Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

CFD Simulation for the Extraction of Blood Clot in the Middle Cerebral Artery Using GP2 Device through a 3 phase flow Model

Jeremy Melvin, Amboi (2013) CFD Simulation for the Extraction of Blood Clot in the Middle Cerebral Artery Using GP2 Device through a 3 phase flow Model. Universiti Teknologi PETRONAS. (Unpublished)

[img] PDF
Download (1891Kb)

Abstract

Stroke has been considered one of the most fatal disease identified by mankind, killing at least five million people per year. In order to combat this disease, several mitigation measures have been discovered through research, namely thrombolysis drug through consumption or mechanical devices through surgery such as balloon angioplasty, embolectomy and Mechanical Embolus Removal in Cerebral Ischemia (MERCI). Each of these methods have their disadvantages, more prevalently on heavy requirements and potential damage to the artery. However, a proposed device named Gillian-Pearce (GP) device was introduced which claims having lower surgical risks and damage to the patient’s artery, through a simple concept of vacuum suction. The device remains untested on a real environment and thus, CFD analysis is done to enable simulation of the device in which it is more cost saving, safe and risk free. The GP device is designed, modelled and simulated through CFD using ANSYS Design Modeller and FLUENT, using a three phase Volume of Fluid model i.e. air, blood and blood clot. Grid sensitivity study is also done to determine the best meshing size for the model of which the need to balance between the size of mesh and to minimise computational time. Additionally, comparison of two and three phase flow model is done in which to study the difference of extraction rate when additional phase is introduced, i.e. air, into the system. Furthermore, a proposed new GP2 device with different structural tubes is designed that is able to extract blood clot much faster compared to the old previous model. It was found out that the best meshing size, i.e. between 0.25 mm, 0.20 mm and 0.15 mm, is 0.20 mm which is both fine enough for accuracy of results and short enough for computational time. Next, it was found out that the additional phase into the system will add to more lag time for the extraction process due to the presence of additional viscous fluid, of at least 12% increase in time of removal as compared to the two phase model. Finally, the newly proposed GP2 device is able to remove the blood clot at a rate of 9% much faster as compared to the old GP2 device due to having a larger area of suction for better mass transfer of the blood clot.

Item Type: Final Year Project
Academic Subject : Academic Department - Chemical Engineering - Biofuel
Subject: T Technology > TP Chemical technology
Divisions: Engineering > Chemical
Depositing User: Users 2053 not found.
Date Deposited: 09 Oct 2013 11:07
Last Modified: 09 Oct 2013 11:07
URI: http://utpedia.utp.edu.my/id/eprint/8418

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...