Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

Comparative Study of Different Coil Geometries for Wireless Power Transfer

Lau, Kevin (2016) Comparative Study of Different Coil Geometries for Wireless Power Transfer. IRC, Universiti Teknologi PETRONAS. (Submitted)

[img] PDF
Download (2326Kb)

Abstract

Inductive coupling wireless power transfer is using time-varying resonant magnetic coupling to transfer the power from the transmitting coil to receiving coil through the air gap for various application such as charging up electric vehicles. However, the main issue is that the design of the coils have led to low mutual inductance and coupling coefficient which will lower the power efficiency as the distance of air gap increases. Therefore, this research is mainly studying and comparing the design of transmitting and receiving coil such as the geometries of the coils in order to investigate the power efficiency, mutual inductance, coupling coefficient and magnetic flux. In this research, a finite element method (FEM) software, Ansoft Maxwell is used to investigate and compare the performance of various designs of coils such as spiral planar coils, square planar coils and pentagon planar coils. In addition, prototypes have been built by using PCB planar coils in shape of spiral, square and pentagon in order to compare the results and performance from simulation. In terms of result, low mutual inductance and coupling coefficient are caused by the distance of air gap. When the distance of air gap is longer, the mutual inductance and coupling coefficient are lower for the three different of coils. And also, magnetic flux is also determined by the geometries of coil where it will affect the mutual inductance which influents the coupling coefficient and power efficiency

Item Type: Final Year Project
Academic Subject : Academic Department - Electrical And Electronics - Pervasisve Systems - Digital Electronics - Design
Subject: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Engineering > Electrical and Electronic
Depositing User: Ahmad Suhairi Mohamed Lazim
Date Deposited: 19 Jan 2017 15:38
Last Modified: 25 Jan 2017 09:34
URI: http://utpedia.utp.edu.my/id/eprint/17133

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...