Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

MODELING AND CONTROL OF INTERLINE POWER FLOW CONTROLLER FOR POWER SYSTEM STABILITY ENHANCEMENT

ALIVELU, ALIVELU MANGA PARIMI (2011) MODELING AND CONTROL OF INTERLINE POWER FLOW CONTROLLER FOR POWER SYSTEM STABILITY ENHANCEMENT. PhD thesis, UNIVERISTI TEKNOLOGI PETRONAS.

[img]
Preview
PDF
Download (3991Kb) | Preview

Abstract

Mitigation of power system oscillations is the problem of concern in the power industry as these oscillations, when exhibiting poor damping; affect the transmission line power transfer capability and power system stability. These oscillations greatly restrict power system operations and, in some cases, can also lead to widespread system disturbances. In this context, the Flexible AC Transmission System (FACTS) device, Interline Power Flow Controller (IPFC) employed to improve the transmission capability can be additionally utilized for damping control of power system oscillations. IPFC based damping controller design for power system stability requires proper and adequate mathematical representation of power system incorporating the FACTS device. This thesis reports the investigation on the development of steady state model, the dynamic nonlinear mathematical model of the power system installed with the IPFC for stability studies and the linearized extended Phillips Heffron model for the design of control techniques to enhance the damping of the lightly damped oscillations modes. In this context, the mathematical models of the single machine infinite bus (SMIB) power system and multi-machine power system incorporated with IPFC are established. The controllers for the IPFC are designed for enhancing the power system stability. The eigenvalue analysis and nonlinear simulation studies of the investigations conducted on the SMIB and Multi-machine power systems installed with IPFC demonstrate that the control designs are effective in damping the power system oscillations. The results presented in this thesis would provide useful information to electric power utilities engaged in scheduling and operating with the FACTS device, IPFC.

Item Type: Thesis (PhD)
Subject: UNSPECIFIED
Divisions: Engineering > Electrical and Electronic
Depositing User: Users 6 not found.
Date Deposited: 05 Jun 2012 08:12
Last Modified: 25 Jan 2017 09:41
URI: http://utpedia.utp.edu.my/id/eprint/2772

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...