Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

MINIMIZATION OF RESOURCE UTILIZATION FOR A REAL-TIME DEPTH-MAP COMPUTATIONAL MODULE ON FPGA

NGO , NGO HUY TAN (2011) MINIMIZATION OF RESOURCE UTILIZATION FOR A REAL-TIME DEPTH-MAP COMPUTATIONAL MODULE ON FPGA. Masters thesis, UNIVERSITI TEKNOLOGI PETRONAS.

[img]
Preview
PDF
Download (2799Kb) | Preview

Abstract

Depth-map algorithm allows camera system to estimate depth in many applications. The algorithm is computationally intensive and therefore more effective to be implemented on hardware such as the Field Programmable Gate Array (FPGA). However, the recurring issue in FPGA implementation is the resource limitation. The issue is normally resolved by modifying the algorithm. However, the issue can also be addressed by implementing hardware architectures without the need to modify the depth-map algorithm. In this thesis, five different depth-map processor architectures for the sum-of-absolute-difference (SAD) depth-map algorithm on FPGA at real-time were designed and implemented. Two resource minimization techniques were employed to address the resource limitation issues. Resource usage and performance of these architectures were compared. Memory contention and bandwidth constrain were resolved by using self-initiative memory controller, FIFOs and line buffers. Parallel processing was utilized to achieve high processing speed at low clock frequency. Memory-based line buffers were used instead of register-based line buffers to save 62.4% of logic element (LEs) used, but require some additional dedicated memory bits. A proper use of registers to replace repetitive subtractors saves 24.75% of LEs. The system achieves SAD performance of 295 mega pixel disparity per second (MPDS) for the architecture with 640x480 pixel image, 3x3 pixel window size, 32 pixel disparity range and 30 frames per second. The system achieves SAD performance of 590 MPDS for the 64 pixels disparity range architecture. The disparity matching module works at the frequency of 10 MHz and produces one pixel of result every clock cycle. The results are dense disparity images, suitable for high speed, low cost, low power applications.

Item Type: Thesis (Masters)
Subject: UNSPECIFIED
Divisions: Engineering > Electrical and Electronic
Depositing User: Users 6 not found.
Date Deposited: 05 Jun 2012 08:13
Last Modified: 25 Jan 2017 09:41
URI: http://utpedia.utp.edu.my/id/eprint/2811

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...