Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

Line Modeling of C02 Corrosion of Offshore Pipeline

Ramli, Mohd Safwan Izzudin (2012) Line Modeling of C02 Corrosion of Offshore Pipeline. Universiti Teknologi PETRONAS. (Unpublished)

[img] PDF
Download (1885Kb)


C02 corrosion has been a recognized problem in oil and gas production and transportation facilities for many years. The common approach in predicting C02 corrosion is by using point modeling where corrosion rate is calculated based on inlet design parameters. This approach is conservative as it only considers the maximum design. Line modeling is multi-point simulation that allows us to get the information on corrosion rates at each point along the pipeline, thus allowing us to make more accurate and precise decisions. This project will analyze both modeling methods and compared both results with the field corrosion rate data. A case study from Malaysia oilfield is chosen for total length of 10 kilometers pipeline. MULTICORP software is used to simulate the point modeling and line modeling. For the first 3 kilometers, both modeling approaches predict almost similar corrosion rates. For the remaining part of the pipeline, which is from 3-7 kilometers, line modeling approach predicts closer corrosion rate to the actual corrosion rate compared to point modeling approach. The accuracy of either point modeling or line modeling depends on variability of main process parameters such as temperature and fluid flow.

Item Type: Final Year Project
Academic Subject : Academic Department - Mechanical Engineering - Materials - Corrosion engineering - Degradation of materials due to temperature, stress and environment
Subject: T Technology > TJ Mechanical engineering and machinery
Divisions: Engineering > Mechanical
Depositing User: Users 2053 not found.
Date Deposited: 06 Nov 2013 10:48
Last Modified: 25 Jan 2017 09:41
URI: http://utpedia.utp.edu.my/id/eprint/10159

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...