COMPENSATION CIRCUIT OF INDUCTIVELY COUPLED POWER TRANSFER FOR ELECTRIC MOTORCYCLE WIRELESS CHARGING

ABDUL AZIZ, AHMAD FUAD (2021) COMPENSATION CIRCUIT OF INDUCTIVELY COUPLED POWER TRANSFER FOR ELECTRIC MOTORCYCLE WIRELESS CHARGING. Doctoral thesis, UNSPECIFIED.

[thumbnail of Ahmad Fuad G03684.pdf] Text
Ahmad Fuad G03684.pdf
Restricted to Registered users only

Download (12MB)

Abstract

In an inductively coupled power transfer (ICPT) device for electric vehicle (EV) wireless charging, there are two issues to concern which are the uncoupled coil location during power transfer process and receiver circuit failure due to electronic device malfunction in EV. These two circumstances result in an overcurrent issue in the transmitter circuit because of the circuit resonance. The high current in the transmitter circuit can defect the inverter’s transistors when the current exceeds the transistor maximum current rating. This thesis proposes a capacitor-inductor and series capacitor (CL/S) compensation circuit to constrain the inverter overcurrent. The parameter of CL/S compensation is detuned out of resonant while ensure the required power transfer for the battery charging achieved. Comparative analyses on the electric motorcycle (EM) battery charging simulation show that the inverter current from the CL/S compensation maintains below its maximum current rating, 55 amperes, when the equivalent resistance of the EM battery reaches 200 Ω. At the same time, the double-
sided inductor-capacitor-capacitor (LCC) current has exceeded significantly.

Item Type: Thesis (Doctoral)
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Depositing User: Ms Nurul Aidayana Mohammad Noordin
Date Deposited: 20 Jul 2023 08:12
Last Modified: 20 Jul 2023 08:12
URI: http://utpedia.utp.edu.my/id/eprint/24724

Actions (login required)

View Item
View Item