Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

Development of Lifting-based VLSI Architectures for Two-Dimensional Discrete Wavelet Transform

MOHAMED KOKO, IBRAHIM SAEED (2010) Development of Lifting-based VLSI Architectures for Two-Dimensional Discrete Wavelet Transform. PhD thesis, Universiti Teknologi PETRONAS.

[img] PDF
Download (6Mb)

Abstract

Two-dimensional discrete wavelet transform (2-D DWT) has evolved as an essential part of a modem compression system. It offers superior compression with good image quality and overcomes disadvantage of the discrete cosine transform, which suffers from blocks artifacts that reduces the quality of the inage. The amount of computations involve in 2-D DWT is enormous and cannot be processed by generalpurpose processors when real-time processing is required. Th·"efore, high speed and low power VLSI architecture that computes 2-D DWT effectively is needed. In this research, several VLSI architectures have been developed that meets real-time requirements for 2-D DWT applications. This research iaitially started off by implementing a software simulation program that decorrelates the original image and reconstructs the original image from the decorrelated image. Then, based on the information gained from implementing the simulation program, a new approach for designing lifting-based VLSI architectures for 2-D forward DWT is introduced. As a result, two high performance VLSI architectures that perform 2-D DWT for 5/3 and 9/7 filters are developed based on overlapped and nonoverlapped scan methods. Then, the intermediate architecture is developed, which aim a·: reducing the power consumption of the overlapped areas without using the expensive line buffer. In order to best meet real-time applications of 2-D DWT with demanding requirements in terms of speed and throughput parallelism is explored. The single pipelined intermediate and overlapped architectures are extended to 2-, 3-, and 4-parallel architectures to achieve speed factors of 2, 3, and 4, respectively. To further demonstrate the effectiveness of the approach single and para.llel VLSI architectures for 2-D inverse discrete wavelet transform (2-D IDWT) are developed. Furthermore, 2-D DWT memory architectures, which have been overlooked in the literature, are also developed. Finally, to show the architectural models developed for 2-D DWT are simple to control, the control algorithms for 4-parallel architecture based on the first scan method is developed. To validate architectures develcped in this work five architectures are implemented and simulated on Altera FPGA. In compliance with the terms of the Copyright Act 1987 and the IP Policy of the university, the copyright of this thesis has been reassigned by the author to the legal entity of the university, Institute of Technology PETRONAS Sdn bhd. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this thesis.

Item Type: Thesis (PhD)
Academic Subject : Academic Department - Electrical And Electronics - Pervasisve Systems - Digital Electronics - Computer Systems Architecture
Subject: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Engineering > Electrical and Electronic
Depositing User: Users 2053 not found.
Date Deposited: 29 Oct 2013 10:52
Last Modified: 25 Jan 2017 09:42
URI: http://utpedia.utp.edu.my/id/eprint/10069

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...