Development of LabVIEW FPGA program for Energy Management System (EMS) Controller for Hybrid Electric Vehicle (HEV)

Mustaffa Kamal Basha, Abdul Aziz (2016) Development of LabVIEW FPGA program for Energy Management System (EMS) Controller for Hybrid Electric Vehicle (HEV). [Final Year Project] (Submitted)

[thumbnail of 3. Final disssertation.pdf] PDF
3. Final disssertation.pdf

Download (3MB)

Abstract

This dissertation explains the construction of LabVIEW Field Programmable Gate Array (FPGA) for Energy Management System (EMS) Controller for Hybrid Electric Vehicle (HEV). The HEV is engineered to reduce the world’s dependency on fossil fuels. An HEV is designed to utilize two power sources which are from electric motor and an internal combustion engine (ICE). These sources need to be carefully controlled so that the energy of both sources can be synergized to achieve fuel and power efficiency in the vehicle. The control algorithm is implemented by an EMS Controller for which in this project, it will run on a National Instruments (NI) CompactRIO, cRIO-9076. This EMS controller algorithm will be built and designed in FPGA of NI LabVIEW to extract and control parameters from the electric motor controller, which is the Motor Control Unit (MCU) and the engine controller, which is the Engine Control Unit (ECU). The extracted and controlled parameters are engine RPM, vehicle speed and vehicle fuel consumption. These data will be output using the embedded server to the client, which is a windows-based tablet PC and the embedded server is cRIO-9076. The communication between server and client will be implemented using HTTP-based communication protocol making the data appear in HyperText Mark-up Language (HTML) which will be rendered into the Graphical User Interface (GUI) web page interface. This GUI will enable the driver to monitor and control the MCU and ECU of the Hybrid Electric Vehicle.

Item Type: Final Year Project
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Departments / MOR / COE: Engineering > Electrical and Electronic
Depositing User: Mr Ahmad Suhairi Mohamed Lazim
Date Deposited: 19 Jan 2017 15:38
Last Modified: 25 Jan 2017 09:34
URI: http://utpedia.utp.edu.my/id/eprint/17129

Actions (login required)

View Item
View Item