Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

Nonlinear Model Predictive Control (NMPC) for Twin Rotor MIMO System (TRMS)

Cheah , Zong Yuan (2016) Nonlinear Model Predictive Control (NMPC) for Twin Rotor MIMO System (TRMS). IRC, Universiti Teknologi PETRONAS. (Submitted)

[img] PDF
Download (3318Kb)

Abstract

Twin Rotor MIMO System (TRMS) is a dynamic model with high non-linearity that resembles a helicopter with reduced degree-of-freedom (DOF). Besides, cross-coupling between main rotor and tail rotor contributes to the difficulty in controlling the system. Majority of the previous researches have not focused on continuous actual dynamic disturbance test. The objectives of this project are to model TRMS and control the system against major disturbance (wind effect) and set-point changes. The first phase of the project started with mathematical modelling of direct current (DC) motors, where the relationship between input voltage and angular velocity was captured. The next phase would be the modelling of the whole system and design of controller. During the second phase, the modelling would involve aerodynamics and other Physics laws. Once the complete model was formed, Proportional, Integral and Derivative (PID) and Linear Quadratic Regulator (LQR) controllers were designed to optimize the dynamic system. The system has been tested using wind variation as actual dynamic disturbance to validate the disturbance rejection performance. It was found that the best performance from combination of PID and LQR controllers gave 89% improvement in term of pitch overshoot and 33% improvement in term of yaw overshoot during disturbance rejection compared to PID-only controller.

Item Type: Final Year Project
Academic Subject : Academic Department - Electrical And Electronics - Pervasisve Systems - Digital Electronics - Design
Subject: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Engineering > Electrical and Electronic
Depositing User: Ahmad Suhairi Mohamed Lazim
Date Deposited: 19 Jan 2017 15:38
Last Modified: 25 Jan 2017 09:34
URI: http://utpedia.utp.edu.my/id/eprint/17092

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...