Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

Effect Of The Internal Fluid Flow In The Glass Fibre Reinforced Plastic (GFRP) Pipe Dynamic

Ahmad Sabri, Shahir (2011) Effect Of The Internal Fluid Flow In The Glass Fibre Reinforced Plastic (GFRP) Pipe Dynamic. Universiti Teknologi PETRONAS. (Unpublished)

[img] PDF
Download (922Kb)


The petroleum produced by the offshore platforms is transported to processing plant through carbon steel pipelines. Usually, expectancy of maximum production capacity of pipelines is never meeting the prediction made in the early stage. Among the main reason for the declining of production capacity of pipelines over time is corrosion. This project aims to prove the dynamic of glass fibre reinforced plastic ( GFRP) pipe dynamic is better than steel pipes dynamic in oil pipelines. Whilst it is more common to see in Oil and Gas industry to utilize steel pipes in their pipelines, GFRP pipes show a promising future to reduce corrosion problems. When it comes to pipeline, corrosion had caused severe to production capacity of a line to replace the corroded pipelines will cost a lot of money. The industries are desperate to alternative for the steel pipes. With that in mind, this Final Year Project will be focused more on study of the dynamic behavior of glass fibre reinforced plastic (GFRP) pipe fluid flow properties. A pipe modeling will be created to study the effect of the internal fluid flow in the GFRP pipe and compare it with the steel pipes dynamic. This project may lead to explore a better option than steel pipes to use in the oil and gas industry.

Item Type: Final Year Project
Academic Subject : Academic Department - Mechanical Engineering - Materials - Engineering materials - Polymers - Flow simulation
Subject: T Technology > TJ Mechanical engineering and machinery
Divisions: Engineering > Mechanical
Depositing User: Users 2053 not found.
Date Deposited: 12 Nov 2013 08:55
Last Modified: 25 Jan 2017 09:41
URI: http://utpedia.utp.edu.my/id/eprint/10440

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...