Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

DEVELOPMENT AND MICROSTRUCTURAL ANALYSIS OF CARBON NANOTUBES REINFORCED COPPER MATRIX NANOCOMPOSITES USING PIM TECHNIQUE

SITTI KHADIJAH BT SHAHUL HAMID, SITTI KHADIJAH (2011) DEVELOPMENT AND MICROSTRUCTURAL ANALYSIS OF CARBON NANOTUBES REINFORCED COPPER MATRIX NANOCOMPOSITES USING PIM TECHNIQUE. Universiti Teknologi Petronas, Sri Iskandar, Tronoh, Perak. (Unpublished)

[img]
Preview
PDF
Download (1011Kb) | Preview

Abstract

The replacement of aluminum with copper in electronic industries had become breakthrough point. Due to copper's superior electrical conductivity, it enables conductor channel lengths and widths to be significantly reduced. The result is much faster operating speeds and greater circuit integration even up to 200 million transistors can be packed onto a single chip. Power requirements are now reduced to less than 1.8 volts. In recent years, thermal conductivity of electronic systems has been a significant issue. The reduction in material size becomes a challenge for electronic industry to produce high quality product with minimum cost. Nanostructure materials have attracted many researchers due to their outstanding mechanical and physical properties. While most researchers have focused on using CNTs to reinforce polymeric and ceramic matrices, CNT-reinforced metallic such as copper composites are quickly rising as attractive superior strength. In this work, powder injection molding techniques were used to produce carbon nanotubes reinforced copper nanocomposite with unique mechanical properties. Pure copper (Cu) powder was mixed with multiwall carbon nanotubes (MWCNTs) to produce Cu-MWCNT composites. In the first phase of the work, Cu- 25 vol. % MWCNT composite powders were mixed using internal mixer machine along with the binder system (70 vol. % of paraffin wax, 25 vol. % of high density polyethylene (HDPE) and 5 vol. % of stearic acid. Thermal gravity analysis (TGA) was used to evaluate the degradation temperature of the feedstock. The feedstocks then were processed into dumbbell shape using injection molding at 1600C. The samples then undergo solvent and thermal debinding process at different temperatures and heating rates to obtain optimum parameter in producing defect free product. Next, the sample was sintered at different dwell time to obtain the best parameter. Finally characterization was done using FESEM to analyze Cu-CNT dispersion, powder morphology, CNT damage and phase analysis.

Item Type: Final Year Project
Subject: T Technology > TJ Mechanical engineering and machinery
Divisions: Engineering > Mechanical
Depositing User: Users 5 not found.
Date Deposited: 21 May 2012 12:04
Last Modified: 25 Jan 2017 09:41
URI: http://utpedia.utp.edu.my/id/eprint/2569

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...