Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

RELIABILITY-EVALUATION OF NANOSCALE CIRCUIT DESIGN USING BAYESIAN NETWORKS

KHALID, USMAN (2012) RELIABILITY-EVALUATION OF NANOSCALE CIRCUIT DESIGN USING BAYESIAN NETWORKS. Masters thesis, UNIVERSITI TEKNOLOGI PETRONAS.

[img]
Preview
PDF
Download (436Kb) | Preview

Abstract

As transistors are scaled down to nanometer dimension, their performances and behaviors become less predictable. Designing reliable circuit or systems using these nano-transistors (nano-circuits or systems) post new challenges and require paradigm shift in design techniques, process and flow. Reliability must be designed into the nano-circuit or systems. Inter-stage and intra-stage (priors) reliability of a designed circuit must be measured during design process so that design could be changed to increase the overall reliability of the nano-circuit or system. Existing reliability evaluation schemes such as Probabilistic Gate Model (PGM), Boolean Difference Error-based Calculator (BDEC), Probabilistic Transfer Matrix (PTM) and Bayesian Network (BN) evaluate the overall or cumulative reliability of a given circuits however only BN has the features to be used to evaluate the priors stage reliability which has never been explored before. Hence, this thesis presents the work that exploit BN capability to measure priors reliability of few standard circuits such as Full Adders and Decoders. Using BN with prior analysis, it was found that priors with large number of gates to have low reliability which subsequently contributed to the low overall reliability of the test circuit. In this research work the inputs of nanoscale circuits have also been modelled as probabilistic digital inputs (PDIs). The Monte Carlo simulation is applied to model PDIs in nanoscale circuits using BN. The results show that the lower values of PDIs gave low reliability values for the test circuits which means low logic input values are more sensitive and error prone to the reliability of the circuit.

Item Type: Thesis (Masters)
Subject: UNSPECIFIED
Divisions: UNSPECIFIED
Depositing User: Users 6 not found.
Date Deposited: 30 Jul 2012 11:00
Last Modified: 25 Jan 2017 09:41
URI: http://utpedia.utp.edu.my/id/eprint/3315

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...