Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

LANDSLIDE SUSCEPTIBILITY MODELLING UNDER ENVIRONMENTAL CHANGES: A CASE STUDY OF CAMERON HIGHLANDS, MALAYSIA

ABDUL BASITH, ABDUL BASITH (2011) LANDSLIDE SUSCEPTIBILITY MODELLING UNDER ENVIRONMENTAL CHANGES: A CASE STUDY OF CAMERON HIGHLANDS, MALAYSIA. PhD thesis, UNIVERSITI TEKNOLOGI PETRONAS.

[img]
Preview
PDF
Download (13Mb) | Preview

Abstract

Modeling landslide susceptibility usually does not include multi temporal factors, e.g. rainfall, especially for medium scale. Landslide occurrences in Cameron Highlands, in particular, and in Peninsular Malaysia, in general, tend to increase during the peak times of monsoonal rainfall. Due to the lack of high spatial resolution of rainfall data, Normalized Different Vegetation Index (NDVI), soil wetness, and LST (Land Surface Temperature) were selected as replacement of multi temporal rainfall data. This research investigated their roles in landslide susceptibility modeling. In doing so, four Landsat 7 Enhanced Multi Temporal Plus (ETM+) images acquired during two peak times of rainy and dry seasons were used to derive multi temporal NDVI, soil wetness, and LST. Topographic, geology, and soil maps were used to derive ‘static’ factors namely slope, slope aspect, curvature, elevation, road network, river/lake, lithology, soil geology lineament maps. Landslide map was used to derive weighting system based on spatial relationship between landslide occurrences and landslide factor using bivariate statistical method. A non-statistical weighting system was also used for comparison purpose. Different scenarios of data processing were applied to allow evaluation on the roles of multi temporal factors in landslide susceptibility modeling in terms of the accuracy of the landslide susceptibility maps (LSMs), the appropriate weighting system of the models, the applicability of the model, the ability to confirm the relation between landslide occurrences and rainfall. The results show that the average accuracy of LSMs produced by the developed models with inclusion of multi temporal factors is 49.1% on the overall. Addition of LST tends to improve the accuracy of LSMs. NDVI can be a suitable replacement for rainfall data since it can explain the relation between landslides occurrences and rainfall cycle. Statistical-based weighting system produced more accurate LSMs than non-statistical-based one and is applicable for landslide susceptibility modeling elsewhere. Significant causative factors were proven to produce more accurate LSMs.

Item Type: Thesis (PhD)
Subject: UNSPECIFIED
Divisions: Engineering > Civil
Depositing User: Users 5 not found.
Date Deposited: 05 Jun 2012 10:59
Last Modified: 25 Jan 2017 09:42
URI: http://utpedia.utp.edu.my/id/eprint/3042

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...