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ABSTRACT

This report is documented mainly discuss about the final year project entitled
“Development of 2x2 Model Predictive Model for Crude Distillation Unit”.
Advancements in the oil and gas industries requires parallel progress both in
maximizing production rate and profit. One sector in which those objectives are
accessible is in the refinery business. Core business of the refinery sector is swarmed
around the crude distillation unit (CDU) which separates raw crude into few
marketable products. Due to its high nonlinearity profile and sensitivity of profit
margin, any advancerﬁent in CDU is considered to be essential. Many researches and
engineers use CDU as their case study for projects and paper works to contribute on
the optimization, control and production problems. This piece of literature narrows
it’s scope to control issue of the CDU in which system identification and simulation
of CDU system will be developed. Main purpose of this study is to investigate
whether development of 2 by 2 MIMO model using Model Predictive Controller
(MPC) can increase the performance and reproduce actual data of CDU to the respect
to the variables chosen. Contribution of this research channels to error minimization
produced by MPC in which evaluated by minimal controller moves and fluctuations
of chosen control variables in comparative to its set points. Testing data from virtual
plant will be used as base case to develop relevant robust mathematical model to be
eligible for representing CDU system and performance analysis on the chosen model
were conducted to derive relevant conclusions. Both research work is possible using

MATLAB and HYSYS in which needed materials and toolboxes are available.
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CHAPTER 1 : INTRODUCTION
1.1 Background Study

Technical approach to develop empirical model from experimental data for a
system or process has become the highlight in understanding the dynamic behavior
of a plant system. Theoretical model requires vast information based on chemistry or
physics nature of the system where rigorous model can be modeled to better imitate

the actual real process.

The major disadvantage of theoretical model is that it requires numerous
equations and properties. Instead of that, empirical model is a different approach of
capturing dynamics of a system via experimental data or also known as system
identifications (also known model identification or process identification in some
literature) (Marlin, 2000).

1.1.1 Model Development Using Numerical Methods

Developing empirical model based on experimental data requires plotting
many data to visualize the trends of the system outputs in regards to the inputs. Upon
plotting and identifying appropriate model that might be reasonable for series of data,
unknown parameters need to be calculated. According to Ljung, this step that is to
calculate parameters value is known to be parameter estimation. Proper flow of
methodology for typical system identification process is presented by Ljung (1999)

and discussed in latter section.

This caleulation relates the past input or past output matrix, ®y (with certain
disturbances, €y) as shown in Figure 1. The latest data, Zy calculated over range
inputs or outputs is related by 0, which is the unknown parameter that can be
estimated through various numerical method such as Least Square Method, Linear
Regression Method, Non-Linear Regression Method and et cetera (Freund, et. al,
2006). These methods are used in estimating model parameters in certain models

which are further discussed in latter section.



Zy = 00, +e,

Figure 1 Parameter Estimation Basic Formula

1. 1.2 Tyves of Model for System Identification

There are largely various types of model developed that uses similar concept of
reading input and output from measured data then predicts the dynamic behavior of a
system. This literature will focus on some of the most discussed model by Ljung
(1999), Zhu (2001) , Camacho & Bordons (2003) and Seborg et al (2004). Models
are categorised to be Single-Input-Single-Output (SISO) model or Multiple-Input-
Multiple-Output (MIMO) model where the complexity of model increases as per

mentioned in order.

As aforementioned, those considered models for the project are First Order
Plus Time Delay (FOPTD) model , Auto Regreséive Exogenous (ARX) model and
Sub Space model. These models will be compared in latter works as a part of the
methodology where each model possess its own criterion in confining dynamic
behaviour of certain system. Suitability of model to a system is described by the
reduction of error in imitating as much as plant data by reducing difference between

simulated data from the model to actual measured data.

FOPTD model is an extension of First Order model where term of time delay is
added to cater higher order dynamics that is abandoned in First Order model.
According to Seborg, this model able to improve the conformity of the developed
model to the experimental data. General formula for FOPTD is as follows (Figure 2,
in transfer function). FIR model is type of discrete time model where deals with
numerical values of functions at equally spaced intervals in which most computer

deals with. Hence, continuous time dynamic system fit for FIR model.

ARX model is also type of discrete time model where it captures the dynamics
for SISO and MIMO models (with certain modification) which relates to
autoegressive model where it is defined generally as per shown in Figure 4. Besides
that, State Space model works well for multivariable process with MIMO. Notations

v{t) and w(t) denotes noises where all term in Figure 5 are in matrix form to reduce



the complexity of calcualtions. All formulas are in basic state where further
derivation of formulation is not shown in this paper work. There are other models
that can be fitted for the project however, these four are chosen as to popular

literature (as aforementioned) suggests and discusses about these identification

models.
6(s) = K—— ¥t = ¢T(0)8
) = (s +1) -
Figure 2 FOPTD Model Figure SARX Model

x{t+ 1) = Mx(t) + Nau(t) + Pv(t)
y(t) = Qx{t) + w(r)

Figure 4 State Space Model

1.1.3 Crude Distillation Unit

Distillation unit is vastly applied separation equipment in chemical plants or
refineries which work based on the boiling points of the feed component. It is
renowned technique of preferential separation of more volatile component(s) from
the less volatile compounds by vaporization of the feed. Mass transfer and
distribution of the feed components in the column is governed by vapor-liquid
equilibrium relationship or properties (Dutta, 2007). This technique is widely used in
the petroleum refinery arena for effective separation of crude assay which contains
various hydrocarbons mixture which has high end users demand in global market

(refer Appendices for Refinery Layout) .

Typical crude distillation unit, performed at atmospheric pressure (hereafter
abbreviated as CDU) separates feed crude into products such as kerosene,
naphthalene, diesel and many more depending on current economy constrains and
market need (Prakash, 2003). Hence, the practical goal is to execute optimization for
high production rate with standardized product quality and demand; which may



differ due to demand and supply thrust at low operating cost by maintaining optimal
operating conditions of variables. Thus, control of a CDU becomes the core of
refinery industry which directly touches the performance of the system that results in

effective monetary consequences.

Various literatures suggests numerous techniques to further control to its final
element level compromising up to higher level such as by Liau et al (2004), Motlaghi
et al (2008) and Pannacchia et al (2006). Modifications in advanced control scheme
and expert system were the results obtained by these authors where research on CDU
performed. For example, performance of CDUs which have been executed with MPC
controllers (both in simulation and plant environment) have been proved to be
economically beneficial (Kemalogiu et al , 2006) (Pannacchia et al, 2006). Though
system identification lies within MPC context, Kemaloglu et al, suggests improving

each or any of the steps could tead to the solution of routine control issues.

**Note : Flow sheet for CDU regarding this project is attached hereafter in Appendices. Dynamic
environment for virtual plant is obtained from ASPENHYSYS

1.2 Problem Statement

As aforementioned, CDU control system is proven to be feasible through
appropriate system identification and implementation despite some control issues.
However, there are still gap between theoretical and real environment of CDU due to
non-linearity that CDU posts (Motlaghi, Jalali, & Ahmadabadi, 2008). These areas of
mismatch can be curbed in various ways where any action adhered when
implementing flow or sequence of System Identification process can be given much
scrutiny. Through that, modifications can be made to various models to ensure real
time dynamic behavior can be imitated. Thus, there is a issue of which identification

model closely reproduces CDU data.

This project focuses on implementation and development of model
identification tools with enhanced or better aspects upon proper plant testing in
virtual plant environment with the aid of AspenHysys software. The driving factor
for the problem statement is to develop robust mathematical model representation of

a typical CDU system in empirical model based on measured data. System



identification could be the way to attain more accurate process model out of plant
testing data and hence enhance predictions and replications of data in need of better
quantify the CDU system. The project could be a contribution in the refinery sector
where it better CDU control could be achieved that benefits promising monetary

effects

1.3 Objectives

. Objectives of the project are:

1. To develop 2 by 2 MIMO process model with MPC controller in order to

produce efficient system identification algorithm.

2. To implement chosen MIMO model on CDU virtual plant (HYSYS).

1.4 Scope, Relevancy &Feasibility of the Project

. The scope of the project will involve knowledge of Process Control and
Chemical Engineering field and knowledge of MPC technologies. Besides that,
system identifications techniques and information is much needed to develop process
model from input and output data. All these knowledge will be applied in the
petroleum refinery area where CDU will be taken as case study. Hence, in-detait
knowledge on crude oil and CDU are preferred for better handling and understanding

of the matter investigated.

The project is requires MATLAB and AspenHysys where, identification
models will be developed in MATLAB in which simulation data are obtained from
AspenHysys Refining Package under Dynamic State. Within the proposed
methodology and time frame which is 6-7 months, the project is feasible where upon
completion objectives as listed would be fulfilled. The further methodology as listed
in Section 3.2 will be executed in FYP 2 period. As an extra validation of the
findings, actual plant data could be used to replace simulation data and hence
vindicating the validity of the hypothesis proposed.



CHAPTER 2 : LITERATURE REVIEW AND THEORY

2.1 System Identification

‘Upon plant testing and data generation, proper model identification is vital to

ensure model quality is at its best. Different types of model discussed in Section

1.1.2 gives a brief introduction to system identification. Practical identification

practiced in industry accounts for high budget due to long plant testing time and

disturbances imposed on process due to testing (Zhu & Butoyi, 2002). This gives

opportunity for engineers to opt for different methods such as open loop testing,

closed loop testing and et cetera.

Construction of models form available data
accounts for few steps in order to accurately
identify the dynamic system and convert it into
mathematical model. First, the input output data
need to be maximally informative and able to
capture plants’ dynamics through experiment

designs or normal operation of the plant system.

Next, set of possible candidates (models) is

obtained and appropriate model is chosen with
helps from experienced engineers. Lastly, letting
the data as a guide, the best model is chosen by
mvestigating  which model performs by

reproducing the measures data.

After those three steps, the model needs to

be verified through series of tests that shows
affirmative results along with plant operation data.

Such analysis is known as model validation, where

Por
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Figure 5 Logical Flow of System
Identification Loop (Ljung, 1999).

various procedures are adhered to relate the developed model with actual plant.

Conclusively, the system identification procedure resembles a logical flow as

apparent in Figure 5. Details on deriving proper model is well described by Ljung

(refer References Section).



2.2 MPC Overview

Model Predictive Control (MPC) is established technology of implementing
constrained that refers to a control algorithm that integrates process mode! to predict
the future response of the plant thus, taking necessary action in order to optimize the
performance of the plant. MPC is hierarchical control functions that based on
dynamic constraints control either executed in a Distributed Control System (DCS)
or directly manipulate the end control mechanism such as valves et cetera. MPC
layers (refer Appendices A3) continuously send and retrieve targets values
(setpoints) , limits and objective functions in order to keep the plant parameters at

desired conditions.

Implementation of MPC is much welcomed due to integrated solution for
control problems (Darby & Nikolaou, 2012), in which will be detailed in latter
sections. Performances of CDUs which have been executed with MPC controllers
(both in simulation and plant environment} have been proved to be economicaily
beneficial (Kemaloglu et al , 2006) (Pannacchia et al, 2006). According to Darby
M.IL et al, typical MPC project follows a sequence of actions which are:

1. Pretest and preliminary design
— Determining base level regulatory control for MPC and rechecking

plant instrumentation is satisfactory,
2. Plant Testing
— Plant process is excited by altering variables to generate data for
model identification
3. Model and controller development
— Few models are developed and design of controllers must be
completed

4. Commissioning and training.

— Observing and testing performance of newly added controllers.
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MPC consist of few sub-portions that performs calculation in order accurately
predict future responses of plant variables. As evident in Figure 1 (Darby &
Nikolaou, 2012), vital functions of MPC strategy relies on target selection,
coniroller, plant and estimator. Target selection selects best operating point for the
controlled output and some manipulated variables (y% , u’x ). The target selection
relies on steady state gains of the model. Upon the best operating chosen, the
controller selects the possible future input over a moving horizon to minimize
predicted future controller errors. Whereas, the estimator updates the model

predictions for disturbances and errors.

MPC algorithm can be represented by few mathematical model which are
known as Prediction Model, Objective Function and Control Law. Prediction Model
captured process dynamics and calculates future responses with available
information instantaneously. Prediction Model can consists of an Actual Process
Model such as Impulse Response Model, step Response Model, Transfer Function
Model, State Space Model and many more. Other than that, some Prediction Model
equipped with Disturbance Model to give some error in the input to imitate actual
dynamics of the plant (Camacho & Bordons, 2003).



2.2 Test Design And Data Pre-Treatment

In order to gather necessary data as input to developed model, several tests need
to be performed to gain adequate information on the process through excitation of the
process. In order to achieve this, certain tests are carefully designed for the process
get perturbed with certain values to observe the response of the dynamic system.
Main function test design is to gain intrinsic and extensive knowledge on the
fundamentals of the process and slowly progressing to the input and output data in
expanding process model. The following section discusses the about test deigns and

selecting appropriate data for system identification.

2.2 1 Test Design

Test design is carefully plotied for a given system by first understanding
controller configuration and input-output structure of the system. Types of variables
need to listed and shortlisted for its possibility to distract or alter response of the
system. In usual practice, a experienced engineer and carried out as Plant Testing
period (Campos, et al. 2009). Series of manipulated variable, disturbance variable
and control variables are identitfied and to some extents, some guide from various
literature can be used as guidance in determining appropriate variables before

proceeding to tests (Zhu, 2001).

As suggested by Zhu (2001), in cases of inavailability or incapable to obtain
cerfain data (i.e. analyzers to analyze compositions) due to shortage of
instrumentation devices or sensors, an inferential model can be used to estimate the
values. Identification tests are conducted and discussed by Zhu & Butoyi (2002), Li,
et al. (2005), Kemalogiu et al., 2006), Akpan & Hassapsis (2011) and Darby &
Nikolaou (2012).



2.2.2 Data Pre-Treatment

Upon obtaining plant data, it needs to be given much scrutiny on the output
where unwanted trend need to be reasoned out and hence removed before using it in
identification algorithm. This effort is known as data pre-treatment. Deviation from
normal plant trend may occur due to presence of noise, spikes and outliers in the
system. Besides that, nonlinearities may occur due to process shift in contrary to the
routine of the system. According to Zhu (2001) following are types of pre-treatment
that may apply to plant data which are peak shaving, signal slicing, high-pass

filtering and normalization.

In practical terms, spikes and offset are induced by instrumentation devices and
data acquisition structure. Hence, peak shaving procedures performed on series of
data where prior information on conventional data needs to be known. Limits of the
trends are identified ad standard deviations and certain statistical method is applied
to know the out-of-range values (Freund, et al. 2006). Besides that, signal slicing is
another pr-treatment of data whereportion of signals are removed due tounmeasured
disturbance caused by process shift. Both pre-treatment aforementioned works well

with visual aids suchas process trends and other relevant graphical user interface.

In some cases, slow offset and deviation from process value happends occur du
to feed composition changes or temperature change. As mentioned by Qin (2003),
drifts such as slow variation sets off negative influence in the process data andhence
would be removed from being used in algorithms. For trend correction, data will be
passed through a filter where necessary signals will be removed under a series of
computations. Choice of filters and types of trends correction is further desciribed by
Zhu (2001).

Apart from that, in order to curb variancein magnitude of inputs and outputs,
normalization (in some literature labeled as scaling and offset correction) is
performed. This method is useful in case of reducing weightage of high magnitude
values that will affect quadratic functionfor determining the model.Data pre-
treatment also ranges to delay correction, lowpass filtering and sampling rate

reduction. Further explanationis given out by Zhu (2001) and Qin (2003).

10



2.3 Development and Limitations of System Identification

P Development of System Identification methods :

o

Prediction Error method mostly used in industrial applications in the
early years (Zhu & Butoyi, 2002).

FIR & ARX Models remains popular using Linear Least Square
method. Other numerical methods are reported to be used especially
Linear Regression Method (Qin & Badgwell, 2003).

Subspace model directly yields multivariable state space model in
which complicated models are easily described by any nonlinearities
exist {Darby & Nikolaou, 2012).

» Limitations/Findings of Identification Technology:

-]

Poses longer testing time to obtain data where proper plant testing
requires procedural steps that consumes time, Though simpler
methods are available, most of the developing system identification
process lost in plant testing section. (Camacho & Bordon, 2003)
Dynamic nonlinearities cannot be handled using certain identification
methods due to certain extents of complexities (ex : FIR). Importance
in identifying nonlinearities in a process is crucial in order to develop
a reliable algorithm or model (Zhu, Multivariable System
Identification, 2001) (Nikalaou & Darby, 2012)

No tool to determine whether data are adequate to represent process
dynamic of a plant. Most of the available plant testing iare aided by
experienced engineers or technician in which prior knowledge on the
system is vital (Qin & Badgwell, 2003).

11



CHAPTER 3 : METHODOLOGY
3.1 Case Study : Crude Distillation Unit (CDU)

Taking into consideration that CDU is sensitive and complicated plant structure,
selection of input (manipulated variable) and output (control variable) must reflect
the dynamics of CDU. However, the issue of quantity of input-output is still
intuitive-based and need some trials to run for. In this study, series of trials are being
run from various blocks of input-output (I0) structure to further understand how
many IO is adequate to capture the dynamics of CDU.

|

|

|
.y

l
|

Figure 7 Dynamic Pressure-Flow Indication

CDU contains 3 side strippers and 3 pumparounds (without furnace in HYSYS).
each stream details and specifications are studied for understanding the behavior of
the process. The available model is highly nonlinear and sensitive with five

sidedraws besides top and bottom outlet (Figure 6 shows the main layout of the

plant).
Table 1 CDU Spesifications

Parameters Value
Top Stage Pressure 20.70 psia
Bottom Stage Pressure 31.44 psia
Top Stage Temperature 135C
Bottom Stage Temperature 358C
Trays 29

12



3.2 Research Methodology

The research project required numerous trial and error methods for
distinguishing the best model and procedure of developing one. Informations of
paper works by authors aided the design of the detailed research methodology. The
methodology was designed to develop a mathematical model sufficient to represent
actual dynamic behaviors of the virtual CDU system. Upon obtaining desired model,

the actions of the controllers are compared to the existing one and someendns were

derived.
Model Test &
I/O Seiection .
Analysing
Pre-Testing Design
& Execution Finding
i best model
PRBS Test Design &
Execution
‘ Implementation on i,
Virtual Plant
Mathematical
Model Fitting

Performance
Analysis

Conclusion &
Discussion

Figure 8 Research Methodology

Finding
best model

Shown above is the detailed project methodology for the research project where
steps taken into developing the models were adhered to. These steps are crucial in
determining which model is appropriate for the chosen case study. As CDU is pre-
determined to be the case study and as well satisfy the research objective, first, 2x2
model will be developed then series of model fitting and validation with some
analysis will be done to test and understand the robustness of the developed model.

Brief descriptions on the detailed methodology are as follows in latter section,
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3.2.1 I/O Selection

For this case study, the model is based on two by two multiple-input-
multiple-output (MIMO) system which the variables were selected on the literature
reviews done by Kemaloglu et al and other relevant authors. Interference of input by
introducing deviation from the steady state values requires the need of controllers in
the streams. As such, two product streams were chosen as stated in Table 1. Pressure
and flow profile of streams are main consideration of the CV and MV selections. For
2x2 block, the inputs are AGO Flow Controller Set Point (u2) and Diesel Flow
Controller Set Point (ul). The corresponding outputs are AGO Volume Flow (y2)
and Diesel Volume Flow (y1). It is ensured that the streams are independent of flow
specifications to make sure the dynamic behavior is available [Indication: Purple
(Pressure Specified) and Yellow(Flow Specified)-Figure 6].

Table 2 Input-Output for 2x2 Model

Variable Steady State Value
Input AGO FC OP u2=50.11 %
(Manipulated Variables) Diesel FC OP ul =51.64 %
Output AGO Volume Flow | y2=29.78 m’/hr
(Controlled Variables) | Diesel Volume Flow | yl =127.4 m’/hr

3.2.2. Pre-Test Design & Execution

L SephpdFuPoTesing Upon selection of input and output

AT

configuration, pretesting design is carried
out. According to Qin & Badgewell
(2033) and Richmond & Chen (2012)

{" pretesting exccution in actual plant

Parcontage. increment From Bisady Siata

Tk Al kA e o M e ow
—— et

1. requires long hours and priori knowledge

* on the system. Moreover there are certain

g TR o TR T e

| rules in designing the pretesting for

Figure 9 Step Input Change For SIMO £ WD &
Models system. In this case study, magnitude of
+5% is used with varying time length (the system is set to reach new steady state
upon new input change). Moreover, limitations of +10% change per shift at a time is

adhered to ensure not much fluctuations or any nonlinearities caught in the data. For

14



simplicity, the model is to assumed as linear. The aim of this pretest is to obtain
single-input-multiple-output (SIMO) data to be fitted into First Order models later
within ten controller (input change from steady state) moves. Each input is excited in
similar fashion and data is obtained for further testing and analysis.

3.2.3 PRBS Testing and Execution
Using the SIMO data (gain

e — ——— . and time constant) we can design

T RN atamt T - PRBS test signals accordingly to

| - move multiple inputs simultaneously.

nswmm | - Guide on how to calculate shift time

| . . ' . and total time length is presented in
o 50 . 950 00 400

“ FlgureI{}PRBS 'I‘est.Signals for MIMO  Seborg et al (2004) and Gaikwad &

Models (ul and u2) Rivera. Figure 8 shows the input

signals fro PRBS testing which is conducted in HYSYS (refer Appendix). The
amplitude of PRBS signals is +3% for diesel flow stream and +5% amplitude for
AGO flow stream (amplitude is obtained by observing the pretest data on the
fluctuations and sensitivity). Time interval were made to be one minute and the
testing time length were 1 hour 40 minutes with model tested for 100 moves. The

result of the test is presented in the latter section.

3.2.4. Mathematical Model Fitting

Using the PRBS and step test data, few models can be fitted using MATLAB
System Identification Toolbox. Selected model such First Order Plus Time Delay
model, ARX model and State Space model were tested for various parameters to find
the best fit the data. Each tested data was divided into two sections, one for
estimation and one for validation. Details and explanation on the toolbox are well

explained by Ljung (1997).

The raw data from the test results were pretreated by removing means
(normalization) and reverting some portion of data for Validation Data Set (Ident
Toolbox) - an example on the layout is presented in the Appendix. Estimation of
models chose to ‘Prediction” compare to “Simulation” for higher data accuracy.
Other settings in the Ident Graphical User Interface (GUI) kept as default. The best

15



fittings are evaluated by percentage match of the Validation Data Set to the Working
Data Set (refer Appendix). Therefore, best model can be chosen and proceed further

to next step.

3.2.5. Model Test & Analyzing

Obtained mathematical models with aid of System Identification Toolbox
were tested with series of scenarios by installing Model Predictive Controller (MPC).
The model is disturbed with set point change and load change using MPCToolbox
available in MATLAB (refer Appendix). MPC will help to monitor the robustness of
the model and the performance of the model can be inspected via controller

performance to bring the new set point to its desired value.

Set point change scenario is tested to on Step Input of amplitude 1 where as
the regulator problem were tested to be Gaussian Disturbance with Size = 1 and
Time = 10. These disturbances are tested for acceptably moderate design of control
horizon within 2 time interval. Aggressive move of the controller will deteriorate the
MPC performance in cases of increasing the Control Horizon. The Simulation time is

prolonged twice as the predication horizon for better performance response.

Constraints on the variables are set to be +5% for the manipulated variables
as for the controlled variables, the constraints are left blank in order to monitor how
much it fluctuates than the desired value. The performance of the model is calculated
by area under the curve (using One-Third Simpsons Rule).moreover, number of

controller moves and overshoot were also considered.

Table 3 MPC Design Parameters

Controller Design Parameter Values
Sampling interval ' 5 time units
Control Interval 1 time unit
Prediction Horizon (interval) 100

Control Horizon (interval) 2
Constraints on Manipulated Max Down Rate = -5%
Variables Max Up Rate = +5%
Simulation Time 200 time unit

16



3.3 Project Work

Prelim Research

Exploring HYSYS & MATLAB software

A e g s - e o b S

Identification of appropriate model

Simulation

Figure 11 Project Activities / Work For FYP

From Figure 10, we can know the total flow of the project where
development of model relies within second half of the hierarchy. FYP 1 methodology
close governs the model selection and FYP 2 involves model development and
validation process. Findings from the literature studies shows some advances made
(refer Literature Review Section) lately and further studies on this project will
contribute some knowledge to progression of plant control strategies. Progress of
FYP 1 will be continued in FYP 2 where simulation of selected model with
enhancement of algorithm will be made. Establishment of linkage between
MATLAB and HYSYS is possible as reported by Yusoff et al. Detailed methodology
as illustrated in Figure 8 is to mainly to understand CDU process behavior and

concluding minimal testing effort that could be taken in plant.

17



81

uoneMsssi( punog prey

01

UoNeIuasaI] [BIO

xded feoruyos], o uoIssIuIgng

uoneuassiq Jo Adoo 3os Jo uoisstmgng

UONEMISSI(] JO UOISSImqng Yeid I

SI

14!

£1

(4}

1

01

Vg Wis din

XHAHS-=4d

poday ssaadolg

[opour SuIzAreuy

BuIjopON/SEHd/BunsaId

(uwmjo)) uoyelNSI() UORBMIS 3ty SZA[EUY

NI / rE1RQ

ON

32a{0ag Jo suojsafijy A33f ¥ LB PUBY €°¢




3.4 Tools Required

The software chosen is the is MATLAB and for the simulation data HYSYS
is chosen as it is available in UTP. This software was developed by MathWorks and
AspenTarget respectively where MATLAB accounts for computation software with
embedded toolbox (Identification & MPC Toolbox). Whereas, HYSYS offers

dynamic simulated package for crude distiliation unit in one of the tutorial packages.

3.5 Knowledge required

There are several things that need to be understood in order to conduct the

project successfully. They are:

1) Understanding the process for CDU and its dynamic state and its advantages
in oil refinery

2) Understanding the System Identification sector with its application in process
plants with its latest advancements.

3) Understanding the mathematical models developed for process identification
and its advancements in applications

4) Understanding the programming codes and usage of MATLAB software in
order to generate algorithms.

5) Understanding the difference between models and selecting the appropriate
model that describes CDU the best.

Thus several papers and several books need to be referred to understand all the

topics that are given above in which listed in Reference Section.
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CHAPTER 4 : RESULTS AND DISCUSSION

4.1 Step Test Data

As detailed in Section 3.2.2, step test were performed on the model in open
loop mode (related controller in Manual mode and others in Auto mode) for the
related variables. Opening of valve is stepped in order to make changes in which in
Manual mode the process variable will follow the opening of the valve prompted by
user/technician. Pretest design as shown in Figure 8§ and 11 was conducted on ul and
u2 and the respective response on yl and y2 from HYSYS Data Monitor were saved
(in .csv format file) to be analysed in MATLAB.

2.I5te:004 B

004 R seg0
0.
- f 10 5154 [
: 54T
I
154500 L gpn
0
L

1.08%esi04

AGO - Actual Volume Fow (Sarrel/day)
i
g

' Minlﬂes B

Figure 12 Designed Step Input of ul

As observed above, changes in ul (Diesel FC OP) leaves significant change
in Diesel flow and AGO flow. Some disturbance can be observed where the
responses show some instability at instance of introducing a change over steady state
conditions. Upon initiating a step change both output need to given ample time to

reach new steady state for best result (and to avoid oscillation in response).
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4.2 FOPTD Model

Using System Identification Toolbox, the data from 4.1 were fitted in first order
model to get the intuition on time constants. Interaction of each input to each output
is modeled in FOPTD model to latter design PRBS testing for higher order model
estimation. Each SISO model were fitted to get the transfer function and the time
constants, T. From figure 14, we can say that, approximation for Guiy2 and Gy gives

out lesser best fit in Matlab due to the response of the variables.

Buodsl ouepat- g2 . (g l@ ]
Frle Optlons Style Channel Heip
Measnmﬂmdsmmmmodelm

Measumdand simulaied model uiput 600
0 Best Fits : Bestfits
ut civasaz [ 1 e e
400 ?dﬂ 4 .
I 200
aol 1
. R .
0 ~200:
200 4 1 -400
| -0 b - I 60 : , —
U200 250 300 350 400 i 200 300 400 500 600

- Time i e model icons. | : Time

Flla Dp‘hons Styl: Chanm! Help

' 3-0 Measured and simulateu model mnpul . : 2000 Measured and slmulnteu model oufput 7 :
; BestFits | . ; 3,«»—- | Bestfis
. {l2raer | o os e
i 1000
o k Vv E
0
-10] U
20
- _ a1nu_u
ol lanod
o ae w0 w0 400 ' 2009 : ; '
L _ S A . 200 300 400 . 500 - 60D

Time ' S S Time:

Figure 13 First Order Model Fitting Using Ident Toolbox
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Figure 14 Transfer Functions for First Order Models
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As observed from the transfer function for G, and Gy, interaction is much
evident than effect of ul on y2 or u2 on yl. This easily could be conclude from
Relative Gain Analysis (RGA) using the steady state gain from the transfer functions.
The simple RGA analysis leaves us a clue that interaction between indirect variables

(as aforementioned) are minor.

4.3 PRBS Test Data

Information gained from pretesting was used to design PRBS testing to gain
MIMO model for higher order polynomial estimation. The result from the testing
from HYSYS is shown in Figure 14. Using System Identification Toolbox again, the
result were fitted under ARX and State Space models. PRBS specifications done in
HYSYS were calculated using PRBS Design Guidelines as suggested by Gaikwad

and Rivera.

*  Purple — Diesel Volume Flow(yl) e Red-AGO FC OP (u2)

|
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-
-
g

& &
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o

g

4545 (barrelidsy’ - |

20000 0w 1000 Y
Minutes '

Figure 15 PRBS Test Data
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4.4 Mathematical Models

Flle Optmm Stylc Channel Help : ' File Optlons Style Channel Help - . -
o Measufauafmsinmlated model ommn _ do Mea-’-llredﬂﬂd Simﬂlateﬁmmommﬂ L
o Best Fits ) Best Fits
800 { jam&61: 80.71 . 6003
. lark951: 74.84 . pss8: 90.48
. 400 { farxe61: 74.84 " A0D SRR
20 1 laz21: 67.86 200
0 . D
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Figure 16 ARX Models Figure 17 State Space Models

As evident in the results, ARX models have lower fittings than the State Space
models. The fit percentage are better for those State Space models which estimated
using Parameter Estimation Method (PEM) which involves little complex
mathematical form. However, for simplicity State Space order 4 and ARX with

parameter {8 6 1] were chosen to be further implemented with MPC controller.

4.5 Servo & Regulator Problem

g

% 2 yl_ARX

-

§ i y2_ARX

9 +y1_Sspace .
E

e m y2_Sspace
o

ServoProblem

Regulator Problem

Figure 18 Area Under Curves of Output respect to MPC Scenarios

The results shows that ARX model fluctuates more that State Space model in
which were excited with set point change and load change, ARX exhibits higher area
under the curve (error) percentage. This implies that the higher order polynomials
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behaves unreliably under regulator and servo problems. Comparatively to State

Space model, exhibition of lower percentage of error is evident.

4.6 Implementation on Virtual Plant

16 153 %

i Y

[
(¥

5.0%

Error Percentage (%)
[
[

1.02%

O N B OV ®

MPC

Figure 19 Controller Performance of P1 and MPC

The state space model is found to be reliable and hence implemented on the virtual
plant for comparison of controller performances. The controllers designed in the
model in HYSYS software are proportional-integral (PI) controllers for both AGO
Flow and Diesel Flow. Figure 6 shows the dynamic performance of PI controlier (in

DYNTUT2.hsc) is higher. Settling time and fluctuations are reduced for the MPC

controller using State Space model.

24



CHAPTER 5 : CONCLUSION & RECOMMENDATIONS

5.1 Conclusion

Major conclusion can be drawn is that higher order mathematical model
exhibit less robust performance under certain disturbances. MIMO model of 2x2 able
to recapture actual CDU system if there is simpler representation of mathematical
model or plant models. At the early of the research assumption made that the CDU
behaves linearly where actual case it is not is. The setback of this is that it is
impossible to be validated using actual plant data. However the error reduction in the

estimating lower order state space model is clearly promising.

5.2 Recommendations

The main setback of the research is that is uses virtual plant data obtained
from HYSYS. Better picturization would be evident when using actual CDU data

that has been pre-tested similarly.

e Conduct higher input-output block experiment

¢ Validate findings with actual plant data

e Pre design PRBS testing and MPC controller using proven methodology.

o Consider nonlinearities calculation and estimation method for better capture
the dynamics of CDU.
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