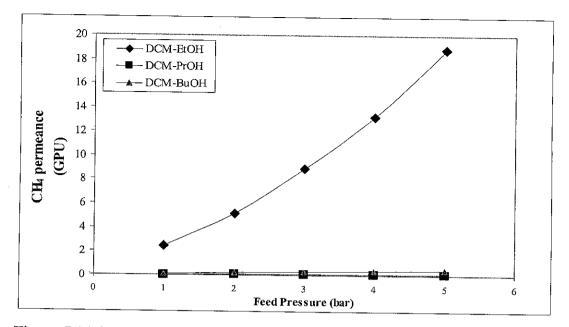


Figure 5.14 CH₄ permeance of membranes prepared from various DCM –nonsolvents pair at various feed pressure

According to Figure 5.13 and 5.14, CO₂ and CH₄ permeances increase in the order of DCM-PrOH <DCM-BuOH < DCM-EtOH solvent system. The significant differences of gas permeances among membranes prepared from various solvent - non-solvent pairs could be explained by referring to their morphologies as shown by SEM images, Figure 5.1. Except for DCM-EtOH membranes, the porosity of substructure played an important role in determining the performance of membrane especially in terms of gas permeance. CO2 and CH4 permeances of DCM-BuOH membrane were higher than that of DCM-PrOH membrane. This is because DCM-BuOH membranes have more porous substructure with the presence of macrovoid as compared to DCM-PrOH membrane. High porosity substructure makes the membrane become less restricted, thus allowing for the sorbed gas to diffuse more easily across the bulk structure of the membrane. While, denser and less porous substructure causes more hindrance for the sorbed gas to diffuse over the entire structure of membrane thus producing lower CO_2 permeance. In the case of DCM-EtOH membranes, the high CO_2 and CH_4 permeances were probably due to the formation of pores on the skin layer of the membranes that lead to significant loss in CO_2/CH_4 ideal selectivity as shown in Figure 5.15.

97

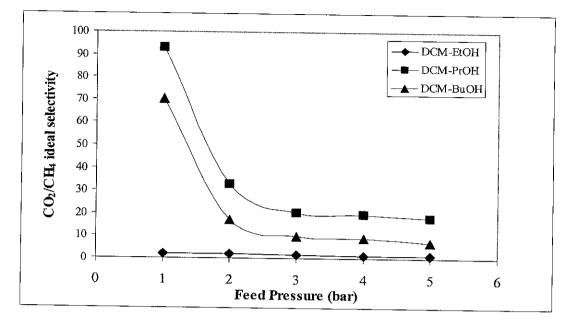


Figure 5.15 CO_2/CH_4 ideal selectivity of membranes prepared from various DCM – non-solvent pair at various feed pressures.

Low selectivity of DCM-EtOH indicated that both CO_2 and CH_4 can pass through the membrane easily. Consequently, CO_2 and CH_4 permeances of DCM-EtOH membrane would be higher as compared to highly selective DCM-BuOH and DCM-PrOH membranes. High selectivity of DCM-BuOH and DCM-PrOH membranes indicate that the skin layer of these membranes were homogenously dense and free of defect or pinholes. As shown in SEM images, Figure 5.1 (b) and (c), no defect or pinholes were observed on the surface layer of either DCM-BuOH or DCM-PrOH membranes. In these two membranes, transport mechanism was affected by solution-diffusion mechanism in which polar gas of CO_2 was absorbed more than CH_4 . The sorbed CO_2 would then diffuse through the bulk structure of the membrane to the permeate side. Therefore, CO_2 permeance of asymmetric DCM-PrOH and DCM-BuOH membranes was always higher compared to CH_4 permeance.

 CO_2 permeance of DCM-PrOH and DCM-BuOH membranes was also found to decrease as feed pressure increase, Figure 5.13. This is typical behavior of CO_2 transport mechanism through dense membrane due to solution diffusion mechanism as reported by the previous researchers (Koros et al., 1977; Sanders, 1988; Ismail and Lorna, 2002). CH₄ permeance of DCM-PrOH and DCM-BuOH membranes slightly increase as feed pressure increase due to increasing of diffusion coefficient of CH₄ (Lin and Chung, 2001). For DCM-EtOH membrane, as some pores are formed on

98

skin layer of membrane resulting in low selectivity, increasing feed pressure would increase CO_2 and CH_4 permeance indicating that surface diffusion effect predominates the CO_2 and CH_4 transport mechanism as reported by the Mukhtar and Han (2004)

 CO_2/CH_4 ideal selectivity of DCM PrOH was higher than that of DCM-BuOH membrane. This is because CH₄ permeance of DCM-BuOH membrane was slightly higher than that of DCM-PrOH membrane and contributed to the decreasing selectivity. CO_2/CH_4 ideal selectivity of DCM-PrOH and DCM-BuOH membranes decrease as feed pressure increase. The same trend of CO_2/CH_4 ideal selectivity against feed pressure was also reported by Jordan and Koros (1990).

5.3.1.2. Chloroform – Non-solvent Pair

In this work, chloroform was used to replace dichloromethane (DCM) as solvent in order to study the effect of solvent on gas separation properties. The same operating conditions as for DCM-based membranes were applied to determine the gas separation characteristic of each chloroform-based membranes. It can be seen in Figure 5.16 and Figure 5.17, CO_2 and CH_4 permeances of the membranes prepared from various chloroform – non-solvent pair show similar characteristics to those shown by DCM-based membranes.

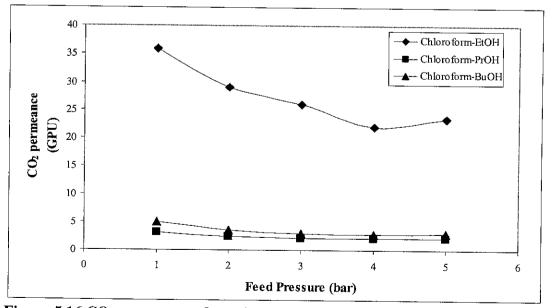


Figure 5.16 CO_2 permeance of membranes prepared from various chloroform – nonsolvent pairs at various feed pressures.

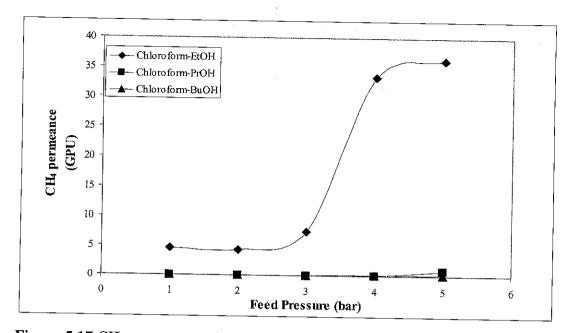


Figure 5.17 CH_4 permeance of membranes prepared from various chloroform – nonsolvent pairs at various feed pressures.

Chloroform-EtOH membrane showed higher CO_2 and CH_4 permeances compared to other chloroform - non-solvent pair system. High CO_2 and CH_4 permeances of this membrane is probably due to the formation of pores on the skin layer of membrane. Consequently, this membrane also exhibited almost no separation between CO_2 and CH_4 as presented in Figure 5.18. Figure 5.18 also shows that high selectivity of CO_2/CH_4 is observed for chloroform-BuOH and chloroform-PrOH membranes. This result indicates that there are no pores formed on the skin layer of chloroform-BuOH and chloroform-PrOH membranes. Therefore, high CO_2 permeance of chloroform-BuOH membrane compared to chloroform-PrOH membrane is due to higher porosity of chloroform – BuOH membrane as shown in SEM images, Figure 5.2 (c) and porosity calculation, Table 5.1. Less CH_4 permeance was also observed for chloroform-PrOH membrane as a result from less porous substructure which led to higher CO_2/CH_4 ideal selectivity than chloroform-BuOH membrane.

100

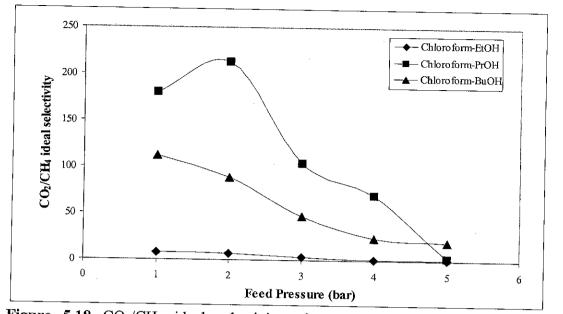
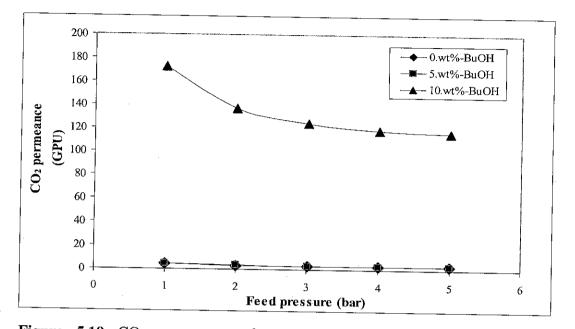


Figure 5.18 CO_2/CH_4 ideal selectivity of membranes prepared from various Chloroform – non-solvent pair at various feed pressures.


 CO_2 and CH_4 permeance as well as CO_2/CH_4 ideal selectivity of chloroform-PrOH and chloroform-BuOH membranes showed the same trend as DCM-PrOH and DCM-BuOH membranes at various feed pressure. However, CO_2/CH_4 ideal selectivity of chloroform-PrOH membrane increased from 1 to 2 bar due to lower CH_4 permeance at 2 bar. In case of chloroform-EtOH membrane, increasing feed pressure from 1 to 3 bar would slightly increase the CH_4 permeance and then it significantly rise at feed pressure of 4 and 5 bar. These phenomena probably due to expanded pore size on the skin layer of chloroform-EtOH membrane at higher pressure (4 and 5 bar). On contrary, chloroform-EtOH membrane showed decreasing CO_2 permeance as feed pressure increase. This probably due to compaction of chloroform-EtOH membrane as CO_2 pressure increases.

5.3.2. Effect of Non-solvent Concentration

Increasing BuOH concentration in the casting solution would vary the morphology of membrane as discussed in section 5.1.2. Consequently, the change in membrane morphology would affect the CO_2/CH_4 separation characteristic of the membrane. The effect of BuOH concentration on membrane performance was presented in term of CO_2 , CH_4 permeances and CO_2/CH_4 ideal selectivity. The CO_2 and CH_4

101

permeances of membranes with various morphologies which resulted from varying the concentration of BuOH are shown in Figure 5.19 and Figure 5.20, respectively.

Figure 5.19 CO_2 permeance of membranes prepared from various BuOH concentration at various feed pressure.

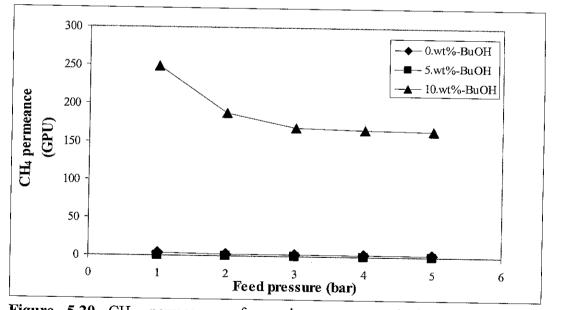


Figure 5.20 CH_4 permeance of membranes prepared from various BuOH concentrations at various feed pressure.

The asymmetric membrane prepared from 10 wt.% BuOH shows higher CO_2 and CH_4 permeances as shown in Figure 5.19 and Figure 5.20. Decreasing the BuOH concentration in the casting solution produced membrane with lower CO_2 and CH_4

permeances. From Figure 5.19 and Figure 5.20, it can be observed that CO_2 and CH_4 permeances of membranes fabricated from 0 wt.% and 5 wt% of BuOH were almost the same. These two membranes have lower CO_2 and CH_4 permeances as compared to asymmetric membrane prepared from 10.wt% of BuOH.

Significant CO₂ and CH₄ permeance differences among these membranes can be explained by studying at their morphologies and porosities as presented in SEM images, Figure 5.6, and porosity calculation, Table 5.3. Asymmetric membrane prepared from 10 wt.% of BuOH has higher porosity and macrovoid substructure that could enhance the CO₂ and CH₄ permeances. On the other hand, the low porosity of membranes prepared at 0 wt.% and 5 wt.% of BuOH create such a hindrance for the penetrant gas to travel across the membrane structure, this leading to lower CO₂ and CH₄ permeances. However, in term of selectivity, asymmetric PC membrane prepared at 10 wt.% of BuOH shows very low CO₂/CH₄ selectivity as presented in Figure 5.21. This suggests that high CO₂ and CH₄ permeances of this membrane was not just due to high porosity of substructure but also could possibly be due to the presence of pores on the skin layer.

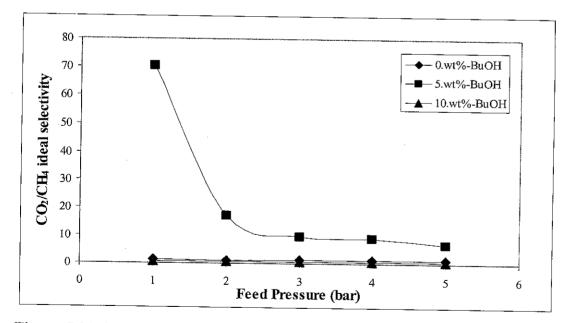


Figure 5.21 CO_2/CH_4 ideal selectivity of membranes prepared from various BuOH concentrations at various feed pressures.

Very low CO_2/CH_4 selectivity was also observed for membrane with 0 wt.% of BuOH in the casting solution. SEM images in Figure 5.6 (a) display that particularly for

0 wt.% BuOH, some pores were visible on the surface layer of membrane. For membranes prepared from 10 wt.% of BuOH, even though SEM images did not show any clear pores on the surface layer, gas permeation testing indicated that this membrane possessed a few pores which were hardly detected by SEM. Gas separation characteristic of 5 wt.% BuOH-based membrane showed significant selectivity of CO_2 over CH_4 within the range of 70 - 6 at increasing feed pressure from 1 to 5 bar. This result implies that membrane prepared from 5 wt.% of BuOH could be suitable for CO_2 removal application as it has very smooth and totally dense surface layer.

Highly selective skin layer possessed by membrane prepared from 5 wt.% of BuOH suggest that CO_2 and CH_4 transport behavior through this membrane is based on solution diffusion mechanism. Consequently, decreasing CO_2 permeance and slightly increase of CH_4 permeance would be observed as feed pressure increase. On contrary, the presence of pores on membranes prepared from 0 wt.% and 10 wt.% of BuOH indicate that pore flow mechanism predominates the mechanism of CO_2 and CH_4 transport phenomena. Lower CO_2 and CH_4 permeance observed on membranes prepared from 0 wt.% and 10 wt.% and 10 wt.% of BuOH as feed pressure increase.

 CO_2 and CH_4 permeance tests at various BuOH concentrations has shown that membranes prepared from casting solution containing 10 wt.% of BuOH perform high CO_2 permeance. Unfortunately, CO_2/CH_4 ideal selectivity of this membrane is very low probably due to the presence of some pores on the skin layer. Attempts to form totally dense skin layer can be conducted by varying the evaporation time during force convection period as reported by other researchers (Ismail and Lai, 2003). Therefore, the effect of evaporation time on membrane morphology and CO_2/CH_4 separation properties was studied.

5.3.3. Effect of Evaporation Time

The permeances of CO_2 and CH_4 of the membranes as the effect of evaporation time of casting film are presented in Figure 5.22 and Figure 5.23, respectively. As can be observed from the graphs, the permeances of both CO_2 and CH_4 are higher when shorter evaporation time was applied on the casting film and lower CO_2 and CH_4 permeances are observed for membranes prepared from longer evaporation time.

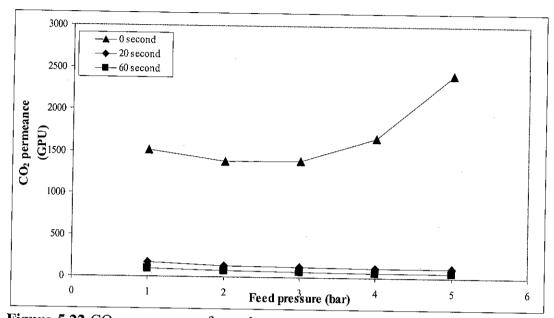


Figure 5.22 CO_2 permeance of membranes prepared at different evaporation time at various feed pressures.

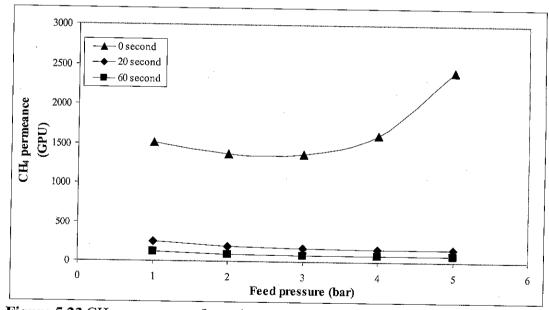
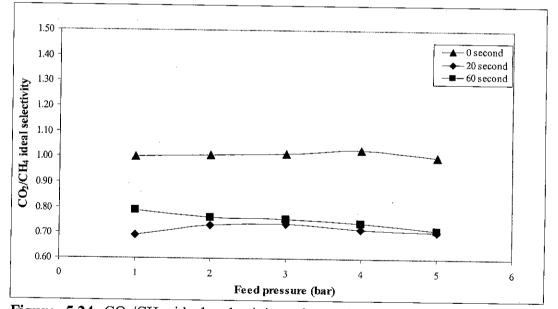



Figure 5.23 CH_4 permeance of membranes prepared from different evaporation time at various feed pressures.

High CO_2 and CH_4 permeances of membranes prepared without evaporation are due to high porosity substructure of this membrane. As shown by SEM images, Figure 5.8 (a), it is clear that the morphology of membrane of 0-second evaporation time is

composed of a thin skin layer and a high porosity substructure. In addition, macrovoid is also present in its substructure. All of these features would enhance the mobility of penetrant gas to diffuse across the membrane structure. Thus, it can be understood that membrane prepared without vaporizing the casting solution would have larger CO_2 permeance and CH_4 permeance.

Unfortunately, varying evaporation time of casting film before immersing into coagulation bath did not give any significant impact on the membrane surface layer. The plot of CO_2/CH_4 ideal selectivity at various feed pressures in Figure 5.24 indicates there was no any separation at all. CO_2/CH_4 ideal selectivity of these membranes was even smaller than unity at all feed pressure. This is probably due to the presence of pores on the membrane surface layer that creates sufficient space for CH_4 to pass through into the membrane body.

Figure 5.24 CO_2/CH_4 ideal selectivity of membranes prepared from different evaporation time at various feed pressures.

Low porosity of membranes obtained by varying evaporation time indicate that the presence of pores strongly affect the mechanism of CO_2 and CH_4 transport through membrane. Surface diffusion mechanism is predominant in affecting the transport properties of CO_2 and CH_4 through asymmetric PC membrane prepared without evaporation time especially at higher feed pressure (4 and 5 bar). In case of membranes prepared at 20 and 60 second evaporation time, decreasing CO_2 and CH_4

permeance is as result of compaction of these two membranes when higher feed gas pressure applied.

5.3.4. Effect of Water-Methanol Coagulation Bath Composition

Two membranes that were prepared from different water-MeOH compositon of the coagulation bath were selected for the study of CO_2/CH_4 separation characteristic. The membrane selected for this study were prepared from a coagulation bath of 100% MeOH and a 30/70- vol.H₂O/vol.MeOH mixture. Figure 5.25 and Figure 5.26 show the CO₂ and CH₄ permeances of the respective asymmetric PC membranes.

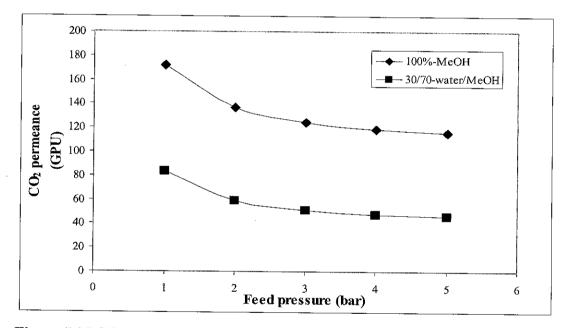


Figure 5.25 CO_2 permeance of membranes prepared by varying coagulation bath composition.

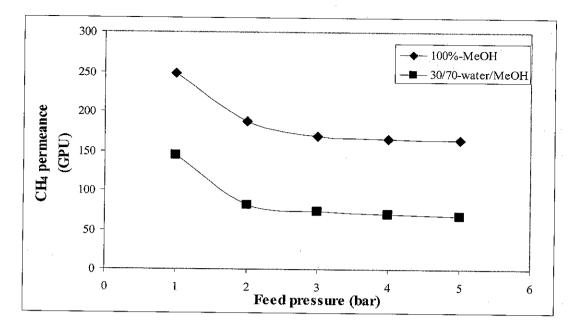
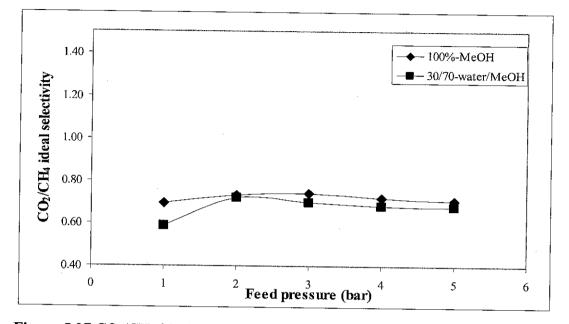



Figure 5.26 CH_4 permeance of membranes prepared by varying coagulation bath composition.

Adding water content in the MeOH coagulation bath resulted in lower CO_2 and CH_4 permeance as shown in Figure 5.25 and Figure 5.26, respectively. The addition of water in the MeOH coagulation bath caused a less porous membrane to be produced. As shown by SEM images, Figure 5.9, and porosity calculation, Table 5.6. asymmetric PC membrane prepared by immersing casting film into coagulation bath composed of high ratio between water and MeOH would produce less porous membrane. Consequently, lower CO_2 and CH_4 permeances were obtained for membrane prepared at water/MeOH ratio of 30/70. On the other hand, use of 100% MeOH in coagulation bath would produce more porous substructure with the formation of macrovoid leading to higher CO_2 and CH_4 permeances as shown in Figure 5.25 and Figure 5.26, respectively. In addition, increasing feed pressure would decrease CO_2 and CH_4 permeance for both membranes prepared at 100 % MeOH bath and water/MeOH ratio of 30/70. This probably occurs due to compaction of membranes at higher feed pressure.

The addition of water into MeOH bath also induced the formation of pores on the surface layer of asymmetric PC membrane which allows both CO_2 and CH_4 to diffuse through. As can be observed in Figure 5.27, there was no separation at all for both membranes. The pores are clearly seen particularly for membrane fabricated by

108

immersing casting film into 30/70- vol.H₂O/vol.MeOH mixture as shown in SEM Figure 5.9 (d).

Figure 5.27 CO_2/CH_4 ideal selectivity of membranes prepared by varying coagulation bath composition.

5.3.5. Comparison of Asymmetric PC Membrane Performance

PrOH and BuOH-based membrane prepared at 5 wt.% non-solvent concentration both using DCM and chloroform as solvents show promising performance comparable to the works done by previous researchers. Comparison of the separation performance between of PC membranes produced in this work with those reported by previous researchers is presented in Table 5.8.

	T				
Polymer	Operating condition	$(P/L)_{CO_2}$ (GPU)	α_{CO_2/CH_4}	Remarks	Ref.
PC	1 atm, 35°C	0.027	26.56	Dense membrane	Koros et al., 1977
PC	2.72 atm, 35°C	0.095	20.36	Dense membrane annealed for 24 hr	Hacarlioglu et al., 2003
CPPY-PC	2.72 atm, 35°C	0.087	17.33	PC- polypyrrole mixed matrix membrane	Hacarlioglu et al., 2003
6FDA- APPS	1 atm, 35°C	270	39	asymmetric membrane prepared by evaporation for 15 s	Kawakami et al.,1997
PEEKWC	1 atm, 25°C	0.26	22.9	asymmetric membrane prepared at polymer concentration of 15.wt%	Buonomenna et al.,2004
6FDA- DDS	1 atm, 35°C	3.4	110	asymmetric membrane prepared at casting shear rate of 1000 s ⁻¹	Nakajima et al., 2003
6FDA- <i>m</i> - DDS	1 atm, 35°C	0.68	143	asymmetric membrane prepared at casting shear rate of 1000 s ⁻¹	Kawakami et al., 2003
PC	1 atm, 27°C	3.2	180	asymmetric membrane (PC/chloroform/PrOH)	this work
РС	1 atm, 27°C	4.97	112.9	asymmetric membrane (PC/chloroform/BuOH)	this work
РС	1 atm, 27°C	3.16	93	asymmetric membrane (PC-DCM-PrOH)	this work
PC	1 atm, 27°C	4.37	70.39	asymmetric membrane (PC- DCM-BuOH)	this work

Table 5.8 Comparison of CO₂/CH₄ separation performance

Table 5.8 shows that gas separation performance of membranes produced in this work compares well with those reported in the literature. Interestingly, in terms of selectivity and permeability, the performance of asymmetric PC membrane produced from this work is more superior to that of dense PC membrane prepared by Koros et al., (1977) and mixed matrix PC membrane (Hacarlioglu et al., 2003). These asymmetric PC membranes also perform much better than that of current polyimide membrane such as 6FDA-DDS and 6FDA-APPS that are widely studied by other researchers for separating CO₂ from CH₄. In addition, even though Kawakami et al., (2003) reported that high selectivity of around 143 can be achieved by using 6FDA*m*-DDS as membrane material but this membrane has relatively low CO₂ permeance as compared to the asymmetric PC membrane produced in this work. Higher CO_2/CH_4 ideal selectivity of asymmetric PC membranes produced in this work is due to highly porous substructure of PC membrane resulting in significant increment of CO_2 permeance. Other researchers also reported that asymmetric PC membrane could produce very high CO_2 permeance as compared to other polymeric membrane materials (Pinnau et al, 1990; Pinnau and Koros, 1992; Pfromm et al., 1993).

These results suggest that it is possible to prepare asymmetric PC membrane with improved the CO_2/CH_4 separation performance, in terms of ideal selectivity and permeance, without the necessity to do some post-treatments such as coating and annealing.

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1. Conclusions

The effect of various preparation parameters of asymmetric polycarbonate (PC) membrane on morphology, thermal properties and CO_2/CH_4 separation characteristic have been investigated. Those preparation parameters were variation of solvent – non-solvent pair, non-solvent concentration, evaporation time and water-methanol composition bath. Membranes were prepared based on dry/wet phase inversion method. A few chemicals were selected such as dichloromethane (DCM) and chloroform as more volatile solvents, 1,1,2, Trichloroethane (TEC) as less volatile solvent, ethanol (EtOH), propanol (PrOH) and butanol (BuOH) as non-solvents, methanol (MeOH) or water as coagulation medium.

Asymmetric PC membrane prepared from various solvent – non-solvent pair showed that DCM-based membranes have less porous substructure than that of chloroform-based membrane at any non-solvents used. Introducing BuOH as non-solvent for both DCM and chloroform-based membranes would produce highly porous closed-cell and macrovoid substructure of membrane. DCM-BuOH and chloroform-BuOH membranes also showed distinct skin layer region on the top side of membrane. Conversely, preparing asymmetric PC membrane by adding EtOH as non-solvent would result less porous with no formation of macrovoid on membrane substructure. Overall porosity of membrane decrease in the order of non-solvent used, BuOH>PrOH>EtOH. These results suggest that evaporation of solvent and non-solvent have stronger effect in determining the membrane morphology than that of immersion precipitation step. In addition, various non-solvents used in this work did not affect much the T_g of membrane.

Increasing BuOH concentration into DCM-based casting solution would also change the asymmetric PC membrane morphology. Higher BuOH concentration produced macrovoid and highly porous substructure. In addition, skin layer was apparently observed particularly for 5 wt.% or more of BuOH concentration. High porosity with the formation of macrovoid occur due to lower coagulation value and smaller solubility parameter difference of solvent mixtures and MeOH that lead to instantaneous demixing of casting solution.

SEM micrographs also revealed that asymmetric PC membranes were affected by different duration of evaporation time. Longer evaporation time produced membrane with less porous substructure and shorter evaporation period produced membrane with more porous and much more macrovoid substructure. These results indicate that increasing the evaporation time would cause the casting solution to precipitate slower (delayed demixing mechanism) than that of shorter evaporation time.

The effect of water addition into MeOH bath resulted in significantly different morphology of membrane. High porosity with the formation of macrovoid and distinct skin layer were observed for membrane prepared from 100 % MeOH. Adding certain amount of water decreased the porosity of membrane substructure and eliminated the formation of macrovoid. This might occur due to larger solubility parameter difference between solvent mixtures and MeOH while more water amount was added into MeOH bath leading to slow exchange rate between solvent of casting solution with coagulant. Consequently, delayed demixing mechanism took place when water was present in the MeOH bath.

Permeation studies revealed that different morphologies of asymmetric PC membrane that result from various solvents – non-solvents pair used during preparation significantly changed the performance of membrane. It showed that CO₂ and CH₄ permeances of EtOH-based membrane were higher as compared to PrOH and BuOHbased membranes. However, the CO₂/CH₄ ideal selectivity of EtOH-based membrane was very low implying that high CO₂ and CH₄ permeances were could be due to the more porous skin layer of membrane ($\alpha_{CO_2/CH_4} = 2.03 - 1$ for DCM-EtOH membrane and $\alpha_{CO_2/CH_4} = 7.86 - 0.67$ for chloroform-EtOH membrane). High ideal selectivity of CO₂/CH₄ was obtained for PrOH and BuOH-based membranes ($\alpha_{CO_2/CH_4} = 93 - 18$ for DCM-PrOH membrane, $\alpha_{CO_2/CH_4} = 70.39 - 6.85$ for DCM-BuOH membrane, $\alpha_{CO_2/CH_4} = 173.88 - 2.86$ for chloroform - PrOH membrane and $\alpha_{CO_2/CH_4} = 112.09 - 19.99$ for chloroform-BuOH membrane). In these membranes, porosity of substructure played important role in which CO₂ permeance of BuOH-based membrane would be higher as compared to other membranes due to high porosity of membrane substructure.

The effect of BuOH concentration on asymmetric PC membrane performance showed that low CO₂ and CH₄ permeance were obtained as a result from less porous substructure of membranes prepared from casting solution containing 0 wt.% and 5 wt.% of BuOH. Increasing BuOH concentration to 10.wt% significantly increased the CO₂ and CH₄ permeances of membrane. This due to high porosity of BuOH-based membrane substructure and the porous skin layer on membrane surface layer. Therefore, very low CO₂/CH₄ ideal selectivity occur on 10.wt% of BuOH membrane ($\alpha_{CO_2/CH_4} = 0.69-0.71$). Low ideal selectivity of CO₂/CH₄ was also observed for membranes prepared from 0 wt.% of BuOH ($\alpha_{CO_2/CH_4} = 1.15-1.14$) but better selectivity of CO₂/CH₄ ($\alpha_{CO_2/CH_4} = 70.39 - 6.85$) could be obtained at 5 wt.% of BuOH in casting solution.

Increasing the performance of asymmetric PC membrane by varying evaporation time of casting film showed that when the casting film was immersed directly into coagulation bath (no evaporation), high CO₂ and CH₄ permeances were obtained due to highly porous membrane produced. However, very low ideal selectivity of CO₂/CH₄ was also obtained for this membrane ($\alpha_{CO_2/CH_4} = 1.01 - 1.0$) which indicated that porous skin layer exist in this membrane. Increasing the evaporation time hardly increase the ideal selectivity of CO₂/CH₄ ($\alpha_{CO_2/CH_4} = 0.81 - 0.71$ for membrane prepared by 20 second evaporation and $\alpha_{CO_2/CH_4} = 0.81 - 0.71$ membrane prepared by 60 seconds evaporation).

Varying the coagulation bath composition by adding water did not successfully increased the performance of asymmetric PC membrane. Both membranes prepared from casting film immersed into 100 % MeOH and water-MeOH mixtures bath at

composition of 30 vol./70 vol. had very low ideal selectivity of CO₂/CH₄ as the porous skin layer remains occur ($\alpha_{CO_2/CH_4} = 0.69 - 0.71$ for 100%-MeOH-based membrane and $\alpha_{CO_2/CH_4} = 0.59 - 0.68$ for 30 v.%/70.% - water/MeOH membrane). In addition, permeance results showed that membranes prepared from 100 % MeOH had higher CO₂ and CH₄ permeances due to high porosity substructure as compared to membranes prepared from 30 vol./70 vol.- water/MeOH coagulant mixtures.

Even though some membranes prepared in this work unexpectedly showed very low selectivity, asymmetric BuOH and PrOH-based membrane prepared at 5 wt% non-solvent concentration using both DCM and chloroform as solvents have been successfully fabricated in order to improve the CO_2 permeance and CO_2/CH_4 ideal selectivity as compared to other PC or membrane materials that have been reported by the previous researchers.

6.2. Recommendations

Based on this work, some recommendations as future works that may provide further insight into the mechanism of asymmetric PC membranes formation are listed below.

At first, in order to study the mechanism of asymmetric PC membrane formation, a turbidity experiment or cloud point measurement can be carried out to determine the phase diagram for PC-based asymmetric membrane. Phase diagram is helpful primarily in determining the initial composition of PC membrane system and in studying the effect of thermodynamic and kinetic of casting solution while it destabilized into two phase. In addition, light transmission measurement can also be conducted to study quantitatively the demixing mechanism of casting solution during membrane formation.

Secondly, study further on the formation of homogenous dense skin layer on asymmetric PC membranes is highly necessary. Other preparation parameters such as effect of casting rate, humidity of preparation condition, less volatile solvent composition, annealing time and temperature may be considered to form dense skin layer of asymmetric PC membrane. In addition, study on the crystallization behaviour of PC membrane is necessary in order to produce dense skin asymmetric PC membrane.

Thirdly, mixed gas permeability tests may be conducted for some membrane films that have shown high CO_2/CH_4 ideal selectivity. This is a further study on the effect of multicomponent feed gas on the performance of asymmetric PC membrane. In addition, the effect of prolong CO_2 exposure and higher feed gas pressure on asymmetric PC membrane stability is also necessary.

Lastly, incorporating in-organic material such as zeolite and carbon molecular sieve (CMS) during preparation of PC membranes can be good option in enhancing the performance of membrane in removing CO_2 from natural gas.

Admassu, W., Process for drying water-wet polycarbonate membrane, United States Patent Number 4,843,733, 1989

Baker, R.W., Membrane Technology and Application, McGraw-Hill, New York, USA, 2004

Baker, R.W., Future direction of membrane gas separation technology, Ind.Eng.Chem. Res. 41 (2002) 1393-1411

Barton, A.F.M., Handbook of solubility parameters and other cohesion parameters, CRC press, Florida, 1985

Binnig, G., Quate, C.F., and Gerber, Ch., Atomic force microscopy, Phys.Rev.Lett., 12 (1986) 930

British Petroleum (BP), Putting Energy in the Spotlight. BP Statistical Review of World Energy, 2005

Bord, N., Cre' tier, G., Rocca, J.-L., Bailly, C., and Souchez, J.-P., Determination of diethanolamine or N-methyldiethanolamine in high ammonium concentration matrices by capillary electrophoresis with indirect UV detection: application to the analysis of refinery process waters, Anal Bioanal Chem 380 (2004) 325–332

Brown, P.J., Ying, S., and Yang, J., Morphological structure of polyetherketone membranes for gas separation prepared by phase inversion, AUTEX research journal, 2 (2002) 101-108

Buonomenna, M.G., Figoli, A., Jansen, J.C., and Drioli, E., Preparation of asymmetric PEEKWC flat membranes with different microstructures by wet phase inversion, J.Appl.Polym. Sci. 92 (2004) 576-591

Calvo, J.I., Pradanos, P., Hernandez, A., Bowen, W.R., Hilal, N., Lovitt, R.W., and Williams, P.M., Bulk and surface characterization of composite UF membranes atomic force microscopy, gas adsorption-desorption and liquid displacement techniques, J. Membr. Sci. 128 (1997) 7-21

Carreau, P.J., De Kee, D.C.R., and Chhabra, R.P., Rheology of polymeric systems, Hanser Publishers, New York, 1997

Chen., J. C-Y., Evaluation of Polymeric Membranes for Gas Separation Processes: Poly(ether-*b*-amide) (PEBAXR2533) Block Copolymer, MSc Thesis, University of Waterloo, Ontario, Canada, 2002

Chen,S-H., Huang,S-H., Yu, K-C., Lai, J-Y., and Liang, M-T., effect of CO₂ treated polycarbonate membranes on gas transport and sorption properties, J. Membr. Sci. 172 (2000) 105-112

Chen, S-H., Ruaan, R-C., and Lai, J-Y., Sorption and transport mechanism of gases in polycarbonate membranes, J. Membr.Sci. 134 (1997) 143-150

Chun, K.Y., Jang, S.H., Kim, H.S., Kim, Y.W., Han, H.K., and Joe, Y.I., Effects of solvent on the pore formation in asymmetric 6FDA-4,4'ODA polyimide membrane: terms of thermodynamic, precipitation kinetics, and physical factors. J. Membr. Sci. 169 (2000) 197-214

Chung, T-S., Lin, W-H., and Vora, R.H., The effect of shear rates on gas separation performance of 6FDA-durene polyimide hollow fiber, J.Membr.Sci. 167 (2000) 55-66

Dijk, M.A.V., and Wakker, A., Concepts of polymer thermodynamics, Technomic Publishing Co., Inc., Lancaster, Basel, 1997

Dortmundt, D., and Doshi, K., Recent Developments in CO₂ Removal Membrane Technology, UOP LLC, USA, 1999

Ebewele, R.O., Polymer Science and Technology, CRC press, Boca Raton, Florida, 2000

Gollan, A.Z., Anistropic membranes for gas separation, United States Patent Number 4.681.605, 1987

Gosh, M.K., and Mital, K.L., Polyimides: Fundamental and Applications, Marcel Dekker, Inc, New York, 1996

Hacarlioglu, P., Toppare, L., and Yilmaz, L., Effect of preparation parameters on performance of dense homogenous polycarbonate gas separation membranes, J. App. Polym. Sci. 90 (2003) 776-785

Hacarlioglu, P., Toppare, L., and Yilmaz, L, Polycarbonate-polypyrrole mixed matrix gas separation membrane, J. Membr. Sci. 225 (2003) 51-62

Hachisuka, H., Ohara, T., and Ikeda, K., New type asymmetric membranes having almost defect free hyper-thin skin layer and sponge-like porous matrix, J.Membr.Sci. 116 (1996) 265-272

Hansen, C.M., Hansen solubility parameter, A user's handbook. CRC press, London, 2000

Hayashi, J.-I., Yamamoto, M., Kusakabe, K., and Morooka, S., Simultaneous improvement of permeance and permselectivity of 3,3',4,4'-Biphenyltetracarboxylic Dianhydride-4,4'-Oxydianiline polyimide membrane by carbonization, Ind. Eng. Chem. Res. 34 (1995) 4,364-4,370

Hu, C-C., Chang, C-S, Ruann, R-C., and Lai, J-Y., Effect of free volume and sorption on membrane gas transport, J. Membr. Sci. 226 (2003) 51-61

Ismail, A.F., and Shilton, S.J., Polysulfone gas separation hollow fiber membranes with enhanced selectivity, J.Membr,Sci. 139 (1998) 285-286

Ismail, A,F., Shilton, S.J., Dunkin, I.R., and Gallivan, S.L., Direct measurement of rheelogically induced molecular orientation in gas separation hollow fiber membranes and effects on selectivity, J.Membr,Sci. 126 (1997) 133-137

Ismail, A.F. and David, L.I.B., A Review on the latest development of carbon membranes for gas separation, J.Membr.Sci. 193 (2001) 1-18

Ismail, A.F., and Lai, P.Y., Development of defect-free asymmetric polysulfone membranes for gas separation using response surface methodology, Sep. Purif. Tech. 40 (2004) 191-207

Ismail, A.F., and Lai, P.Y.,Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation, Sep. Purif. Tech. 33 (2003) 127-143

Ismail, A.F., and Lai, P.Y., Review on the development of defect-free and ultrathinskinned asymmetric membrane for gas separation through manipulation of phase inversion and rheological factors, J.Appl. Polym. Sci. 88 (2003) 442-451

Ismail, A.F., and Lorna, W., Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane: Review article, Sep. Purif. Tech. 27 (2002) 173–194

Ismail, A.F., Norida, R., and Sunarti, A.R., Latest development on membrane formation for gas separation: Review article, Songklanakarin J.Sci.Technol., 24 (Suppl) (2002) 1025-1043

Jansen, J.C., Macchione, M., and Drioli, E., High flux asymmetric gas separation membranes of modified poly(ether ether ketone) prepared by the dry phase inversion technique, J.Membr.Sci. 255 (2005a) 167-180

Jansen, J.C., Macchione, M., Oliviero, C., Mendichi, R., Ranieri, G.A., and Drioli, E., Rheological evaluation of the influence of polymer concentration and molar mass distribution on the formation and performance of asymmetric gas separation membranes prepared by dry phase inversion, Polymer 46 (2005b) 11366-11379

Javaid, A., Review: Membranes for solubility-based gas separation applications, Chem. Eng. Journal 112 (2005) 219–226

Jordan, S.M., and Koros, W.J., Characterization of CO₂-induced conditioning of substituted polycarbonates using various "exchange" penetrants, J. Membr. Sci. 51 (1990) 233-247

Joly, C., Cerf, D.L., Chappey, C., Langevin, D., and Muller, G., Residual solvent effect on the permeation properties of the fluorinated polyimide films, Sep. Purif. Tech. 16 (1999) 47-54

Jou, F-Y., Otto, F.D., and Mather, A.E., Vapor-liquid equilibrium of carbon dioxide in aqueous mixtures of monoethanolamine and methyldiethanolamine, Ind. Eng. Chem. Res. 33 (1994) 2002-2005

Kai, M., Ishii, K., Tsugaya, H., and Miyano, T., Development of polyethersulfone ultrafiltration membranes, ACS Symp.Ser. 281 (1985) 21

Kawakami, H., Mikawa, M., and Nagaoka. S., Formation of surface skin layer of asymmetric polyimide membranes and their gas transport properties, J. Membr Sci. 137 (1997) 241-250

Kawakami, H., Nakajima, K., and Nagaoka, S., Gas separation characteristic of isomeric polyimide membrane prepared under shear stress, J.Membr.Sci. 211 (2003) 291-298

Keller II, G.E., Anderson, R.A., and Yon, C.M., Adsorption, in: Handbook of separation process technology, Rousseau, R.VV., (Ed), John Wiley & Sons, Inc., 1987

Kesting, R.E., The four tiers of structure in integrally skinned phase inversions membranes and their relevance to the various separation regimes, J.Appl.Polym.Sci., 41 (1990) 2739-2752

Kesting, R.E., Fritzche, A.K., Cruse, C.A and Moore, M.D., The second-generation polysulfone gas separation membrane.II.The relationship between sol properties, gel macrovoids, and fiber selectivity, J. Appl. Polym.Sci., 40 (1990) 1575

Khulbe, K.C., Matsuura, T., and Noh, S.H., Effect of thickness of the PPO membranes on the surface morphology, J. Membr. Sci. 145 (1998) 243-251

Kohl, A. and Riesenfeld, F., Gas purification, Gulf Publishing Company, Houston, Texas, 1979

Kohl, A.L., and Nielsen, R., Gas purification: 5th edition, Houston, TX: Gulf Publishing Company,1997

Koros, W.J., Chan, A.H., and Paul, D.R., Sorption and transport of various gases in polycarbonate, J. Membr. Sci. 2 (1977) 165-190

Koros, W.J., MA, Y.H., and Shimidzu, T., Terminology for membranes and membrane processes, Pure and Appl. Chem., 68 (1996) 1479-1489

Koros, W.J., and Pinnau, I., Membrane formation for gas separation processes, in: Polymeric Gas separation Membranes, Paul, D.R., and Yampol'skii, Y.P., (Eds), CRC Press, London, 1994

Kravelen, D.W.V., Properties of polymers: Their correlation with chemical structure; Their numerical estimation and prediction from additive group contribution. 3rd edition, Elsevier, Amsterdam, 1990

Kurdi, J and Tremblay, A.Y., Preparation of defect-free asymmetric membranes for gas separations, J.Appl.Polym. Sci. 73 (1999) 1471-1482

Kusakabe, K., Kuroda, T., Murata, A., and Morooka. S., Formation of a Y-Type zeolite membrane on a porous α -Alumina tube for gas separation, Ind. Eng. Chem. Res. 36 (1997) 649-655

Lai, J-Y., Liu, M-J., and Lai., L. K-R., Polycarbonate membrane prepared via wet phase inversion method for oxygen enrichment from air, J. Membr. Sci. 86 (1994) 103-118

Laot, C.M., Gas transport properties in polycarbonate: Influence of the cooling rate, physical aging and orientation, Ph.D thesis, Virginia Polytechnic Institute and State University, 2001

Li, J., Wang, S., Nagai, K., Nakagawa, T., and Mau, A.W-H., Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes, J. Membr. Sci. 138 (1998) 143-152

Li, S., L. John., Falconer, and Noble, R.D., SAPO-34 membranes for CO₂/CH₄ separation, J. Membr. Sci. 241 (2004) 121–135

Li., S.G., Boomgaard, Th.V.D., Smolders, C.A., and Strathmann, H., Physical gelation of amorphous polymers in a mixture of solvent and non-solvent, Macromolecules, 29 (1996) 2053-2059

Lin, W-H., and Chung, T-S., Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes, J. Membr. Sci. 186 (2001) 183–193

Macchione, M., Jansen, J.C., and Drioli, E., The dry phase inversion technique as a tool to produce highly efficient asymmetric gas separation membranes of modified PEEK. Influence of temperature and air circulation. Desalination 192 (2006) 132-141

Menard, K.P., Dynamic mechanical analysis: A practical introduction, CRC Press, Boca Raton, Florida, 1999

Morisato, Ghosal, A. K., Freeman, B.D., Chern, R.T., Alvarez, J.C., del la Campa, J.G., Lozano, A.E., and Abajo, J. de., Gas separation properties of aromatic polyamides containing hexafluoroisopropylidene groups, J. Membr. Sci. 104 (1995) 231-241

Mukhtar, H., and Han, L.C., Permeability studies of carbon dioxide and methane across γ -alumina membrane, Symposium of Malaysian Chemical Engineers, 2004

Mulder., M, Basic principles of membrane technology, Kluwer academic publishers, 1996

Nakajima, K., Nagaoka, S and Kawakami, H., Effect of molecular weight on gas selectivity of oriented thin polyimide membrane, Polym.Adv.Technol. 14 (2003) 433-437

NATCO, Acid Gas (CO2) Separation Systems with Cynara Membranes, NATCO group, 2002

Niwa, M., Kawakami, H., Nagaoka, S., Kanamori, T., and Shinbo, T., Fabrication of an asymmetric polyimide hollow fiber with a defect-free surface skin layer, J. Membr. Sci. 171 (2000) 253-261

Nunes, S.P., and Peineman, K.V., Membrane technology in the chemical industry, WILEY-VCH, Germany, 2001

Painter, P.C. and Coleman, M.M., Fundamentals of polymer science. 2nd edition, Technomic Publishing Co., Inc, Lancaster. 1997

Peinemann, K.V., and Pinnau, I., Method for producing an integral asymmetric gas separating membrane and the resultant membrane, United States Patent Number 4,746,333, 1988 Perry, R.H., and Green, D.W., Perry's Chemical Engineer's Handbook, McGraw Hill, 1999

Pesek, S.C., and Koros, W.J., Aqueous quenched asymmetric polysulfone membranes prepared by dry/wet phase separation, J.Membr Sci 81 (1993) 71-88

Pfromm, P.H., Pinnau, I., and Koros, W.J., Gas transport through integral-asymmetric membranes: A comparison to isotropic film transport properties, J.Appl.Polym.Sci., 48 (1993) 2161-2171

Pinnau, I., and Koros, W.J., Defect-free ultrahigh flux asymmetric membranes, United States Patent Number 4.902.422, 1990

Pinnau, I., and Koros, W.J., Gas permeation properties of asymmetric polycarbonate, polyesthercarbonate and fluorinated polyimide membranes prepared by the generalized dry/wet phase inversion process, J.Appl.Polym.Sci., 46 (1992) 1195-1204

Pixton, M.R., and Paul, D.R., Relationship between structure and transport properties for polymers with aromatic backbones, in: Polymeric Gas separation Membranes, Paul, D.R., and Yampol'skii, Y.P., (Eds), CRC Press, London, 1994

Polasek, J., and Bullin, J.A., Selecting amines for sweetening units, Proceedings GPA Regional Meeting, Sept. 1994. "Process Considerations in Selecting Amine" Tulsa, OK: Gas Processors Association, 1994

Poshusta, J.C., Tuan, V.A., Falconer, J.L., and Noble, R.D., Synthesis and permeation properties of SAPO-34 tubular membranes, Ind. Eng. Chem. Res. 37 (1998) 3,924-3,929

Poshusta, J.C., Tuan, V.A., Pape, E.A. Noble, R.D. and Falconer, J.L., Separation of light gas mixtures using SAPO-34 membranes, AIChE J. 46 (2000) 779-789

Pradanos, P., Rodriguez, M.L., Calvo, J.I., Hernandez, A., Tejerina, F., and Saja, J.A.d., Structural characterization of an UF membrane by gas adsorption-desorption and AFM measurements, J. Membr. Sci. 117 (1996) 291-302

ProSep, Gas sweetening membrane, ProSep Technologies, Inc., 2000

Rezac, M.E., Sorensen, E.T., and Beckham, H.W., Transport properties of crosslinkable polyimide blends, J. Membr. Sci. 136 (1997) 249-259

Rodriguez, F., Cohen, C., Ober., C.K., and Archer, L.A., Principles of polymer system, 5th edition, Taylor&Francis Group, New York, 2003

Ruann, R-C., Chen, S-H., and Lai J-Y., Oxygen/nitrogen separation by polycarbonates/Co(SalPr) complex membranes, J.Membr.Sci 135 (1997) 9-18

Ruthven, D.M., Encyclopedia of separation technology volume 2: A Kirk-Othmer encyclopedia, John Wiley & Sons, 1997

Sanders, E.S., Penetrant-induced plasticization and gas permeation in glassy polymers, J.Membr.Sci 37 (1988) 63-80

Sartorl, G., and Savage, D.W., Sterically hindered amines for CO₂ removal from gases, Ind. Eng. Chem. Fundam. 22 (1983) 239-249

Scott, K., Handbook of industrial membranes: 2nd edition, Elsevier Advanced Technology, 1998

Sen, D., Effect of compatibilizers on the gas separation performance of polycarbonate membranes, MSc Thesis, Middle east technical university, 2003

Sepe, M.P., Dynamic mechanical analysis for plastic engineering, Plastic Design Library, 1998

Shekhawat, D., Luebke, D.R., and Pennline H.W., A review of carbon dioxide selective membranes: A tropical report, National energy technology laboratory, United States department of energy, 2003

Shieh, J-J., and Chung, T.S., Effect of liquid-liquid demixing on the membrane morphology, gas permeation, thermal and mechanical properties of cellulose acetate hollow fibers, J. Membr. Sci. 140 (1998) 67-79

Smallwood, I.M., Handbook of organic solvent properties, Gray publishing, Tunbridge Wells, Kent, Edinburg, 1996

Strathmann. H., and Kock, K., The formation mechanism of phase inversion membranes, Desalination. 21 (1977) 241-255

Strathmann. H., Kock, K., and Amar, P., The formation mechanism of asymmetric membranes, Desalination 16 (1975) 179-203

Suhartanto, T., York, A.P.E., Hanif, A., Al-Megren, H., and Green, M.L.H., Potential utilisation of Indonesia's Natuna natural gas field via methane dry reforming to synthesis gas, Catalysis Letters 71 (2001) 49-54

Tin, P.S., Chung, T.S., Liu, Y., and Wang, R., Separation of CO_2/CH_4 through carbon molecular sieve membranes derived from P84 polyimide, Carbon 42 (2004) 3123-3131

Wang, Z-G., Xu, Z-K., and Wan, L-S., Modulation the morphologies and performance of polyacrylonitrile-based asymmetric membranes containing reactive groups: Effect of non-solvents in the dope solution, J. Membr. Sci. 278 (2006) 447-456

Wang,D., Li,K., Teo, W.K., Relationship between mass ratio of non-solvents-additive to solvent in membrane casting solution and its coagulation value, J.Membr. Sci.,98 (1995) 233-240

Wang, R., Chan, S.S., Liu, Y., and Chung, T.S., Gas transport properties of Poly(1,5-Naphthelene-2,2'-Bis(3,4-Phthalic) Hexafluoropropane) Diimide (6FDA-1,5-NDA) dense membranes, J. Membrane Sci., 199 (2002) 191-202

Wang, R., Cao, C., and Chung, T.-S., A critical review on diffusivity and the characterization of diffusivity of 6FDA-6FpDA polyimide membranes for gas separation, J. Membr. Sci. 198 (2002) 259-271

Wang, Y-C., Huang, S-H., Hu, C-C., Li, C-L, Lee, K-R., Liaw, D-J., and Lai, J-Y., Sorption and transport properties of gases in aromatic polyimide membranes, J. Membr. Sci. 248 (2005) 15-25

Wind, J.D., Paul, D.R., and Koros, W.J., Natural gas permeation in polyimide membranes, J. Membr. Sci 228 (2004) 227-236

Wonders, A.G., and Paul, D.R., Effect of CO_2 exposure history on sorption and transport in polycarbonate, J. Membr. Sci 5 (1979) 63-75

Wu, C., Zhang, S., Yang, D., Wei, J., Yan, C., and Jian, X., Preparation, characterization and application in wastewater treatment of a novel thermal stable composite membrane, J. Membr. Sci. 279 (2006) 238-245

Yamamoto, M., Kusakabe, K., Hayashi, J.-I., and Morooka S., Carbon molecular sieve membrane formed by oxidative carbonization of a copolyimide film coated on a porous support tube., J. Membr. Sci. 133 (1997) 195-205

Yip, Y., and McHugh, A.J., Modeling and simulation of nonsolvent vapor-induced phase separation, J. Membr. Sci 271 (2006) 163-176

Zeng, Z., Xiao, X., Gui, Z., and Li, L., AFM study on surface morphology of Al₂O₃-SiO₂-TiO₂ composite ceramic membranes, J. Membr. Sci. 136 (1997) 153-160

Properties

A.1 Polymer

	Polycarbonate
Manufacturer	LG-DOW
Туре	Amorphous
Characteristic	Good dimensional stability, shiny surface, high termal stability, sensitivity to stress cracking
Density (gr/cm ³)	1.2
Mr	254 g/mole

Table A.1 Properties of polycarbonate used in this study

A.2 Chemicals

The chemicals used in this study are dichloromethane (DCM), chloroform, ethanol (EtOH), propanol (PrOH), butanol (BuOH), 1,1,2 trichloroethane (TEC), methanol (MeOH) and water. Chemical properties are presented in Table A.2

	DCM	Chloroform	1,1,2 TEC	MeOH	EtOH	PrOH	BuOH	Water
Supplier	Merck	Fischer Chemicals	Acros Organic	Merck	Merck	Merck	Merck	Tap Water
Purity (mole %)	99.5	99.98	98	6.66	99.5	99.5	66	100
Molecular weight (g/mol)	85	119	133.4	32	46	60	74	18
Molecular structure				H H H	H-0 H H H H H H H H	H ₃ C H ₃ C H	H ₃ C H ₁ C HO	T C T
Melting point (°C)	-95	-23	-37	86-	-114	-88	-108	0
Boiling point (°C)	40	61	110-115	64	78	82	108	100
Liquid density (g/cm ³)	1.33	1.48	1.435	0.79	0.789	0.78	0.808	866.0

Table A.2 List of properties of pure components (Smallwood, 1996)

APPENDIX B

Solubility Parameter

B.1 Solubility Parameter of Pure Components

· · · · · · · · · · · · · · · · · · ·				
Component	$\delta_{\rm d}({\rm Mpa})^{1/2}$	$\delta_p(Mpa)^{1/2}$	$\delta_h(Mpa)^{1/2}$	$\delta_{total}(Mpa)^{1/2}$
DCM	18.2	6.3	6.1	20.3
Chloroform	17.8	3.1	5.7	19
1,1,2 TEC	18.2	5.3	6.8	20.14
Ethanol	15.8	8.8	19.4	26.5
2-propanol	15.8	6.1	16.4	23.5
2-butanol	15.8	5.7	14.5	22.2
Methanol	15.1	12.3	22.3	29.6
Water	15.5	16	42.3	47.807

Table B.1 Solubility parameter of pure components (Hansen, 2000)

B.2 Determination of Solubility Parameter for Polycarbonate

Solubility parameter of polycarbonate is calculated from the group contribution of BPA-polycarbonate molecular structure using Hoftyzer and Van-Kravelen method. Molecular structure of BPA- polycarbonate is given as follows.

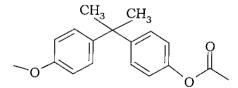


Figure B.1 Monomer of BPA-polycarbonate

Group contribution for each structural group of PC is well-tabulated in Hoftyzer and Van-Kravelen's table as follows:

Structural group	F_{di} $(J^{1/2} \cdot cm^{3/2} \cdot mol^{-1})$	$\frac{F_{pi}}{(J^{1/2} \cdot cm^{3/2} \cdot mol^{-1})}$	$\frac{E_{hi}}{(J \cdot mol^{-1})}$
-CH ₃	420	0	0
	-70	0	0
	1270	110	0
—0—	100	400	3000
—C00—	390	490	7000

Table B.2 Group contribution of PC structural group from Hoftyzer and Van-Kravelen Method (Kravelen, 1990)

From Table B.2, total group contribution component of PC structure, F_{di} , F_{pi} and E_{hi} can be calculated as follows:

Table B.3 T	Fotal of group	contribution	for BPA-PC structure
-------------	----------------	--------------	----------------------

Structural group	F_{di}	F_{pi}^2	<u>E_{hi}</u>
	840	0	0
— — c — 	-70	0	0
	2540	48400	0
-0	100	16000	3000
—C00—	390	240100	7000
Total	3800	448.500	10.000

After total contribution had been calculated, solubility parameter component for PC can be determined using the following equation:

$$\delta_d = \frac{\sum F_{di}}{V}, \ \delta_p = \frac{\sqrt{\sum F_{pi}^2}}{V} \ and \ \delta_h = \sqrt{\frac{\sum E_{hi}}{V}}$$

V is molar volume which can be calculated by dividing molecular mass, Mr, over density, ρ , of polycarbonate. Mr and ρ of polycarbonate are 254 g/mole and 1.2 gr/cm³, respectively. Hence,

$$V = \frac{M_r}{\rho}$$
$$= \frac{254 \text{ g/mole}}{1.2 \text{ g/cm}^3}$$
$$= 211.67 \frac{\text{cm}^3}{\text{mole}}$$

Once molar volume, V, is determined, solubility parameter component for PC can be calculated;

$$\delta_{d} = \frac{\sum F_{di}}{V} = \frac{3800}{211.67} = 17.95 \ (MPa)^{1/2}$$
$$\delta_{p} = \frac{\sqrt{\sum F_{pi}^{2}}}{V} = \frac{\sqrt{448.500}}{211.67} = 3.163 \ (MPa)^{1/2}$$
$$\delta_{h} = \sqrt{\frac{\sum E_{hi}}{V}} = \sqrt{\frac{10.000}{211.67}} = 6.87 \ (MPa)^{1/2}$$

Hence, overall solubility parameter for polycarbonate (PC), δ , is

$$\delta = \sqrt{\delta_d^2 + \delta_p^2 + \delta_h^2}$$
$$= \sqrt{17.95^2 + 3.16^2 + 6.87^2}$$
$$= 19.5 \ (MPa)^{1/2}$$

B.3 Solubility Parameter of Mixtures

Solvent mixtures consist of DCM/1,1,2 TEC/EtOH is used as example to determine overall solubility parameter of solvent mixtures, δ_{mix} . Composition of DCM/1,1,2 TEC/EtOH in mass and density, ρ , of each component are given in Table B.4. Volume, V, for each component can be calculated from known data of ρ and m.

$$V = \frac{m}{\rho}$$

Once total volume of solvent mixtures is obtained, volume fraction, ϕ , can be calculated by dividing volume of component i, Vi, over total volume of solvent mixtures, V.

$$\phi = \frac{V_i}{V}$$

Summary of data calculation for V and ϕ are tabulated in Table B.4

Table B.4 Data tabulation for the total volume, V, and volume fraction, ϕ , of solvent mixtures

	ρ	m (gr)	V	φ
DCM	1.32	55	45.31	0.67
1,1,2 TEC	1.43	27.5	15.87	0.24
EtOH	0.79	5	6.37	0.09
· -	Fotal	L	67.51	1

Once the volume fraction of component i, ϕ_i , is obtained, solubility parameter component of solvent mixtures can be calculated as follows:

$$\begin{split} \delta_d &= \delta_d^{DCM} \times \phi^{DCM} + \delta_d^{1,1,2tec} \times \phi^{1,1,2tec} + \delta_d^{EtOH} \times \phi^{EtOH} \\ &= 18.2 \times 0.67 + 18.2 \times 0.24 + 15.8 \times 0.09 \\ &= 17.97 \end{split}$$

$$\begin{split} \delta_{p} &= \delta_{p}^{DCM} \times \phi^{DCM} + \delta_{p}^{1,1,2\,tec} \times \phi^{1,1,2\,TEC} + \delta_{p}^{EtOH} \times \phi^{EtOH} \\ &= 6.3 \times 0.67 + 5.3 \times 0.24 + 19.4 \times 0.09 \\ &= 6.30 \\ \delta_{h} &= \delta_{h}^{DCM} \times \phi^{DCM} + \delta_{h}^{1,1,2\,tec} \times \phi^{1,1,2\,TEC} + \delta_{h}^{EtOH} \times \phi^{EtOH} \\ &= 6.1 \times 0.67 + 6.8 \times 0.24 + 19.4 \times 0.09 \\ &= 7.49 \end{split}$$

Hence, overall solubility parameter of solvent mixture, δ_{mix} , can calculated as follows:

$$\delta_{mix} = (\delta_d^2 + \delta_p^2 + \delta_h^2)^2$$
$$= (17.97^2 + 6.30^2 + 7.49^2)^2$$
$$= 20.47 (MPa)^{1/2}$$

B.4 Solubility Parameter Difference Calculation ($\Delta\delta$)

Solvent mixtures consist of DCM/1,1,2 TEC/EtOH is used as example to determine solubility parameter difference of solvent mixtures and methanol (MeOH), $\Delta\delta_{(s-MeOH)}$, and solubility parameter difference between solvent mixtures and PC, $\Delta\delta_{(s-PC)}$.

Solubilty parameter of solvent mixtures (DCM/1,1,2 TEC/EtOH) : $\delta_d = 17.97$; $\delta_p = 6.30$; $\delta_h = 7.49$; $\delta_{mix} = 20.47$

Solubilty parameter of methanol :

 $\delta_{\scriptscriptstyle d}$ = 15.1 ; $\delta_{\scriptscriptstyle p}$ = 12.3 ; $\delta_{\scriptscriptstyle h}$ =22.3 ; δ = 29.6

Solubilty parameter of PC:

$$\delta_d = 17.95; \, \delta_p = 3.16; \, \delta_h = 6.87; \, \delta = 19.5$$

Solubility parameter difference between solvent mixtures and methanol, can be calculated as follows:

$$\Delta \delta = \sqrt{\left(\delta_{d,mix} - \delta_{d,MeOH}\right)^2 + \left(\delta_{p,mix} - \delta_{p,MeOH}\right)^2 + \left(\delta_{h,mix} - \delta_{h,MeOH}\right)^2}$$
$$= \sqrt{\left(17.97 - 15.1\right)^2 + \left(6.30 - 12.3\right)^2 + \left(7.49 - 22.3\right)^2}$$
$$= 16.24$$

Solubility parameter difference between solvent mixtures and PC, $\Delta \delta_{(s-PC)}$, can be calculated as follows:

$$\Delta \delta = \sqrt{(\delta_{d,mix} - \delta_{d,PC})^2 + (\delta_{p,mix} - \delta_{p,PC})^2 + (\delta_{h,mix} - \delta_{h,PC})^2}$$

= $\sqrt{(17.97 - 17.95)^2 + (6.30 - 3.16)^2 + (7.49 - 6.87)^2}$
= 3.20 (MPa)^{1/2}

Porosity Calculation

C.1 Thickness of Membrane

Thickness of membrane measured at ten different points using micrometer gauge. The measured thickness is presented in Table C.1. Membrane area used for thickness measurement is kept constant at 192 cm² (L = 16 cm and W = 12 cm) for every samples

						Th	ickne	ss (µm	l)			
Membrane preparation parameter	Mass (gr)	1	2	3	4	5	6	7	8	9	10	average
DCM/EtOH	0.38	38	37	36	35	37	36	36	38	36	36	36.5
DCM/PrOH	0.45	51	56	52	51	54	54	55	53	55	54	53.5
DCM/BuOH	0.81	96	98	97	96	101	97	99	99	100	97	98
Chloroform/EtOH	0.6	59	58	58	61	59	62	61	61	59	60	59.8
Chloroform/PrOH	0.53	65	63	63	65	62	65	65	65	65	63	64.1
hloroform/BuOH	0.5	67	68	65	66	67	67	68	65	69	65	66.7
0.wt % of BuOH	1.4	108	110	107	110	109	108	109	110	110	109	109
.5.wt % of BuOH	1.55	142	143	144	141	144	144	142	145	145	140	143
5 wt % of BuOH	0.81	96	98	97	96	101	97	99	99	100	97	98
5 wt % of BuOH	0.76	105	105	104	105	103	104	106	105	106	104	104.7
) wt% of BuOH	0.85	164	162	163	162	161	165	163	164	166	162	163.2
0-s evaporation	1.57	308	311	310	312	311	313	315	310	312	314	311.6
20-s evaporation	0.85	164	162	163	162	161	165	163	164	166	162	163.2
40-s evaporation	0.56	104	104	105	103	105	99	99	97	97	97	101
50-s evaporation	0.79	107	107	107	110	110	110	110	109	107	109	108.6
100% - MeOH	0.85	164	162	163	162	161	165	163	164	166	162	163.2
/90 - water/MeOH	1.13	170	170	169	170	168	171	170	170	170	171	169.9
/80 - water/MeOH	0.92	101	104	107	102	101	100	104	107	109	102	103.7
/70 - water/MeOH	0.48	50	47	50	46	47	49	49	49	47	48	48.2

Table C.1 Thickness of membrane measured using micrometer gauge

C.2 Membrane Overall Porosity Calculation

DCM-EtOH membrane was taken as an example for overall porosity calculation. Based on multiple measurement of membrane thickness, DCM-EtOH membrane has an average thickness, l, of around 36.5 μ or equals to 0.00365 cm. Mass of membrane, m, was 0.3826 gr and effective area of membrane measured, A, was 192 cm². With PC density, ρ , is 1.2 gr/cm³, overall porosity of membrane, ε , can be calculated as follows:

$$\varepsilon = \frac{V_{void}}{V_{tot}}$$

$$= \frac{V_{tot} - V_{pol}}{V_{tot}}$$

$$= \frac{lA - (m/\rho)}{lA}$$

$$= \frac{0.00365 \times 192 - (0.3826/1.2)}{0.00365 \times 192}$$

$$= 0.5450$$

$$\varepsilon(\%) = 0.5450 \times 100\%$$

Coagulation Value

D.1. Coagulation Value at Various Solvent - Non-solvent Pair

Result of titration method to determine the coagulation value of solution at various solvent – non-solvent pair is tabulated at Table D.1

Solutio	~~~~	C	Coagulation value					
Solutio	11	Run 1	Run 2	Average				
	EtOH	7.49	7.4	7.45				
DCM	PrOH	8.41	8.3	8.36				
	BuOH	8.52	8.4	8.46				
	EtOH	8.36	8.25	8.31				
Chloroform	PrOH	8.77	8.7	8.74				
	BuOH	9.3	9.23	9.27				

 Table D.1 Coagulation value of various solvent-non-solvent mixtures

Result of titration method to determine the coagulation value of solution at various BuOH concentration is tabulated at Table D.2.

D.2. Coagulation Value of Solution at Various BuOH Concentration

BuOH	Coa	gulation v	alue (gr)
concentration wt.%	Run 1	Run 2	Average
0	10.38	10.42	10.4
2.5	10.22	10.19	10.205
5	9.3	9.22	9.26
7.5	8.1	8.25	8.175
10	7.33	7.42	7.375

Table D.2 Coagulation value of solution at various BuOH concentration

Gas Permeation

E.1 Gas Permeance and CO₂/CH₄ Ideal Calculations

Permeance of gases was measured by considering the time taken to flow certain amount of gas volume in bubble soap flow meter. As an example, for DCM –BuOH membrane, time taken to flow 0.1 ml of CO₂ was 20.44 seconds at 1 barg feed pressure. The effective area of membrane, A, is 13.5 cm² and testing temperature is 27° C. Hence the permeance of CO₂ gas can be determined as follows:

CO₂ volumetric flow rate,
$$Q_{,} = \frac{\Delta V}{\Delta t_{CO_2}}$$
$$= \frac{0.1}{20.44}$$
$$= 0.00489 \,\mathrm{cm}^3/\mathrm{s}$$

This volumetric flow rate, Q, is corrected to standard temperature and pressure (STP), Q_{STP} , as follows:

$$\frac{V_{(STP)}}{V_{300K}} = \frac{273K}{300K}$$
$$Q = \frac{V}{t}$$
$$\frac{Q_{(STP)}}{Q_{300K}} = \frac{273K}{300K}$$
$$Q_{STP} = \frac{273K}{300K} \times 0.00489$$
$$= 0.00445 \text{ cm}^3 (STP)/s$$

 CO_2 flux, J_{CO_2} , is, therefore,

$$J_{CO_2} = \frac{Q_{STP}}{A} = \frac{0.00445}{13.5} = 3.3 \times 10^{-4} \ cm^3 (STP) / cm^2 .s$$

Once CO₂ flux, J_{CO_2} , was determined, the CO₂ permeance, $\frac{P}{l}$, can be calculated using the following formula:

$$\frac{P}{l} = \frac{J_{CO_2}}{\Delta p}$$
$$= \frac{3.3 \times 10^{-4} \frac{cm^3 (STP)}{cm^2 .s}}{1bar \times 76 \frac{cmHg}{bar}}$$
$$= 4.34 \times 10^{-6} \frac{cm^3 (STP)}{cm^2 .cmHg .s}$$
$$= 4.34 \ GPU$$

Similarly, CH₄ permeance, $\frac{P}{l}$, can be calculated using the same method. For DCM-EtOH membrane, CH₄ permeance obtained is 0.063 *GPU* . CO₂/CH₄ ideal selectivity, α_{CO_2/CH_4} , can be calculated by dividing CO₂ permeance over CH₄ permeance as follows:

$$\alpha_{CO_2/CH_4} = \frac{P/l_{CO_2}}{P/l_{CH_4}}$$
$$= \frac{4.34}{0.063}$$

= 68.89

E.2 Data of Permeation Results

Table E.1.Gas permeation results for DCM/EtOH membrane

P(bar)	fco2	t CH4	A (cm ²)	کر ڈ	Qcoz	QCH4	(P/I)CO ₂	(P/I)CH4	Selectivity
	(s)	(8)	,	(cm ⁻)	(cm (S1P)/s)	(cm ⁽ S1P)/s)	(U'1)	(GPU)	CO ₂ /CH ₄
1	88.75	183.94	13.5	0.5	0.00513	0.00247	4.99684	2.41095	2.07
I	87.98	176.00	13.5	0.5	0.00517	0.00259	5.04057	2.51971	2.00
-	86.88	169.54	13.5	0.5	0.00524	0.00268	5.10439	2.61572	1.95
-	87.04	170.12	13.5	0.5	0.00523	0.00267	5.09501	2.60681	1.95
	87.66	174.90	13.50	0.50	0.01	0.0026	5.06	2.54	1.99
	0.86	3.32	0.00	0.00	0.86	3.25	0.86	3.25	2.45
2	48.31	86.96	13.5	0.5	0.00942	0.00523	9.17967	5.09970	1.80
2	48.18	86.59	13.5	0.5	0.00944	0.00525	9.20444	5.12149	1.80
2	47.58	85.97	13.5	0.5	0.00956	0.00529	9.32051	5.15842	1.81
2	47.61	86.06	13.5	0.5	0.00956	0.00529	9.31464	5.15303	1.81
	47.92	86.40	13.50	0.50	0.01	0.01	9.25	5.13	1.80
	0.69	0.47	0.00	0.00	0.69	0.47	0.69	0.47	0.25
ŝ	57.16	51.53	13.5	0.5	0.00796	0.00883	7.75839	8.60605	0.90
ŝ	50.63	49.00	13.5	0.5	0.00899	0.00929	8.75903	9.05040	0.97
3	34.57	49.38	13.5	0.5	0.01316	0.00921	12.82817	8.98076	1.43
з	34.26	48.31	13.5	0.5	0.01328	0.00942	12.94424	9.17967	1.41
	44.16	49.56	13.50	0.50	0.01	0.01	10.57	8.95	1.18
	22.67	2.43	0.00	0.00	22.14	2.38	22.14	2.38	20.69
4	27.62	34.09	13.5	0.5	0.01647	0.01335	16.05611	13.00879	1.23
4	27.78	33.60	13.5	0.5	0.01638	0.01354	15.96364	13.19851	1.21
4	27.62	33.12	13.5	0.5	0.01647	0.01374	16.05611	13.38979	1.20
4	27.60	32.99	13.5	0.5	0.01649	0.01379	16.06775	13.44255	1.20
	27.66	33.45	13.50	0.50	0.02	0.01	16.04	13.26	1.21
	0.26	1.30	0.00	0.00	0.26	1.29	0.26	1.29	1.26
5	24.03	23.78	13.5	0.5	0.01893	0.01913	18.45484	18.64886	66.0
S	22.88	23.50	13.5	0.5	0.01989	0.01936	19.38242	18.87105	1.03
\$	23.68	23.29	13.5	0.5	0.01921	0.01954	18.72761	19.04121	0.98
5	23.62	23.32	13.5	0.5	0.01926	0.01951	18.77518	19.01671	0.99
	23.55	23.47	13.50	0.50	0.02	0.02	18.84	18.89	1.00
	1.78	0.83	0.00	0.00	1.80	0.83	1.80	0.83	1.76
	P(bar)		tcoz (s) (s) 88.75 88.75 88.75 87.04 87.04 87.04 87.04 87.04 1.78 87.04 1.78 1.78 2.2.67 2.7.62 2.7.62 2.7.62 2.7.62 2.7.62 2.7.62 2.7.63 2.2.7.63 2.7.7.63 2.7.7.63 2.7.7.63 2.7.7.63 2.7.7.63 2.7.7.63 2.7.7.83 2.7.7.63 2.7.7.83 2.7.7.63 2.7.7.7.63 2.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	tcoz tcoz tcui s) s) (s) (s) (s) (s) (s) (s) 88.75 183.94 88.75 183.94 88.75 183.94 88.75 88.75 183.94 176.00 86.88 169.54 176.00 174.90 87.66 174.90 0.86 3.32 48.31 86.96 174.90 87.66 174.90 0.86 3.32 48.31 86.59 174.90 87.66 174.90 0.86 3.32 48.31 86.59 174.90 9.86.96 0.86 0.40 0.47 170.12 125.53 165.95 165.95 165.95 165.95 165.95 165.95 165.95 165.95 15.53 165.95 165.95 165.95 165.95 165.95 165.95 165.95 165.95 165.95 165.95 165.95 165.95 165.95 165.95 165.95 165.95 165.95 17.85 17.85 17.30 17.30	tcoz t_{COZ} t_{CH4} A (cm ²)(s)(s)(s)(s)88.75183.9413.588.75183.9413.587.04170.1213.587.04170.1213.587.06174.9013.5087.06174.9013.5087.06174.9013.5087.06174.9013.5087.06174.9013.5098.8596.6613.547.9286.4013.5547.9286.4013.5547.9286.4013.5547.9286.4013.5534.5749.3813.5534.5749.3813.5527.6234.0913.5527.6233.4513.5527.6333.4513.5527.6633.4513.5527.6633.4513.5527.6633.4513.5527.6823.2913.5527.6923.2913.5527.6523.2913.5523.6823.2913.5523.6823.2913.5523.6823.2913.5523.6723.3213.5523.680.0023.5523.4713.501.780.830.00	tcoztcoztcmdtcmd V (cm^3) V (s)(s)(s)(s)(cm) (cm^3) (cm)88.75183.9413.50.50.50.588.75183.9413.50.50.50.587.04170.1213.500.500.500.5087.06174.9013.500.500.500.687.06174.9013.500.500.500.687.06174.9013.500.000.000.000.863.320.000.000.000.5048.3186.9613.50.50.50.547.9286.4013.550.50.50.547.9286.4013.550.50.50.547.9286.4013.550.50.50.547.9286.4013.550.50.50.547.9286.4013.550.50.50.534.5749.3813.550.50.50.534.5749.3813.550.50.50.527.6233.4513.550.50.50.527.6333.4513.550.50.50.527.6433.4513.550.50.50.527.6533.4513.550.50.50.527.6633.4513.550.50.50.527.6633.4513.550.50.50.5	$ \begin{array}{c ccccc} t_{\rm COZ} & t_{\rm CH4} & {\rm A} \left({\rm cm}^2 \right) & {\rm V} & {\rm Coz}^2 \left({\rm cm}^3 \right) & {\rm STP} \right) \\ (s) & (s) & (s) & (s) & (s) & (s) & (s)^2 \left({\rm cm}^3 \left({\rm STP} \right) \right) & (cm^3 \left({\rm STP} \right) \right) \\ \hline 88.75 & 183.94 & 13.5 & 0.5 & 0.00517 & 0.8 \\ 87.04 & 176.00 & 13.5 & 0.5 & 0.00523 & 0.8 \\ 87.04 & 170.12 & 13.5 & 0.5 & 0.00942 & 0.8 \\ 87.04 & 170.12 & 13.5 & 0.5 & 0.00942 & 0.8 \\ 87.06 & 174.90 & 13.50 & 0.50 & 0.01 \\ 0.86 & 3.32 & 0.00 & 0.00 & 0.00 & 0.86 \\ 48.31 & 86.59 & 13.5 & 0.5 & 0.00944 & 0 \\ 47.92 & 86.40 & 13.50 & 0.50 & 0.01316 & 0.8 \\ 47.92 & 86.40 & 13.50 & 0.50 & 0.01316 & 0.8 \\ 57.16 & 51.53 & 13.5 & 0.5 & 0.00956 & 0 \\ 57.16 & 51.53 & 13.5 & 0.5 & 0.01316 & 0 \\ 57.16 & 51.53 & 13.5 & 0.5 & 0.01316 & 0 \\ 57.16 & 51.53 & 13.5 & 0.5 & 0.01316 & 0 \\ 57.16 & 51.53 & 13.5 & 0.5 & 0.01316 & 0 \\ 27.62 & 33.42 & 13.50 & 0.50 & 0.01338 & 0 \\ 27.66 & 33.45 & 13.50 & 0.50 & 0.01647 & 0 \\ 27.66 & 33.45 & 13.50 & 0.50 & 0.01647 & 0 \\ 27.66 & 33.45 & 13.50 & 0.50 & 0.01638 & 0 \\ 27.16 & 33.29 & 13.5 & 0.5 & 0.01649 & 0 \\ 27.66 & 33.45 & 13.50 & 0.50 & 0.01638 & 0 \\ 27.66 & 33.45 & 13.50 & 0.50 & 0.01638 & 0 \\ 27.66 & 33.45 & 13.50 & 0.50 & 0.01638 & 0 \\ 27.66 & 33.45 & 13.50 & 0.50 & 0.01638 & 0 \\ 27.66 & 33.45 & 13.50 & 0.50 & 0.01638 & 0 \\ 27.66 & 33.45 & 13.50 & 0.50 & 0.01639 & 0 \\ 27.66 & 33.45 & 13.50 & 0.50 & 0.01639 & 0 \\ 27.66 & 33.45 & 13.50 & 0.50 & 0.01639 & 0 \\ 27.66 & 23.68 & 23.29 & 13.5 & 0.5 & 0.01929 & 0 \\ 27.66 & 23.55 & 23.47 & 13.50 & 0.50 & 0.020 & 0.02 \\ 23.67 & 0.83 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 \\ 27.68 & 0.83 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 27.60 & 0.01926 & 0 \\ 27.60 & 0.01926 & 0 \\ 27.60 & 0.01926 & 0 & 0.00 & 0.00 & 0.00 & 0.00 \\ 27.60 & 0.01926 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 27.8 & 0.01926 & 0 & 0.00 & 0$		

membrane
НО
0
2
Z
R
X
÷
Q
Ę
results
Ц
Ξ
ğ
ă
Ë
ğ
S.
, B
9
2
Ξ
<u>e</u>
ē
2
<u> </u>

Membrane	Run	D(har)	t _{co2}	t _{CH4}	A (am ²)	Λ	Qco2	QCH4	(P/I)CO,	(P/I)CH,	Selectivity
number	number	1 (1001)	(s)	(s)		(cm ³)	(cm ³ (STP)/s)	(cm ³ (STP)/s)	(GPU)	(GPU)	co,/cH
M		-	28.06	2612.50	13.5	0.1	0.00324	0.00003	3.16087	0.03395	93 10
7 7 7 7	6		28.04	2610.00	13.5	0.1	0.00325	0.00003	3.16312	0.03398	93.08
M2	1	-	27.46	2580.20	13.5	0.1	0.00331	0.00004	3.22993	0.03437	93.96
	2	-	27.46	2588.50	13.5	0.1	0.00331	0.00004	3.22993	0.03426	94.26
	Average		27.76	2597.80	13.50	0.10	0.0033	0.00004	3.20	0.03	93.60
	RSTD (%)		1.06	0.53	0.00	0.00	1.06	0.53	1.06	0.53	0.56
MI		2	21.00	699.38	13.5	0.1	0.00433	0.00013	2.11176	0.06341	33.30
	2	7	21.04	697.80	13.5	0.1	0.00433	0.00013	2.10775	0.06355	33.17
M2	1	61	20.96	690.10	13.5	0.1	0.00434	0.00013	2.11579	0.06426	32.92
	. 2	7	20.78	691.20	13.5	0.1	0.00438	0.00013	2.13412	0.06416	33.26
	Average		20.95	694.62	13.50	0.10	0.0043	0.00013	2.12	0.06	33.16
	RSTD (%)		0.47	0.58	0.00	0.00	0.48	0.58	0.48	0.58	0.44
MI	1	ε	17.64	352.80	13.5	0.1	0.00516	0.00026	1.67600	0.08380	20.00
	2	m	17.52	352.60	13.5	0.1	0.00519	0.00026	1.68748	0.08385	20.13
M2		m	16.98	350.60	13.5	0.1	0.00536	0.00026	1.74115	0.08433	20.65
	5	m	17.02	350.20	13.5	0.1	0.00535	0.00026	1.73705	0.08442	20.58
	Average		17.29	351.55	13.50	0.10	0.0053	0.0003	1.7104	0.0841	20.3373
	KSID (%)		1.70	0.33	0.00	0.00	0.33	1.70	0.33	1.37	0.33
MI		4	14.14	277.80	13.5	0.1	0.00644	0.00033	1.56814	0.07982	19.65
	2	4	14.26	277.00	13.5	0.1	0.00638	0.00033	1.55494	0.08005	19.42
M2	- 4	4	13.98	276.20	13.5	0.1	0.00651	0.00033	1.58609	0.08028	19.76
	7	4	13.94	276.30	13.5	0.1	0.00653	0.00033	1.59064	0.08025	19.82
,	Average		14.08	276.83	13.50	0.10	0.0065	0.0003	1.5750	0.0801	19.6622
	KSID (%)		0.91	0.23	0.00	0.00	0.91	0.23	0.91	0.23	0.77
MI		S	11.70	207.80	13.5	0.1	0.00778	0.00044	1.51614	0.08536	17.76
	2	5	11.58	207.60	13.5	0.1	0.00786	0.00044	1.53185	0.08545	17.93
M2		S.	11.48	206.80	13.5	0.1	0.00793	0.00044	1.54519	0.08578	18.01
	2	5	11.52	206.90	13.5	0.1	0.00790	0.00044	1.53983	0.08574	17.96
	Average		11.57	207.28	13.50	0.10	0.0079	0.0004	1.5332	0.0856	17.9155
	RSTD (%)		0.72	0.21	0.00	0.00	0.71	0.21	0.71	0.21	0.53

membrane
HC
uOF
DCM/B
Q
Р
Ö.
S
results
permeation res
bei
Gas]
е н
ble
La

Membrane number	Run number	P(bar)	t _{co2} (s)	t _{CH4} (s)	A(cm ²)	V (cm ³)	Qco2 (cm ³ (STP)/s)	Q _{CH4} (cm ³ (STP)/s)	(P/l)CO ₂ (GPU)	(P/I)CH4 (GPU)	Selectivity CO ₂ /CH ₄
W	-	1	20.44	1410.00	13.5	0.1	0.00445	0.00006	4.33923	0.06290	68.98239
1 147	2		20.78	1490.00	13.5	0.1	0.00438	0.00006	4.26824	0.05953	71.70356
ĊŴ			20.31	1370.00	13.5	0.1	0.00448	0.00007	4.36701	0.06474	67.45446
77147	2		19.68	1320.00	13.5	0.1	0.00462	0.00007	4.50681	0.06719	67.07317
	Average		20.30	1397.50	13.50	0.10	0.0045	0.00007	4.37	0.06	68.80
	RSTD (%)		1.96	4.45	0.00	0.00	1.98	4.40	1.98	4.40	2.65
IM	-	2	12.75	230.00	13.5	0.1	0.00714	0.00040	3.47819	0.19281	18.03922
1111	2	7	12.75	205.00	13.5	0.1	0.00714	0.00044	3.47819	0.21633	16.07843
L CIVI	1	7	12.69	214.50	13.5	0.1	0.00717	0.00042	3.49464	0.20675	16.90307
7	2	7	12.72	216.80	13.5	0.1	0.00715	0.00042	3.48640	0.20455	17.04403
	Average		12.73	216.58	13.50	0.10	0.0071	0.00042	3.48	0.21	17.02
	RSTD (%)		0.20	4.12	0.00	0.00	0.20	4.08	0.20	4.08	4.09
M1	1	ŝ	9.32	96.90	13.5	0.1	0.00976	0.00094	3.17217	0.30510	10.39700
¥ 747	2	ŝ	9.47	90.00	13.5	0.1	0.00961	0.00101	3.12193	0.32850	9.50370
2M Z	1	3	9.38	85.00	13.5	0.1	0.00970	0.00107	3.15188	0.34782	9.06183
	2	3	9.41	87.00	13.5	0.1	0.00967	0.00105	3.14183	0.33982	9.24548
	Average		9.40	89.73	13.50	0.10	0.0097	0.00102	3.15	0.33	9.55
	RSTD (%)		0.58	5.02	0.00	0.00	0.58	4.87	0.58	4.87	5.37
μ	1	4	7.18	66.90	13.5	0.1	0.01267	0.00136	3.08823	0.33144	9.31755
	2	4	7.12	60.00	13.5	0.1	0.01278	0.00152	3.11425	0.36956	8.42697
M2		4	7.10	63.80	13.5	0.1	0.01282	0.00143	3.12303	0.34755	8.98592
	2	4	7.14	64.10	13.5	0.1	0.01275	0.00142	3.10553	0.34592	8.97759
	Average		7.14	63.70	13.50	0.10	0.0128	0.00143	3.11	0.35	8.93
	RSTD (%)		0.41	3.85	0.00	0.00	0.41	3.91	0.41	3.91	3.58
ΙM	1	5	5.65	41.20	13.5	0.1	0.01611	0.00221	3.13961	0.43055	7.29204
1111	2	5	5.68	40.00	13.5	0.1	0.01602	0.00228	3.12303	0.44347	7.04225
, CM	-	S	5.60	33.80	13.5	0.1	0.01625	0.00269	3.16764	0.52482	6.03571
	2	5	5.62	34.20	13.5	0.1	0.01619	0.00266	3.15637	0.51868	6.08541
	Average		5.64	37.30	13.50	0.10	0.0161	0.00246	3.15	0.48	6.61
	RSTD (%)		0.54	8.93	0.00	0.00	0.54	8.90	0.54	8.90	8.48

brane
membi
EtOH 1
Im/E
lofo
Chloi
s for Chl
esult
permeation re
Gas
E 4
Table

Membrane number	Run number	P(bar)	t _{CO2} (s)	t _{CH4} (s)	A (cm ²)	V (cm ³)	Q _{CO2} (cm ³ (STP)/s)	QCH4 (cm ³ (STP)/s)	(P/l)CO ₂ (GPU)	(P/l)CH ₄ (GPU)	Selectivity CO ₂ /CH ₄
M1	F	-	13.00	62.66	13.5	0.5	0.03500	0.00456	34.11306	4.44403	7.68
	2	-	12.44	94.32	13.5	0.5	0.03658	0.00482	35.64870	4.70176	7.58
M2	-	Ļ	11.68	97.65	13.5	0.5	0.03896	0.00466	37.96830	4.54142	8.36
	2	-	11.53	95.38	13.5	0.5	0.03946	0.00477	38.46225	4.64950	8.27
	Average		12.16	96.79	13.50	0.50	0.0375	0.00470	36.55	4.58	7.97
	RSTD (%)		4.88	2.18	0.00	0.00	4.82	2.17	4.82	2.17	4.35
M1	+	2	8.25	57.62	13.5	0.5	0.05515	0.00790	26.87696	3.84823	6.98
	2	2	7.25	48.75	13.5	0.5	0.06276	0.00933	30.58412	4.54841	6.72
M2	~	. 2	7.53	48.13	13.5	0.5	0.06042	0.00945	29.44686	4.60700	6.39
	2	2	7.58	48.25	13.5	0.5	0.06003	0.00943	29.25262	4.59554	6.37
	Average		7.65	50.69	13.50	0.50	0.0596	0.00903	29.04	4.40	6.62
	RSTD (%)		4.80	7.91	0.00	0.00	4.64	7.25	4.64	7.25	3.86
M1	-	ო	6.19	23.09	13.5	0.5	0.07351	0.01971	23.88098	6.40205	3.73
	2	ო	5.37	19.47	13.5	0.5	0.08473	0.02337	27.52761	7.59236	3.63
M2	~	3	5.59	19.39	13.5	0.5	0.08140	0.02347	26.44423	7.62369	3.47
	2	3	5.61	18.19	13.5	0.5	0.08111	0.02501	26.34996	8.12662	3.24
	Average		5.69	20.04	13.50	0.50	0.0802	0.02289	26.05	7.44	3.52
	RSTD (%)		5.34	9.16	0.00	0.00	5.13	8.52	5.13	8.52	5.22
M1	~	4	4.72	4.34	13.5	0.5	0.09640	0.10484	23.48887	25.54549	0.92
	2	4	5.18	2.93	13.5	0.5	0.08784	0.15529	21.40298	37.83872	0.57
M2	-	4	5.23	3.28	13.5	0.5	0.08700	0.13872	21.19836	33.80105	0.63
	2	4	5.18	3.13	13.5	0.5	0.08784	0.14537	21.40298	35.42091	0.60
	Average		5.08	3.42	13.50	0.50	0.0898	0.13605	21.87	33.15	0.68
	RSTD (%)		4.08	15.95	0.00	0.00	4.28	13.94	4.28	13.94	20.69
M1	1	5	3.72	3.19	13.5	5.0	0.12231	0.14263	23.84246	27.80375	0.86
	2	ഹ	3.97	2.12	13.5	0.5	0.11461	0.21462	22.34105	41.83677	0.53
M2	4	ъ	3.62	2.15	13.5	0.5	0.12569	0.21163	24.50109	41.25300	0.59
1	2	വ	3.59	2.37	13.5	0.5	0.12674	0.19198	24.70584	37.42361	0.66
	Average		3.73	2.46	13.50	0.50	0.1223	0.19022	23.85	37.08	0.66
	RSTD (%)		4.01	17.65	0.00	0.00	3.88	15.15	3.88	15.15	18.40

Chloroform/PrOH membrane
or (
4
eation results
oerm(
.Gas p
5
ы
Table

Membrane number	Run number	P(bar)	tco2 (s)	t _{CH4} (s)	A (cm ²)	۲ (cm ³)	Qcoz (cm ³ (STP)/s)	Q _{CH4} (cm ³ (STP)/s)	(P/l)CO ₂ (GPU)	(P/I)CH4 (GPU)	Selectivity CO ₂ /CH ₄
M1		-	27.47	5000.00	13.5	0.1	0.00331	0.00002	3.22876	0.01774	182.01675
-	2		28.29	5000.00	13.5	0.1	0.00322	0.00002	3.13517	0.01774	176.74090
CVN		-	26.90	5000.00	13.5	0.1	0.00338	0.00002	3.29717	0.01774	185.87361
7101	2	-	27.57	5000.00	13.5	0.1	0.00330	0.00002	3.21705	0.01774	181.35655
	Average		27.56	5000.00	13.50	0.10	0.0033	0.00002	3.22	0.02	181.50
	RSTD (%)		1.79	0.00	0.00	0.00	1.79	0.00	1.79	0.00	1.79
NA 1		7	18.81	4200.00	13.5	0.1	0.00484	0.00002	2.35763	0.01056	223.28549
I INI	2	2	19.15	4005.00	13.5	0.1	0.00475	0.00002	2.31577	0.01107	209.13838
CVV	-	2	18.35	3654.80	13.5	0.1	0.00496	0.00002	2.41673	0.01213	199.17166
7101	2	5	18.62	3489.60	13.5	0.1	0.00489	0.00003	2.38169	0.01271	187.41139
1	Average		18.73	3837.35	13.50	0.10	0.0049	0.00002	2.37	0.01	204.75
	RSTD (%)		1.55	7.30	0.00	0.00	1.55	7.30	1.55	7.30	6.44
111	-	e	13.56	1403.80	13.5	0.1	0.00671	0.00006	2.18028	0.02106	103.52507
-	2	e	13.67	1399.80	13.5	0.1	0.00666	0.00007	2.16274	0.02112	102.39941
сW	-	e	12.89	1380.50	13.5	0.1	0.00706	0.00007	2.29361	0.02142	107.09853
7	2	ო	12.63	1296.40	13.5	0.1	0.00721	0.00007	2.34083	0.02281	102.64450
	Average		13.19	1370.13	13.50	0.10	0.0069	0.00007	2.24	0.02	103.92
	RSTD (%)		3.33	3.17	0.00	0.00	3.34	3.28	3.34	3.28	1.81
M1	~	4	10.22	711.20	13.5	0.1	0.00890	0.00013	2.16962	0.03118	69.58904
	2	4	10.34	725.60	13.5	0.1	0.00880	0.00013	2.14444	0.03056	70.17408
CM 2		4	10.25	698.30	13.5	0.1	0.00888	0.00013	2.16327	0.03175	68.12683
7141	2	4	10.10	694.80	13.5	0.1	0.00901	0.00013	2.19539	0.03191	68.79208
	Average		10.23	707.48	13.50	0.10	0.0089	0.00013	2.17	0.03	69.17
	RSTD (%)		0.84	1.71	0.00	0.00	0.84	1.70	0.84	1.70	1.12
M1	~	2	8.12	23.78	13.5	0.1	0.01121	0.00383	2.18458	0.74595	2.92857
	2	£	8.25	23.50	13.5	0.1	0.01103	0.00387	2.15016	0.75484	2.84848
SM		ນ	8.34	23.29	13.5	0.1	0.01091	0.00391	2.12695	0.76165	2.79257
	2	പ	8.19	23.32	13.5	0.1	0.01111	0.00390	2.16591	0.76067	2.84737
	Average		8.23	23.47	13.50	0.10	0.0111	0.00388	2.16	0.76	2.85
	RSTD (%)		0.98	0.83	0.00	0.00	0.98	0.83	0.98	0.83	1.70

nembrane
n/BuOH n
hloroform
sults for C
ermeation resu
Gas pen
Table E.6

	-		-		-	~					-
Membrane	Run number	P(bar)	tcoz (s)	t _{CH4} (s)	A (cm ²)	(cm ³)	Q _{CO2} (cm3 (STP)/s)	Q _{CH4} (cm3(STP)/s)	(P/I)CO ₂ (GPU)	(P/I)CH4 (GPU)	Selectivity CO ₂ /CH ₄
M	~	+	17.03	2000.00	13.5	0.1	0.00534	0.00005	5.20810	0.04435	117.43981
1	2	-	18.63	2000.00	13.5	0.1	0.00488	0.00005	4.76081	0.04435	107.35373
CM	.	-	17.58	2000.00	13.5	0.1	0.00518	0.00005	5.04516	0.04435	113.76564
71/1	2	-	17.62	2000.00	13.5	0.1	0.00516	0.00005	5.03371	0.04435	113.50738
	Average		17.72	2000.00	13.50	0.10	0.0051	0.00005	5.01	0.04	113.02
	RSTD (%)		3.26	0.00	0.00	0.00	3.20	0.00	3.20	0.00	3.20
N.15	-	2	12.06	1091.30	13.5	0.1	0.00755	0.00008	3.67720	0.04064	90.48922
11/1	2	7	12.32	1089.50	13.5	0.1	0.00739	0.00008	3.59959	0.04070	88.43344
CVN		2	11.94	1074.80	13.5	0.1	0.00762	0.00008	3.71415	0.04126	90.01675
71	2	7	11.96	1072.80	13.5	0.1	0.00761	0.0008	3.70794	0.04134	89.69900
	Average		12.07	1082.10	13.50	0.10	0.0075	0.00008	3.67	0.04	89.66
	RSTD (%)		1.25	0.77	0.00	0.00	1.24	0.77	1.24	0.77	0.85
N/1	-	3	9.88	463.25	13.5	0.1	0.00921	0.00020	2.99237	0.06382	46.88765
	2	e	9.85	468.45	13.5	0.1	0.00924	0.00019	3.00149	0.06311	47.55838
CM2	~	e	9.91	459.90	13.5	0.1	0.00918	0.00020	2.98332	0.06428	46.40767
	2	ო	9.80	461.82	13.5	0.1	0.00929	0.00020	3.01680	0.06402	47.12449
	Average		9.86	463.36	13.50	0.10	0.0092	0.00020	3.00	0.06	46.99
	RSTD (%)		0.41	0.68	0.00	0.00	0.41	0.68	0.41	0.68	0.88
M1	-	4	7.65	184.35	13.5	0.1	0.01190	0.00049	2.89850	0.12028	24.09804
	2	4	7.66	182.86	13.5	0.1	0.01188	0.00050	2.89471	0.12126	23.87206
M2	-	4	7.89	182.25	13.5	0.1	0.01153	0.00050	2.81033	0.12167	23.09886
4	2	4	7.92	182.62	13.5	0.1	0.01149	0.00050	2.79968	0.12142	23.05808
	Average		7.78	183.02	13.50	0.10	0.0117	0.00050	2.85	0.12	23.53
	RSTD (%)		1.61	0.44	0.00	0.00	19.1	0.43	1.61	0.43	1.96
M1	-	2	5.85	117.05	13.5	0.1	0.01556	0.00078	3.03227	0.15155	20.00855
	2	പ	6.00	119.92	13.5	0.1	0.01517	0.00076	2.95647	0.14792	19.98667
CW		£	5.84	117.88	13.5	0.1	0.01558	0.00077	3.03746	0.15048	20.18493
	2	£	5.80	117.64	13.5	0.1	0.01569	0.00077	3.05841	0.15079	20.28276
	Average		5.87	118.12	13.50	0.10	0.0155	0.00077	3.02	0.15	20.12
	RSTD (%)		1.29	0.92	0.00	0.00	1.28	0.91	1.28	0.91	0.61

concentration membrane
Η
HOU
Bu
· [•
.t,
2
0
for (
ion results
ult
es
Ľ
ō
ati
õ
E
perm
s permeat
Gas perm
Gas
.7.Gas
Gas
.7.Gas
.7.Gas

Selectivity CO ₂ /CH ₄	1.17310	1.14207	1.08530	1.10553	1.13	2.99	1.08500	1.07555	1.06543	1.04062	1.07	1.55	1.14142	1.12800	1.12270	1.14064	1.13	0.71	1.17030	1.10081	1.13361	1.15493	1.14	2.29	1.10274	1.11684	1.08824	1.10381	1.10	0.92
(P/l)CH4 (GPU)	3.60545	3.57061	3.70794	3.66504	3.64	1.46	2.91949	2.83186	2.96041	2.98432	2.92	1.98	2.59795	2.62098	2.69259	2.68039	2.65	1.50	2.58131	2.70739	2.69423	2.70408	2.67	1.96	2.75447	2.72904	2.82016	2.78037	2.77	1.22
(P/I)CO ₂ (GPU)	4.22956	4.07788	4.02423	4.05180	4.10	1.94	3.16764	3.04581	3.15412	3.10553	3.12	1.53	2.96536	2.95647	3.02297	3.05736	3.00	1.39	3.02091	2.98031	3.05420	3.12303	3.04	1.72	3.03746	3.04790	3.06900	3.06900	3.06	0.45
Q _{CH4} (cm ³ (STP)/s)	0.00370	0.00366	0.00380	0.00376	0.00373	1.46	0.00599	0.00581	0.00607	0.00612	0.00600	1.98	0.00800	0.00807	0.00829	0.00825	0.00815	1.50	0.01059	0.01111	0.01106	0.01110	0.01096	1.96	0.01413	0.01400	0.01447	0.01426	0.01422	1.22
Q _{co2} (cm ³ (STP)/s)	0.00434	0.00418	0.00413	0.00416	0.0042	1.94	0.00650	0.00625	0.00647	0.00637	0.0064	1.53	0.00913	0.00910	0.00930	0.00941	0.0092	1.39	0.01240	0.01223	0.01253	0.01282	0.0125	1.72	0.01558	0.01564	0.01574	0.01574	0.0157	0.45
۲ (cm ³)	0.1	0.1	0.1	0.1	0.10	0.00	0.1	0.1	0.1	0.1	0.10	0.00	0.1	0.1	0.1	0.1	0.10	0.00	0.1	0.1	0.1	0.1	0.10	0.00	0.1	0.1	0.1	0.1	0.10	0.00
A (cm ²)	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00
t _{CH4} (s)	24.60	24.84	23.92	24.20	24.39	1.45	15.19	15.66	14.98	14.86	15.17	2.01	11.38	11.28	10.98	11.03	11.17	1.50	8.59	8.19	8.23	8.20	8.30	2.01	6.44	6.50	6.29	6.38	6.40	1.21
tco2 (s)	20.97	21.75	22.04	21.89	21.66	1.91	14.00	14.56	14.06	14.28	14.23	1.54	9.97	10.00	9.78	9.67	9.86	1.38	7.34	7.44	7.26	7.10	7.29	1.71	5.84	5.82	5.78	5.78	5.81	0.45
P(bar)	-	-	-	-			2	2	2	2			e	°	e	e			4	4	4	4			2	5	5	£		
Run number		2	-	2	Average	RSTD (%)	-	2		2	Average	RSTD (%)	-	7	~	5	Average	RSTD (%)	~	2	-	5	Average	RSTD (%)		N	~	2	Average	RSTD (%)
Membrane number	Į		- CM				M		CM				M1		M2				M1		M2				M		M2			

on membrane
concentrati
wt% BuOH c
ermeation results for 5 v
Table E.8. Gas p

Membrane number	Run number	P(bar)	t _{C02} (s)	t _{CH4} (s)	A(cm ²)	$V (cm^3)$	Qco2 (cm ³ (STP)/s)	Q _{CH4} (cm ³ (STP)/s)	(P/I)CO ₂ (GPU)	(P/I)CH4 (GPU)	Selectivity CO ₂ /CH ₄
N.	-	1	20.44	1410.00	13.5	0.1	0.00445	0.00006	4.33923	0.06290	68.98239
111	2	1	20.78	1490.00	13.5	0.1	0.00438	0.00006	4.26824	0.05953	71.70356
CTV	1		20.31	1370.00	13.5	0.1	0.00448	0.00007	4.36701	0.06474	67.45446
7141	2	1	19.68	1320.00	13.5	0.1	0.00462	0.00007	4.50681	0.06719	67.07317
7	Average		20.30	1397.50	13.50	0.10	0.0045	0.00007	4.37	0.06	68.80
R	RSTD (%)		1.96	4.45	0.00	0.00	1.98	4.40	1.98	4.40	2.65
	1	7	12.75	230.00	13.5	0.1	0.00714	0.00040	3.47819	0.19281	18.03922
1 11/1	2	2	12.75	205.00	13.5	0.1	0.00714	0.00044	3.47819	0.21633	16.07843
M72	1	2	12.69	214.50	13.5	0.1	0.00717	0.00042	3.49464	0.20675	16.90307
7141	2	2	12.72	216.80	13.5	0.1	0.00715	0.00042	3.48640	0.20455	17.04403
7	Average		12.73	216.58	13.50	0.10	0.0071	0.00042	3.48	0.21	17.02
R	RSTD (%)		0.20	4.12	0.00	0.00	0.20	4.08	0.20	4.08	4.09
MI	1	3	9.32	96.90	13.5	0.1	0.00976	0.00094	3.17217	0.30510	10.39700
T TAT	2	3	9.47	90.00	13.5	0.1	0.00961	0.00101	3.12193	0.32850	9.50370
CIV	1	3	9.38	85.00	13.5	0.1	0.00970	0.00107	3.15188	0.34782	9.06183
714	2	£	9.41	87.00	13.5	0.1	0.00967	0.00105	3.14183	0.33982	9.24548
7	Average		9.40	89.73	13.50	0.10	0.0097	0.00102	3.15	0.33	9.55
R	RSTD (%)		0.58	5.02	0.00	0.00	0.58	4.87	0.58	4.87	5.37
IM	-	4	7.18	66.90	13.5	0.1	0.01267	0.00136	3.08823	0.33144	9.31755
1 141	2	4	7.12	60.00	13.5	0.1	0.01278	0.00152	3.11425	0.36956	8.42697
CM	1	4	7.10	63.80	13.5	0.1	0.01282	0.00143	3.12303	0.34755	8.98592
	2	4	7.14	64.10	13.5	0.1	0.01275	0.00142	3.10553	0.34592	8.97759
7	Average		7.14	63.70	13.50	0.10	0.0128	0.00143	3.11	0.35	8.93
R	RSTD (%)		0.41	3.85	0.00	0.00	0.41	3.91	0.41	3.91	3.58
	1	5	5.65	41.20	13.5	0.1	0.01611	0.00221	3.13961	0.43055	7.29204
1111	2	5	5.68	40.00	13.5	0.1	0.01602	0.00228	3.12303	0.44347	7.04225
CM	1	5	5.60	33.80	13.5	0.1	0.01625	0.00269	3.16764	0.52482	6.03571
1	5	5	5.62	34.20	13.5	0.1	0.01619	0.00266	3.15637	0.51868	6.08541
7	Average		5.64	37.30	13.50	0.10	0.0161	0.00246	3.15	0.48	6.61
R	RSTD (%)		0.54	8.93	0.00	0.00	0.54	8.90	0.54	8.90	8.48

concentration membrane
BuOH
Q.
ñ
2
Vt.
×
.10
s fo
Ţ,
su
re
n r
Ĕ
ea
me
G
<u>0</u> .
ug.
E.9.G
5
<u>-</u>
Je
ar
H

		T	1	r		1	T	.	1		т [.]			r.—	T	· · · · ·	T			.	1		r	ı—		ř	1	1	, —	1
Selectivity CO ₂ /CH ₄	0.69	0.68	0.76	0.78	0.73	6.01	0.73	0.73	0.75	0.75	0.74	1.78	0.74	0.74	0.72	0.72	0.73	1.11	0.73	0.71	0.69	0.72	0.71	2.08	0.71	0.70	0.73	0.71	0.71	1.58
(P/I)CH4 (GPU)	258.13142	250.26512	233.40515	222.06799	240.97	5.85	188.07031	187.27609	184.31828	183.40355	185.77	1.05	169.52209	167.22088	170.10732	172.28818	169.78	1.06	164.98132	165.72115	170.04210	164.49176	166.31	1.32	163.94447	164.85866	161.85029	165.47380	164.03	0.84
(P/I)CO ₂ (GPU)	177.60104	169.71672	176.96320	173.09515	174.34	1.82	136.45224	136.70462	139.10596	138.15258	137.60	0.79	124.74537	123.18605	123.18605	123.59805	123.68	0.52	120.24669	117.94409	117.07228	118.19557	118.36	0.98	116.85633	115.33675	118.25861	117.32005	116.94	0.90
Q _{CH4} (cm ³ (STP)/s)	0.26484	0.25677	0.23947	0.22784	0.24723	5.85	0.38592	0.38429	0.37822	0.37634	0.38119	1.05	0.52179	0.51471	0.52359	0.53030	0.52260	1.06	0.67708	0.68012	0.69785	0.67507	0.68253	1.32	0.84104	0.84572	0.83029	0.84888	0.84148	0.84
Qco2 (cm ³ (STP)/s)	0.18222	0.17413	0.18156	0.17760	0.1789	1.82	0.28000	0.28052	0.28545	0.28349	0.2824	0.79	0.38397	0.37917	0.37917	0.38043	0.3807	0.52	0.49349	0.48404	0.48046	0.48507	0.4858	0.98	0.59947	0.59168	0.60667	0.60185	0.5999	06.0
V (cm ³)	5	5	5	5	5.00	0.00	5	5	5	5	5.00	0.00	5	5	s	5	5.00	0.00	5	S	5	5	5.00	0.00	5	5	5	5	5.00	0.00
A (cm ²)	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	00.0	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00
t _{CH4} (s)	17.18	17.72	19.00	19.97	18.47	5.91	11.79	11.84	12.03	12.09	11.94	1.05	8.72	8.84	8.69	8.58	8.71	1.06	6.72	6.69	6.52	6.74	6.67	1.30	5.41	5.38	5.48	5.36	5.41	0.84
t _{co2} (s)	24.97	26.13	25.06	25.62	25.45	1.84	16.25	16.22	15.94	16.05	16.12	0.79	11.85	12.00	12.00	11.96	11.95	0.51	9.22	9.40	9.47	9.38	9.37	0.98	7.59	7.69	7.50	7.56	7.59	0.91
P(bar)	-	1		1			2	2	2	2			3	3	я	б			4	4	4	4			5	5	5	5		
Run number	1	2	1	2	Average	RSTD (%)	1	2	1	2	Average	RSTD (%)	1	2	1	7	Average	RSTD (%)	1	2	1	2	Average	RSTD (%)	1	2	1	2	Average	RSTD (%)
Membrane number	MI		M2				MI		M2				MI		M2				MI		M2				MI		M2			

poration time membrane	C
as permeation results for 0-s eva	
ble E.10.G	- · · · ·
Tal	

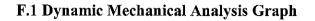
	,																													
Selectivity CO ₂ /CH ₄	1.00	1.10	1.07	1.10	1.07	3.65	1.01	1.05	1.07	1.08	1.05	2.61	1.01	1.02	1.05	1.06	1.04	1.92	1.03	1.29	1.09	1.21	1.16	8.75	1.00	1.04	1.03	1.05	1.03	1.92
(P/I)CH4 (GPU)	1515.2726	1476.5920	1546.9876	1556.0343	1523.72	2.04	1368.7339	1388.7363	1391.6416	1357.5606	1376.67	1.03	1368.7339	1385.8431	1385.8431	1256.2883	1349.18	4.01	1614.5745	1433.6308	1561.5133	1583.8207	1548.38	4.45	2418.9261	2313.7554	2163.2672	1970.9768	2216.73	7.60
(P/I)CO ₂ (GPU)	1518.7321	1622.4504	1660.9355	1705.6530	1626.94	4.25	1380.0927	1461.9883	1484.8319	1468.4430	1448.84	2.80	1385.8431	1412.3242	1453.9993	1331.7411	1395.98	3.18	1663.0117	1847.7908	1705.6530	1922.5569	1784.75	5.88	2418.9261	2397.1340	2217.3489	2078.7646	2278.04	6.11
Q _{CH4} (cm3(STP)/s)	1.555	1.515	1.587	1.596	1.56334	2.04	2.809	2.850	2.856	2.786	2.82492	1.03	4.213	4.266	4.266	3.867	4.15277	4.01	6.626	5.884	6.408	6.500	6.35457	4.45	12.409	11.870	11.098	10.111	11.37183	7.60
Qco2 (cm3 (STP)/s)	1.558	1.665	1.704	1.750	1.6692	4.25	2.832	3.000	3.047	3.013	2.9730	2.80	4.266	4.347	4.475	4.099	4.2968	3.18	6.825	7.583	7.000	7.890	7.3246	5.88	12.409	12.297	11.375	10.664	11.6864	6.11
V (cm ³)	.15	15	15	15	15.00	0.00	15	15	15	15	15.00	0.00	15	15	15	15	15.00	0.00	15	15	15	15	15.00	0.00	15	15	15	15	15.00	0.00
A (cm ²)	. 13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00
t _{CH4} (s)	8.78	9.01	8.60	8.55	8.74	2.06	4.86	4.79	4.78	4.90	4.83	1.03	3.24	3.20	3.20	3.53	3.29	4.19	2.06	2.32	2.13	2.10	2.15	4.64	1.10	1.15	1.23	1.35	1.21	7.82
t _{CO2} (s)	8.76	8.20	8.01	7.80	8.19	4.36	4.82	4.55	4.48	4.53	4.60	2.88	3.20	3.14	3.05	3.33	3.18	3.20	2.00	1.80	1.95	1.73	1.87	5.85	1.10	1.11	1.20	1.28	1.17	6.25
P(bar)	1	1	1	1			2	5	2	2			3	3	3	Э			4	4	4	4			5	5	5	5		
Run number	1	2	1	2	Average	RSTD (%)	1	2	1	2	Average	RSTD (%)	1	2	1	2	Average	RSTD (%)	1	7	1	5	Average	RSTD (%)	1	2	1	2	Average	RSTD (%)
Membrane number		TIAT	L L L	7141			LYN			7141		1	1 F M	TAT	CVN	7147			111	TTAT	- CM	714			IM	ITAI	CVV	7141		

ne
e membra
le mo
1 tim
vaporation ti
s evap
-S
<u>ы</u>
or 20
44
ts
tion results for
ion
g
perme
Jas
1.
E.1]
Ŧ
le
<u>_</u>
Ta

Selectivity CO ₂ /CH ₄	0.69			0.78	0.73	6.01	0.73	0.73	0.75	0.75	0.74	1.78	0.74	0.74	0.72	0.72	0.73	1.11	0.73	0.71	0.69		0.71	2.08	0.71	0.70	0.73	0.71	0.71	1 58
(P/I)CH4 (GPU)	258.13142	250.26512	233.40515	222.06799	240.97	5.85	188.07031	187.27609	184.31828	183.40355	185.77	1.05	169.52209	167.22088	170.10732	172.28818	169.78	1.06	164.98132	165.72115	170.04210	164.49176	166.31	1.32	163.94447	164.85866	161.85029	165.47380	164.03	0.84
(P/I)CO ₂ (GPU)	177.60104	169.71672	176.96320	173.09515	174.34	1.82	136.45224	136.70462	139.10596	138.15258	137.60	0.79	124.74537	123.18605	123.18605	123.59805	123.68	0.52	120.24669	117.94409	117.07228	118.19557	118.36	0.98	116.85633	115.33675	118.25861	117.32005	116.94	0.90
Q _{CH4} (cm ³ (STP)/s)	0.26484	0.25677	0.23947	0.22784	0.24723	5.85	0.38592	0.38429	0.37822	0.37634	0.38119	1.05	0.52179	0.51471	0.52359	0.53030	0.52260	1.06	0.67708	0.68012	0.69785	0.67507	0.68253.	1.32	0.84104	0.84572	0.83029	0.84888	0.84148	0.84
Q _{CO2} (cm ³ (STP)/s)	0.18222	0.17413	0.18156	0.17760	0.1789	1.82	0.082.0	0.28052	0.28545	0.28349	0.2824	62:0	0.38397	0.37917	0.37917	0.38043	0.3807	0.52	0.49349	0.48404	0.48046	0.48507	0.4858	0.98	0.59947	0.59168	0.60667	0.60185	6665.0	06.0
V (cm ³)	. S	5	5	5	5.00	0.00	5	5	5	5	5.00	00'0	5	5	5	·· 5	5.00	0.00	5	5	5	5	5.00	0.00	5	S	5	5	2.00	0.00
A (cm ²)	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00
t _{CH4} (s)	17.18	17.72	19.00	19.97	18.47	5.91	11.79	11.84	12.03	12.09	11.94	1.05	8.72	8.84	8.69	8.58	8.71	1.06	6.72	69.9	6.52	6.74	6.67	1.30	5.41	5.38	5.48	5.36	5.41	0.84
tco2 (s)	24.97	26.13	25.06	25.62	25.45	1.84	16.25	16.22	15.94	16.05	16.12	0.79	11.85	12.00	12.00	11.96	11.95	0.51	9.22	9.40	9.47	9.38	9.37	0.98	7.59	7.69	7.50	7.56	7.59	0.91
P(bar)	1	1	-	-			2	2	5	2			3	ŝ	3	3			4	4	4	4			5	5	5	5		
Run number	1	2	1	2	Average	RSTD (%)	1	2	1	2	Average	RSTD (%)	1	2	1	2	Average	RSTD (%)	1	2	1	2	Average	RSTD (%)	1	2	1	2	Average	RSTD (%)
Membrane number	IM		M2				MI		M2				M1		M2			-	M1		M2				MI		M2			

e
brane
oration time membra
time r
L ti
tion
ora
ap(
ev
ŝ
60
s permeation results for 60-s evapor
ts
sul
re
on
ati
ne
en
s p
σ,
2 .G
pľ€
La

Membrane	Run number	P(bar)	t _{C02} (s)	t _{CH4} (s)	A (cm^2)	(cm^3)	Q _{CO2} (cm3 (STP)/s)	Q _{CH4} (cm3(STP)/s)	(P/I)CO ₂ (GPU)	(P/I)CH₄ (GPU)	Selectivity CO ₂ /CH ₄
MI			46.13	41.43	13.5	5	0.09863	0.10982	96 13479	107 04074	0.90
L	2	1	46.22	33.97	13.5	5	0.09844	0.13394	95.94760	130.54748	0.73
M2	-	1	46.19	33.81	13.5	5	0.09851	0.13458	96.0091	131.16527	0.73
	2	1	46.57	33.74	13.5	5	0.09770	0.13485	95.22649	131.43740	0.72
	Average		46.28	35.74	13.50	5.00	0.0983	0.12830	95.83	125.05	0.77
	RSTD (%)		0.37	9.20	0.00	0.00	0.37	8.32	0.37	8.32	9.41
۲Щ ۲Щ	1	2	30.25	23.03	13.5	5	0.15041	0.19757	73.30079	96.28089	0.76
	7	7	30.28	23.09	13.5	5	0.15026	0.19706	73.22817	96.03070	0.76
M2	1	7	30.78	22.98	13.5	5	0.14782	0.19800	72.03863	96.49038	0.75
	2	2	31.02	23.37	13.5	5	0.14668	0.19469	71.48127	94.88014	0.75
	Average		30.58	23.12	13.50	5.00	0.1488	0.19683	72.51	95.92	0.76
	RSTD (%)		1.08	0.65	0.00	0.00	1.07	0.65	1.07	0.65	0.85
MI	1	3	22.69	17.25	13.5	5	0.20053	0.26377	65.14908	85.69464	0.76
	2	ю	23.06	17.35	13.5	5	0.19731	0.26225	64.10376	85.20073	0.75
M2	1	3	23.31	17.30	13.5	5	0.19520	0.26301	63.41624	85.44697	0.74
	2	5	23.54	17.18	13.5	. 5	0.19329	0.26484	62.79663	86.04381	0.73
	Average		23.15	17.27	13.50	5.00	0.1966	0.26347	63.87	85.60	0.75
	RSTD (%)		1.36	0.36	0.00	0.00	1.37	0.36	1.37	0.36	1.53
Ξ Ξ	-	4	18.28	13.66	13.5	5	0.24891	0.33309	60.64959	81.16211	0.75
	7	4	18.35	13.65	13.5	5	0.24796	0.33333	60.41823	81.22157	0.74
M2		4	18.73	13.50	13.5	5	0.24293	0.33704	59.19244	82.12403	0.72
	2	4	18.84	13.38	13.5	5	0.24151	0.34006	58.84684	82.86057	0.71
	Average		18.55	13.55	13.50	5.00	0.2453	0.33588	59.78	81.84	0.73
	RSTD (%)		1.29	0.85	0.00	0.00	1.29	0.86	1.29	0.86	2.13
M1		Ś	15.29	11.13	13.5	5	0.29758	0.40881	58.00782	79.68909	0.73
	2	ŝ	15.53	11.09	13.5	5	0.29298	0.41028	57.11137	79.97652	0.71
M2	1	5	15.85	11.11	13.5	5	0.28707	0.40954	55.95833	79.83254	0.70
	2	5	15.58	11.05	13.5	5	0.29204	0.41176	56.92809	80.26602	0.71
	Average		15.56	11.10	13.50	5.00	0.2924	0.41010	57.00	79.94	0.71
Ľ.	RSTD (%)		1.28	0.27	0.00	0.00	1.28	0.27	1.28	0.27	1.37


Selectivity CO ₂ /CH ₄	0.69	0.68	0.76	0.78	0.73	6.01	0.73	0.73	0.75	0.75	0.74	1.78	0.74	0.74	0.72	0.72	0.73	1.11	0.73	0.71	0.69	0.72	0.71	2.08	0.71	0.70	0.73	0.71	0.71	1.58
(P/I)CH4 S (GPU) (58.13142	250.26512	33.40515	222.06799	240.97	5.85	188.07031	187.27609	184.31828	183.40355	185.77	1.05	169.52209	167.22088	170.10732	72.28818	169.78	1.06	164.98132	165.72115	170.04210	164.49176	166.31	1.32	163.94447	164.85866	161.85029	165.47380	164.03	0.84
(P/I)CO ₂ (GPU)	177.60104 2			173.09515 2	174.34	1.82	24			38.15258 1		0.79	124.74537 1	123.18605 1		23.59805 1		0.52					118.36	0.98		115.33675 1		17.32005 1	116.94	0.90
Q _{CH4} (cm ³ (STP)/s)	0.26484	0.25677	0.23947	0.22784	0.24723	5.85		0.38429		0.37634	0.38119	1.05	0.52179	0.51471		0.53030	0.52260	1.06	0.67708	0.68012	0.69785		0.68253	1.32		0.84572	0.83029	0.84888	0.84148	0.84
Q _{CO2} (cm ³ (STP)/s)	0.18222	0.17413	0.18156	0.17760	0.1789	1.82	0.28000	0.28052	0.28545	0.28349	0.2824	0.79	0.38397	0.37917	0.37917	0.38043	0.3807	0.52	0.49349	0.48404	0.48046	0.48507	0.4858	0.98	0.59947	0.59168	0.60667	0.60185	0.5999	0.90
(cm^3)	5	5	5	5	5.00	0.00	5	5	5	5	5.00	0.00	5	5	5	5	5.00	0.00	ş	5	5	5	5.00	0.00	5	5	5	S	5.00	0.00
A (cm ²)	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00
t _{CH4} (s)	17.18	17.72	19.00	19.97	18.47	5.91	11.79	11.84	12.03	12.09	11.94	1.05	8.72	8.84	8.69	8.58	8.71	1.06	6.72	6.69	6.52	6.74	6.67	1.30	5.41	5.38	5.48	5.36	5.41	0.84
t _{co2} (s)	24.97	26.13	25.06	25.62	25.45	1.84	16.25	16.22	15.94	16.05	16.12	0.79	11.85	12.00	12.00	11.96	11.95	0.51	9.22	9.40	9.47	9.38	9.37	0.98	7.59	7.69	7.50	7.56	7.59	0.91
P(bar)	1	1	l	-			2	7	7	7			ŝ	с	б	Э			4	4	4	4			5	5	5	5		
Run number	1	2	1	2	Average	RSTD (%)	1	7	1	2	Average	RSTD (%)		2	1	2	Average	RSTD (%)	1	7	1	2	Average	RSTD (%)	1	2	1	2	Average	RSTD (%)
Membrane number	MI		M2				Ml		M2				M1		M2				M1		M2			ĺ	M1		M2			

	Selectivity CO ₂ /CH ₄	0.54435	0.50442	0.79793	0.68643	0.63	18.42	0.74112	0.70468	0.70396	0.69592	0.71	2.46	0.69754	0.70234	0.70028	0.69064	0.70	0.63	0.68519	0.67126	0.69721	0.69702	0.69	1.55	0.66753	0.68187	0.68882	0.68876	0.68	1.27
-	(P/I)CH4 (GPU)	162.74121	155.43981	110.86745	109.14836	134.55	18.35	82.39870	81.73052	80.45533	81.28112	81.47	0.87	74.35778	73.36142	72.89115	72.60475	73.30	0.91	70.25820	71.16011	69.37888	69.64036	70.11	86.0	69.02253	67.39662	64.83476	64.64574	66.47	2.75
	(P/I)CO ₂ (GPU)	88.58765	78.40696	88.46395	74.92309	82.60	7.33	61.06717	57.59348	56.63727	56.56502	57.97	3.17	51.86781	51.52432	51.04394	50.14358	51.14	1.27	48.14045	47.76710	48.37149	48.54091	48.20	0.60	46.07478	45.95542	44.65960	44.52508	45.30	1.58
	Q _{CH4} (cm ³ (STP)/s)	0.16697	0.15948	0.11375	0.11199	0.13805	18.35	0.16908	0.16771	0.16509	0.16679	0.16717	0.87	0.22887	0.22581	0.22436	0.22348	0.22563	0.91	0.28834	0.29204	0.28473	0.28580	0.28773	0.98	0.35409	0.34574	0.33260	0.33163	0.34102	2.75
brane	Qco2 (cm ³ (STP)/s)	0.09089	0.08045	0.09076	0.07687	0.0847	7.33	0.12531	0.11818	0.11622	0.11607	0.1189	3.17	0.15965	0.15859	0.15711	0.15434	0.1574	1.27	0.19757	0.19604	0.19852	0.19921	0.1978	0.60	0.23636	0.23575	0.22910	0.22841	0.2324	1.58
H mem	V (cm ³)	5	5	S	5	5.00	0.00	5	5	5	5	5.00	0.00	S	5	5	5	5.00	0.00	5	5	5	5	5.00	0.00	5	5	5	5	5.00	0.00
-water/ MeOH membrane	A (cm ²)	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00	13.5	13.5	13.5	13.5	13.50	0.00
	t _{CH4} (s)	27.25	28.53	40.00	40.63	34.10	18.28	26.91	27.13	27.56	27.28	27.22	0.87	19.88	20.15	20.28	20.36	20.17	0.90	15.78	15.58	15.98	15.92	15.82	0.97	12.85	13.16	13.68	13.72	13.35	2.73
results f	t _{co2} (s)	50.06	56.56	50.13	59.19	53.99	7.41	36.31	38.50	39.15	39.20	38.29	3.07	28.50	28.69	28.96	29.48	28.91	1.28	23.03	23.21	22.92	22.84	23.00	0.60	19.25	19.30	19.86	19.92	19.58	1.58
meation	P(bar)	-	1	1	1			2	2	2	2			3	3	ω	ς			4	4	4	4			5	5	5	5		
Table E.14. Gas permeation results for 30/70	Run number	1	2	1	2	Average	RSTD (%)	1	7	1	2	Average	RSTD (%)	1	2	1	2	Average	RSTD (%)	-	2	-1	2	Average	RSTD (%)	-	2	1	2	Average	RSTD (%)
Table E.1	Membrane number	MI		M2				MI		M2				MI		M2				MI		M2				MI		M2			

s for 30/70-water/ MeOH membra
MeOH
30/70-water/
s for 30/70
esults fc
Gas permeation results
Gas
able E.14. Gas
able l

Membrane Characterization

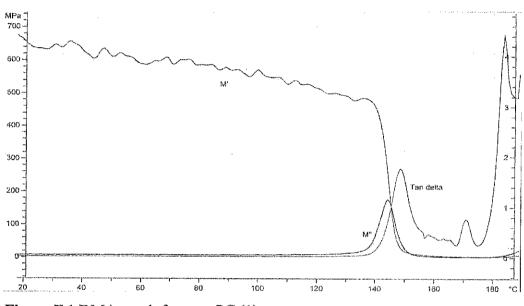


Figure F.1 DMA graph for pure PC (1)

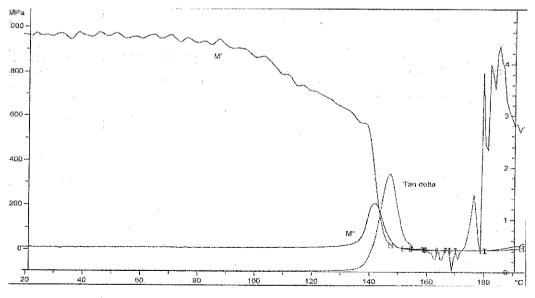
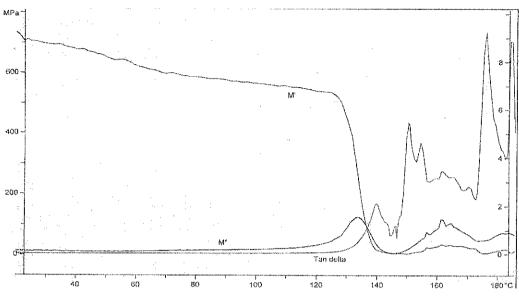
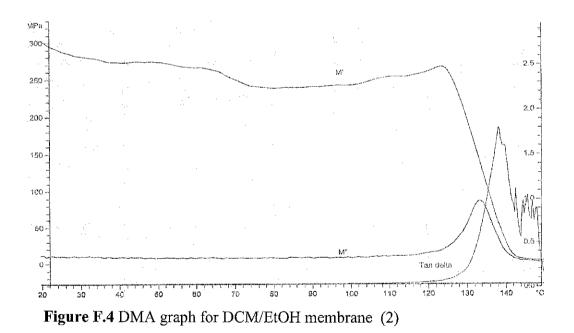
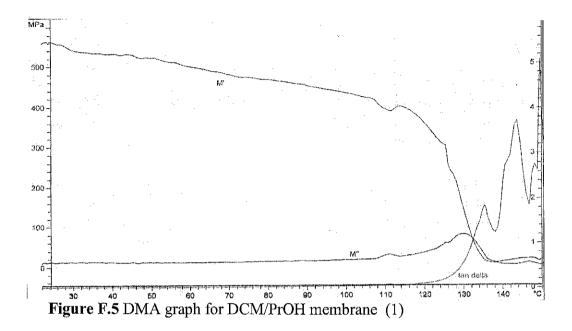
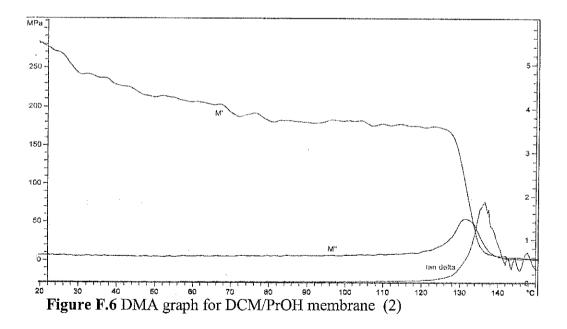
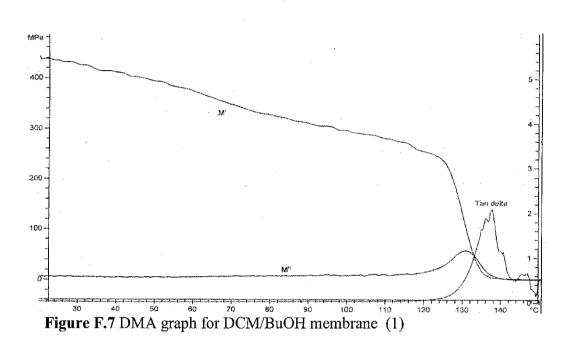
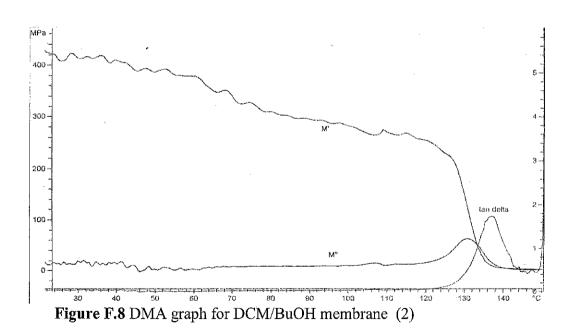


Figure F.2 DMA graph for pure PC (2)


Figure F.3 DMA graph for DCM/EtOH membrane (1)

