NEGATIVE BIAS TEMPERATURE INSTABILITY STUDIES FOR ANALOG SOC CIRCUITS

ABDUL LATIF, MOHD AZMAN (2012) NEGATIVE BIAS TEMPERATURE INSTABILITY STUDIES FOR ANALOG SOC CIRCUITS. Masters thesis, Universiti Teknologi Petronas.

[thumbnail of 2012 Master - Negative Bias Temperature Instability studies For Analog SOC Circuits.pdf] PDF
2012 Master - Negative Bias Temperature Instability studies For Analog SOC Circuits.pdf

Download (3MB)

Abstract

Negative Bias Temperature Instability (NBTI) is one of the recent reliability issues in
sub threshold CMOS circuits. NBTI effect on analog circuits, which require matched
device pairs and mismatches, will cause circuit failure. This work is to assess the
NBTI effect considering the voltage and the temperature variations. It also provides a
working knowledge of NBTI awareness to the circuit design community for reliable
design of the SOC analog circuit. There have been numerous studies to date on the
NBTI effect to analog circuits. However, other researchers did not study the
implication of NBTI stress on analog circuits utilizing bandgap reference circuit. The
reliability performance of all matched pair circuits, particularly the bandgap reference,
is at the mercy of aging differential. Reliability simulation is mandatory to obtain
realistic risk evaluation for circuit design reliability qualification. It is applicable to all
circuit aging problems covering both analog and digital. Failure rate varies as a
function of voltage and temperature. It is shown that PMOS is the reliabilitysusceptible
device and NBTI is the most vital failure mechanism for analog circuit in
sub-micrometer CMOS technology. This study provides a complete reliability
simulation analysis of the on-die Thermal Sensor and the Digital Analog Converter
(DAC) circuits and analyzes the effect of NBTI using reliability simulation tool. In
order to check out the robustness of the NBTI-induced SOC circuit design, a bum-in
experiment was conducted on the DAC circuits. The NBTI degradation observed in
the reliability simulation analysis has given a clue that under a severe stress condition,
a massive voltage threshold mismatch of beyond the 2mV limit was recorded. Bum-in
experimental result on DAC proves the reliability sensitivity of NBTI to the DAC
circuitry.

Item Type: Thesis (Masters)
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Departments / MOR / COE: Engineering > Electrical and Electronic
Depositing User: Users 2053 not found.
Date Deposited: 22 Oct 2013 09:23
Last Modified: 25 Jan 2017 09:41
URI: http://utpedia.utp.edu.my/id/eprint/8955

Actions (login required)

View Item
View Item